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transmitted wave fronts and also wave fronts reflected by a strong interface buried in a
random medium. In the weakly heterogeneous regime the reflected and transmitted wave
fields are characterized by reflection and transmission operators that are the solutions of
[t6-Schrodinger diffusion models. These models allow for the computations of the Wigner
distributions and the autocorrelation functions of the reflected and transmitted waves.

Kwezxzrds' They also fully take into account the fact that the waves travel through the same medium
Random media during the propagation to and from the interface, which induces an increase of the beam
Schrodinger equations radius and of the correlation radius, and also predict the enhanced backscattering effect
Partially coherent beams in the backscattered direction.

Enhanced backscattering © 2008 Elsevier B.V. All rights reserved.

1. Introduction

Random wave propagation in the paraxial regime is a well-known model that is used in many applications in communi-
cation and imaging [12]. It provides a simple tool for computing the wave transmission through a random medium by taking
into account random forward scattering and by neglecting random backscattering. This enables one to study a wide range of
phenomena, such as laser beam spreading [5,17] and time reversal in random media [1,3,6]. In many situations of interest,
such as in optical coherence tomography and in geophysical imaging, the quantity of interest is the wave reflected by an
interface located in the random medium. The usual approach found in most papers is to apply the paraxial wave equation
in both directions of propagation and to assume that the statistics of the forward- and backward-propagating waves are
independent [18-20]. However, some authors have already noticed that the correlation of the forward-backward propagat-
ing events can induce modifications of the autocorrelation function of the reflected wave [13,14]. In our paper we analyze the
full statistical distribution of the transmitted and reflected waves. We characterize them by reflection and transmission
operators that are the solutions of the It6-Schrodinger diffusion models (19) and (33) and which take into account forward
scattering and backscattering by the random medium and backscattering by the interface. These models enable us to com-
pute low- and high-order moments of the reflected and transmitted wave fields. In particular we obtain closed-form expres-
sions for the first-order and second-order statistics (the coherent wave and the autocorrelation function or Wigner
distribution) in several physically relevant regimes.

A particular application of these results is the identification of the regimes in which the independent approach is valid. In
the regime in which the transverse correlation length of the medium is smaller than the beam width, we will show that the
independent approach gives the correct answer as far as the reflected intensity profile and the spatial autocorrelation func-
tion are concerned. However, an important phenomenon not captured by the independent approach, and captured by the
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[td-Schrodinger diffusion model (33), is the enhanced backscattering or weak localization effect [2,16]: if a quasi-plane wave
is incoming with a given incidence angle, then the mean reflected intensity has a local maximum in the backscattered direc-
tion, which is twice as large as the mean reflected intensity in the other directions. This enhancement can be observed in a
small cone around the backscattered direction, and it can be interpreted as the result of constructive interferences between
reciprocal wave paths. On the other hand, in the regime in which the transverse correlation length of the medium is larger
than the beam width, the independent approach gives a qualitatively wrong prediction. In particular, it underestimates the
beam spreading and it also predicts a correlation radius for the reflected wave smaller than the one that is actually obtained.
In fact, the correlation radius of the reflected wave at the surface can be larger than the correlation radius of the wave at the
reflecting interface, meaning that the wave recovers part of its coherence when it propagates back in the same random med-
ium. The full It6-Schrodinger diffusion model that we develop in this paper is needed to explain this phenomenon.

The outline of the paper is as follows: We define the transmission and reflection operators and express the transmitted
and reflected wave fields in terms of these operators in Section 2. In Section 3, respectively, 4, we develop a diffusion for-
mulation for the transmission, respectively, reflection, operator. We analyze the Wigner distributions associated with these
operators in Sections 5 and 6. This analysis is then used to study quantitatively the wave transmission and reflection in Sec-
tions 7 and 8.

2. The transmission and reflection operators

We consider linear acoustic waves propagating in 1 + d spatial dimensions with heterogeneous and random medium fluc-
tuations. The governing equations are
1 op

Kexoatvu=0 (1)

ou
pzx) 5 +Vp=F,

where p is the pressure, u is the velocity, p is the density of the medium, K is the bulk modulus of the medium, and
(z,X) € R x R? are the space coordinates. The source is modeled by the forcing term F. We consider in this paper the situation
in which a random slab occupying the interval z € (0, L) is sandwiched between two homogeneous half-spaces. The source, F,
is located outside of the slab, in the halfspace z > L. We shall refer to waves propagating in a direction with a positive z com-
ponent as right-propagating waves. The medium fluctuations in the random slab (0, L) vary relatively rapidly in space while

the “background” medium is constant. We normalize the background bulk modulus K and density p in the slab to one, so

that the background speed ¢ = 1/K/p and impedance Z = 1/Kp are also equal to one. The medium is assumed to be matched

at the right boundary z = L. We consider a possible mismatch at the boundary z = 0 and denote the medium parameters in
the half-space z < 0 by p, and Ko:

Ko'! if 2<0, po if 2<0,
Kzx) ) 1 Fev@ex/e ifzeOL), pex)=q1 if ze(0L)
’ 1 if z>1L, 1 ifz>1L,

with ¢ a small parameter. The random field v(z, X) models the medium fluctuations and we assume that it is stationary and
that it satisfies strong mixing conditions. We consider a scaling where the central wavelength of the source is of order & and
write

F(t,z,X) :f(g%,%)b‘(z—zo)ez, (2)

where e, is the unit vector pointing in the z-direction and zy > L. Note that:

- The source has been normalized so that the Rayleigh length is of order one. The Rayleigh length is the distance from beam
waist where the beam area is doubled by diffraction. For a beam with carrier wavenumber ko and radius ry it is of the order
of kor2. Here the carrier wavenumber is of order -2 and the beam radius is of order &. Therefore the Rayleigh length is of
order one.

- The transverse and longitudinal scales of variation of the random medium, ¢ and &, respectively, correspond to the scales
of the waves. Therefore the random scattering is sensitive to the full 1 + d-dimensional spectrum of the random fluctu-
ations (or its 1 + d-dimensional autocorrelation function).

- The amplitude ¢ of the relative medium perturbation is chosen so that the random effects are significant after a propaga-
tion distance of order one. Therefore diffractive and random effects have a nontrivial interplay.

In the companion paper [10] we analyze a different regime, in which the random medium has weak random isotropic fluc-
tuations. The techniques used to analyze the wave reflection and transmission are similar in the two papers, however, lead to
qualitatively different results. In the regime discussed in [10] bulk random backscattering is asymptotically negligible and
the limit Schrodinger system satisfies a conservation of energy relation and describes completely the transmitted and re-
flected waves. Here bulk random backscattering is of order one and small amplitude, but long, incoherent wave fluctuations
are generated. As we will see, the result for the front waves has the form of a dissipative Schroédinger system.
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From now on we re-scale x/¢ — x and set
pi(t,z,X) = p(t,z,€X). 3)

Therefore, when we refer to the transversal spatial parameter X in the following, it corresponds to &x in the original
coordinates.

The wave field in the homogeneous half-space z < 0 satisfies the wave equation with the wave speed cq = \/Ko/p,. We
introduce the complex amplitudes & and b of the right- and left-propagating modes:

a(k,z,x) = (ﬂ / (;—zps(t,Z,X)-l-} 6ap (tZX)>eiC°"‘/*’2 dt}e””“/sz,

bF(k Z,X) = Czo {/ (;213 (t,z,X) ,llk%(t 7 X))eicok[/az dt} eike/

They are defined such that the pressure field in the region z < 0 can be written as
1 5 . . . )
pi(t,z,X) = o / (ag(k,z, x)ele/ 4 i (k. z, x)e*”‘z/gz>e*'fﬂ"t/ @ dk,
and they satisfy
oa; w2 ODE a2
—O(k,z,x)e** + =0 (k z,x)e /" = 0.
az ( I ) ) + az ( ? bl )

Using (1), we find that they also satisfy the coupled mode equations

aag iz 1 obg 2ic |
-0 _ 2 e 220 _ 2
oz 2k g e b 7 2k % " 2k
where Ay is the transverse Laplacian. In the limit & — 0, the cross terms (proportional to exp(42ikz/&?)) average out to zero
and we get the two uncoupled paraxial wave equations

oay i , ., obg i

0 _ " A & ~Fo I 7A &

z 2%k 2k b

Taking into account the fact that there is no source in the half-space z < 0, and therefore no right-going wave, we obtain

Axb&

PE(t,Z,X) / bg (k, z, x)e e/ e~iokt/* dfe - 7 < 0. (4)

Similarly, the wave field in the homogeneous regions [L,z,) and (2o, c0) has the form
ez L@ (k,z, x)e/ ek gk, Z> 7o,
L ((1? (k,z,x)e*/#* + bt (k, z, x)e*""z/ﬂz)e*"’“/”2 dk, ze|L z).

Here we have used the fact that there is no source and therefore no left-going wave in the region z > z, (see Fig. 1). We can
also use the jump conditions across the source position z = z; to obtain the relations

B; (k,Z(),x) = _%eikzn/ng(kv x)’ a;(k7 ZO’X) - a; (k,Z(),x) ; HI(ZO/FZf(k X)

By solving the paraxial wave equation for b¢, we obtain the expression for the complex amplitude of the wave incoming in
the random slab at z=L:

B; (k,LX) _ eikzo/szbinc(’<7 X), Binc(kvx) _ _% /f'(k7 x)ezik"‘P(’-*zﬂ)”"'XdK, (5)
2(2m)
where the transverse spatial Fourier transform is defined by
fle) = [ Fkxe*ax. 6)
a0(0) = 0| a=(0) a(L) | ai(L) (20) | a5(=)
b5(0) b (0) b(L) | B5(L)  B5(20) | B5(20) =0
z
0 L [z

Fig. 1. Boundary conditions for the modes in the presence of an interface at z = 0, a random slab (0, L), and a source at z = z,.
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The pressure field in the region z € (0,L) can be written as:
Ptz =5 [ (@208 1 bk zx)e 9 ek dk
21
where the complex amplitudes @ and b of the right- and left-propagating modes are given explicitly by

a’(k,z,x) = % [/ (;—zp“’(LZ, X) + 11? aa% (t,z, x))elkt/gz dt} e kel

] : 4 .
be(k,z,x) = % [ / (épﬁ(t, Z,X) - z]I %LZ (t,z, X)> elke? dt} e/,

We obtain the following coupled mode equations for the complex amplitudes a¢ and b¢:

oa*  [ik (z i o cua[ik oz i T
ob*  wefik (z i .. [ik (z i i
a7 - ¢ {Z—EV(S—z,x) +ﬁAx}a - {2—8\}<8—2,x> +ﬁAx}b . (8)

This system is valid in z € (0,L) and it is complemented with the following boundary conditions at z =L and z = 0:
b (k,z = LX) = e"/" bype(k,x), @ (k,z = 0,%) = Rob*(k,z = 0,x), 9)

where Ry = (Zo — 1)/(Zo + 1) is the reflection coefficient for the interface at z= 0 and Z, = /Kop, is the impedance of the
left homogeneous half-space. These boundary conditions are obtained from the continuity relations of the fields
p® and e, -u?® at z =L and z = 0, which also provide the expressions for the complex amplitudes of the transmitted field
b in the region z < 0 and for the reflected field in the region z > L:

b (k,z = 0,X) = Tob®(k,z = 0,x), @ (k,z=L,x)=a*(k,z=L,x), (10)

where Ty = 223/2/(1 + Zp) is the transmission coefficient for the interface at z = 0. If there is no impedance contrast Z, = 1,
then To = 1 and Ry = 0 and the second boundary condition in (9) reads a¢(k,z = 0,Xx) = 0. This is the radiation condition
expressing the fact that there is no wave incoming from —oo. If there is a large impedance contrast Z, > 1 or Zy, < 1, then
To < 1 and the reflection coefficient is close to one in absolute value. In particular, if Zy < 1, then Ry ~ —1 and the second
boundary condition in (9) is equivalent to the Dirichlet (reflecting) boundary condition p*(t,z = 0,x) = 0.

We now make use of an invariant imbedding step and introduce the transmission and reflection operators. First we define
the lateral Fourier modes

at(k,z,x) = /a”(k,z, X)e *Xdx, bi(k,z,k) = / be (k, z, X)e " * dx, (11)
and make the ansatz

a(k,z, 1) — / R (k,z, 6, 6)D (k, 2, ') ', By (k) = / T (k,z, 1, 1) (k, 2, ) i (12)
Using the mode cc;upling equations (7) and (8) we find |

%fzs(k,z, KK) = e 8 LK,z 1) + e / / RE(k,z, 1, 11) L5 (k. 2, k1, k2) RE(K, 2, K2, &) dicy dicy

+ / Fo(k, 2,1, 1) RE(k, 2, 61, ) + RE(k, 2,16, 10 ) 22 (K, 2, 1, ') ey, (13)

%%S(k,z, K, k') = / ’ZA'S(k,Z, K, xl)Zﬂ(k,z, K1, k') diq

+e%/ /%E(k,z,x.,xl)Zc(k,z,m,nz)@(k,z,m,x’)dm dxs, (14)
where we have defined
e L P LY ¢ S
Lk, z,k1,%k2) = o K1l 00k x2)+82(27'[)dv<827kl K2>~, (15)

with ¥(z, ) the partial Fourier transform of v(z,x) defined as in (6). This system is complemented with the initial conditions
atz=0:

Ré(k,z=0,x,&) =Rod(x — '), T?(k,z=0,x,)=Tod(k — «).
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The transmission and reflection operators evaluated at z = L carry all the relevant information about the random medium
from the point of view of the transmitted and reflected waves, which are our main quantities of interest.
Our objective in the next sections is to characterize the transmitted wave field

Pi(s.X) = p°(z0 + &°5,2=0",X) = ;—n / / bg (k, 0, k') di elt=* K20/ k) dyc e

1 S . ,
= / / | / Tk, L, 6, 1 )bine (k, &) di @) de lk, (16)
and the reflected wave field
Di(s,X) =pf(zo + L+ &%s,2=L",X) = Zl_n //dﬁ (k, L, 1) di ellex—ko 1)/ k) e e
1 P - :
= / | / | / RE(k, L, 16, ) bunc (k, ') i€ e, (17)

Note that these wave fields are observed on the time scale of the source and around their respective expected arrival times
(zo for the transmitted wave, and z, + L for the reflected wave, which corresponds to the sum of the travel time from the
source zp to the interface 0 and the travel time from O to L).

3. Random Schrodinger model for the transmission operator
We consider the transmitted field p. defined by (16) and use diffusion approximation theorems to identify a random
Schrédinger model. The main result is the following.

Proposition 1. The processes p,(s,X) converge in distribution in the space C°(R,L2,(R%)) N L2,(R, L2 (R%)) to the limit process
1 [ [- . .
Pu(S,X) = T / / T(k, L, X, X)binc(k,X') dX'e* dk. (18)

Here C°(R,L2(R%)) is the space of continuous functions in s with values in L2 (R?) equipped with the weak topology and
L2(R,[2(RY)) = L2 (R x RY). The operators T (k,z,X,x') are the solutions of the following It6-Schrédinger diffusion model:

. 2 .
ﬁ —%T(k@x, x’)dz—s—lzki’(lgz,x,x’) odB(z,X), (19)

starting from T (k,0,X,X') = Tod(X — X'). Here o stands for the Stratonovich stochastic integral, B(z,X) is a Brownian field with
covariance

dT(k,z,X,X) = == AT (k,z,X,X')dz

E[B(z1,X1)B(z3,X;)] = min{zhzz}/ C(s,x1 —Xp)ds, (20)
and we have defined

C(z,x) = E[v(Z + z,X + x)v(Z, X)), (21)

Ce(x) = /  Czx)e e dz. (22)
The moments of the finite-dimensional distributions also converge:

[E[pfr(sl7x1 )m] o 'pir(SQ'/ xq)mq] 8:? [E[ptr(slvx1)m1 o 'pt1~(5qaxq)mq]v (23)
foranyqe N, sy,...,5 € R Xq,...,Xg € RY, and my,...,mg € N.

The existence and uniqueness problem for the solution of the It6-Schrédinger model (19) was addressed in [4]. The end of
the section is devoted to the proof of this proposition. We shall use a technique similar to the one presented in [9] in the case
of randomly layered media. The idea is to study the convergence of a family of moments of the operator 7°¢ that determines
the distribution of the transmitted field. The operator 7° itself does not converge to 7 (the Fourier transform of 7), but some
specific moments of 7°¢ (expectations of products of components with distinct frequencies k) converge to those of 7, and this
is what is needed.

Step 1. A priori estimates. From (7) and (8) we can check that, for any k, the integral [ |a¢(k,z,x)|> — |b%(k, z,x)|* dx is con-
served in z. Applying this conservation relation at z = 0 and z = L, and taking into account the boundary conditions (9), we
obtain

/'\aﬂ(k,L,x)\dea 423)/|b£(k,o,x)\2dx:/\bim(k,x)fax.
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Using now (10) and the identity R0 + TO =1 we get
/ | (k, L, x)|* dx + / b5 (k, 0,X)|* dx = / |Binc (k, X) | dX, (24)

which expresses the fact that the power of the incoming wave is fully recovered by the transmitted and reflected waves.
Integrating in k and using Parseval’s equality gives the total energy conservation relation

//|pref (s,x)| dxds+//|ptl (s,x)? dxdsf //|blrlc (k,x)[* dxdk. (25)

We first state a pI'lOFl estimates for our quantltles of interest.

Lemma 1. There exists C > 0 such that, uniformly in ¢ and in sg, s1,

/\ptr S0, X \ dx < Cand/\ptr 51,X) — Pi(So, )\ dx < Cls1 — so|. (26)

Proof. Using the Sobolev’s embedding L*(R) c H'(R), there exists a constant Cy,;, such that, for any x, sup;|p: (s, x)[* <
C50b||pfr(-,x)|\,2_,1(m. Then, using Parseval’s equality, we obtain

sup I (5. 0) < S [+ 0.0 dk
S
Integrating in x and using the conservation equation (24) yields the first result of the Lemma:

sup [ 1phsxfdx < [supphsfdx< 52 [ (141 b dxdk

By Cauchy-Schwarz inequality, we have
 opj, ’ / o : o [
s, X)ds| < ds/ ds<|s;—s /‘ (s, X
| Fewas) < [Cas | 51 —sol [ [P s.x)

The integral in x of the last term of the inequality can be bounded uniformly as above, which completes the proof. We remark
that, in fact, Sobolev’s embedding gives that C'/*(R) c H'(R) providing a result on smoothness in time. [

ds.

g £ 2 ap fr
P4 (51, %) — P50, %) = P (5.%)

Step 2. The moments of the finite-dimensional distribution of p.(s,X) converge to those of p,.(s,X). Let us fix times sq,...,Sq,
positions X1, ...,X,, and integers my, ..., m,. The general moment (23) of pf.(s,X) can be expressed as the multiple integral

PG (51.30)™ - Pi(so. %)™ = M/ /HHMM%MJHmth“w%ﬂ{ﬂfmwmwQ

h=1 j=1

for N = Y"}_,my. Therefore, the convergence of the general moment of the transmitted wave field will follow from the con-
vergence of the following specific moments of the transmission operator

E {ﬂ T(k;, L, &, K;)} . (27)

i1

We call these moments “specific” because we restrict our attention to the case in which the frequencies k; are all distinct. In
Appendix A we use diffusion approximation theorems to deduce that we have

limE {1}‘[ T¢(kj, L,x;, x;)} =E {1:[ 7 (kj, L, x;, x;)] :
when the right-hand side expectation is taken with respect to the following It6-Schrédinger model for the transmission
operator:

K*(Co(0) + C(0))

3 T (k,z,x,x")dz —

d?(k,z, KK)=— T (k,z, K, dz+2(;—l;)d / ?(k,z, K, m)dﬁ(z, k1 — k') dx,

(28)
starting from f'(k, 0,x,x') = Tod(x — '). Here we have used the notations (21) and (22) and the Brownian field B is the partial
Fourier transform of the field B so that it has the following operator-valued spatial covariance

E[B(z1,%1)B(22,x2)] = min{z;, 2, } (21) Co(k1)3 (k1 + x2), (29)
- / h Clzxje " dxdz. (30)
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Consider next the transmission operator in (28) in the original spatial variables:

T(k,z,X,X) = / XX X) T (k 7.1, ) dicd. (31)

1
(2m)’
Then we find that this operator is weakly characterized by the It6-Schrodinger diffusion model (19). This proves therefore
the last statement of the Proposition (the convergence of the moments).

Step 3. Convergence of pé. to p,, in C°(R, L% (R%)) N L2,(R, L2 (RY)). Lemma 1 shows that the process p¢ is tight in C°(R, L (R%)).
Moreover, the first estimate also shows that, for any function ¢ in L?(R¢) the random processes

X5(5) = [ pils.x)p(0dx
are uniformly bounded. Therefore, the finite-dimensional distributions are characterized by the moments of the form
€[ 5™ X5 6.

where g e N, my,....mgeN, ¢,..., ¢, € L*(RY). These moments can be written as multiple integrals

£ m & m, 1 /
[E[Xd,](sl) .--X¢q(5q) q] :W/.../Hdkhjdkhjdkhj
J

X H (Binc(kh.ja K;IJ)E(K;,J)E_MMS") E |:H j—a (khJ‘, L7 Kpj, K;u-) s
hj hj

for N = >>]_,my, where only the specific moments of the form (27) appear (i.e., moments of products of the transmission
operator at distinct k). The convergence of these specific moments therefore implies the convergence of the finite-dimen-
sional distributions, hence the weak convergence in C°(R, L2,(R?)). Furthermore, the estimate (25) shows that the processes
are tight in L2 (R, L2,(R)). This proves the first statement of the proposition and completes its proof. [

4. Generalized Schrodinger model for the reflection operator

In this section we shift our attention to the reflected wave p,; defined by (17). We again use diffusion approximation the-
orems to identify a coupled random Schrédinger model. By an argument as presented in Section 3 regarding the transmitted
field we find the following result.

Proposition 2. The processes pZ(s,X) converge in distribution in the space CO([R,LfV([R?d)) N L2 (R, L2,(RY)) to the limit process
Dret (S, X) = % / / R(k, L, X, X)binc (k, X') dX'e~™ dk. (32)

The operators R(k,z,x,x') are the solutions of the following It6-Schrédinger diffusion model

k*Cy(0)

L (Ax + Ax)R(k,z,X,X)dz — TR(kL X, X')dz + ik

-2k 2

starting from R(k,0,X,X') = Ryd(X — X'). The moments of the finite-dimensional distributions also converge

dR(k,z,x,X') R(k,z,X,X) o (dB(z,X) + dB(z,X')), (33)

e—0
[E[pﬁef(slvxl)ml "'pﬁef(squ)mq] - [E[pref(slvx1)m] o 'pref(squ)mq}v (34)
foranyqe N,sl,...,sq eR, X1,...,Xg € Rd, andml,...,mq e N.

Proof. The proof follows the same line as the one of Proposition 1 for the transmitted field. In particular, the moments (34)
are characterized by the specific moments of the reflection operator

N
E {H RE(k;, L, x;, x;)] , (35)
=
for different frequencies k;. In Appendix B we use diffusion approximation theorems to show that indeed

LT& E {1]_[ RE(kj, L, x;, KJ/):| = [1:[ R(kj,L, x;, xj’)] ,

when the right-hand side expectation is taken with respect to the following coupled It6-Schrodinger model for the reflection
operator:
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S22 2
dﬁ(k,z7 KK)= — Wﬁ(k,z, K, k')dz fwﬁ(k,z, K, k')dz
fi/f(x)ﬁ(kzxfx K — k) dridz
4027 o(x1 2, 1, 1) dKq
+ z(él;)d / (ﬁ(k,z, x,k1)dB(z, k1 — &) + R(k,z,%,,%')dB(z, % — ;q)) dx1, (36)

starting from R (k, 0, x,x’) = Ryd(x — #). Here B is the Brownian field whose distribution is characterized by the covariance
(29). We consider next the reflection operator in the original spatial variables:

Rk zZXX) = / XN R (e 2, 16, ') dic i, (37)
(2m)
and find that this operator is weakly characterized by the diffusion model (33). O

Regarding the above results we remark first that the limit problems for the reflection operator and for the transmission
operator are linear. In fact, the nonlinear terms in (13) and (14) are associated with random backscattering. In the asymptotic
regime we are considering, and as far as the reflected wave front p is concerned, the nonlinear terms in (13) only manifest
themselves via the damping term involving C,,(0) in (33). Similarly for the transmitted wave front pé, the nonlinear terms in
(14) only manifest themselves via the damping term involving Cy(0) in (19).

We remark second that, in Propositions 1 and 2, we cannot expect a stronger convergence result. This remark is motivated
by the observation that the limit processes p,, and p,.; defined by (18) and (32) do not satisfy the energy conservation equa-
tion (25). Indeed we have

. . 2 o2
[ [ etpects.Piins + [ [ ipats.fiands = o [ [ thuctenp (Rhe 257+ The 5

1 5 2
<o / / |Bune (k, %)/ dxdk.

The damping factor exp(—Cy (0)k*L/2) represents the leading-order effect of randomly backscattered energy described by
the nonlinear terms in Eq. (13) for the reflection operator. Similarly the damping factor exp(fCZk(O)kzL/4) represents the
leading-order effect of randomly backscattered energy described by the nonlinear terms in Eq. (14) for the transmission
operator. The term Cy(0) in the damping factor is the spectrum of the medium fluctuations evaluated at the wave vector
difference for forward and backward traveling waves and represents intensity of backscattering. We remark finally that this
backscattered energy spreads out as an incoherent long and small-amplitude coda and will not accumulate again in the wave
front that we are analyzing, this is the mechanism that gives damping in our representation.

5. The Wigner distribution for the transmitted wave

In order to identify different propagation regimes, we will write the Wigner distribution in a dimensionless form. First we
introduce the dimensionless autocorrelation function C of the fluctuations of the random medium

cex) = ac(f.7).

where ¢ is the standard deviation of the fluctuations of the random medium, [, (respectively, I,) is the longitudinal (respec-
tively, transverse) correlation radius of the medium. In this situation we have

X
L

We assume next that the power spectral density Co(u) decays fast enough so that J |u?Co(u) du is finite. This means that the
autocorrelation function Cy(x) is at least twice differentiable at x = 0, which corresponds to a smooth random medium. For
simplicity, we assume also that the random fluctuations are isotropic in the transverse directions, in the sense that the auto-
correlation function Co(x) depends only on [X|.

We now consider two frequencies k; and k; in a frequency band centered at k and we define the two-frequency Wigner
distribution of the transmission operator by

oty (0)k%+52k2 (D)k% ) . . \/E y \/E y/
Wf - (Z2,X.X,q,q :efzf/e*’(‘”’*q'y)[E Tk, z,—X+3), <X’+—>
ko s ( q.9) 1 \/E( 2) NG P

= vk oy vk, Yy ,
xT(kLz,\/E(xz),\/E(x 2>>}dydy. (38)

Co(X) = 0212c0< ) Co(u) = 6?L1Co(uly).
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Note that we have taken out the damping terms proportional to Cy(0) in this definition. Using the stochastic equation (19)
and It6’s formula, we find that the Wigner distribution satisfies the closed system

Wi , & g 1 Co(0) (ki +K3) . 1
%2 I< VW, = — 3 Wi ko
bl [ ] N ()
+ ComW, . [ z.x, X, " du, 39
4(27‘()d 0( ) I1,I2< 4, q 2 <\/F \/F ( )

starting from Wy, , (z=0,X,X,q,q') = Ty(4m?k1k2 /k*)"*5(x — X)5(q + q'). It is possible to solve this system and to find an
integral representation for the two-frequency Wigner distribution using the approach of [5]. However, we aim at focusing
on spatial aspects in the next sections, and we shall simplify the algebra by assuming that the bandwidth B of the incoming
wave is small. To describe this regime it is convenient to introduce

o2keLl, L L
P="4 "Zil "k

(40)

where kg is the carrier wavenumber, 1y is the initial beam width and where g describes the intensity of forward scattering,
while « and o represent the intensities of lateral scattering on, respectively, the scales of the medium variations and the
input beam. We assume that the bandwidth B of the incoming wave (with carrier wavenumber k) is small in the sense that

B« B, B.:=komin(l,07 05", 57"). (41)

If kq,k; lie in the spectrum of the incoming wave, we then find that the two-frequency Wigner distribution Wk &, €an be
approximated by the simplified Wigner distribution W” that depends only on the carrier wavenumber ko and not on the
lag k; — k, and that satisfies

aWT q

ko VX

u) [WT(Za X, Xlﬁ q, q/ - u) - WT(Zv X, xla q, q/)] du7 (42)

starting from W' (z = 0,x,X,q,q) = (2n)dT§5(x —X')d(q + q'). By taking a Fourier transform in q' and X/, we obtain a trans-
port equation that can be integrated and we find the following integral representation for W':

W'(z.x.X.q.q) X [ o0 g oy (43)

5.1. Slow transverse variations

We want to analyze the regime in which the transverse correlation length I, of the medium is larger than the beam width
0. We introduce normalized coordinates and write the Wigner distribution in the form

WT(Z7xax,7q7q) TZ(ZTE) WT<L7 7x >qr07qr0>
where W' satisfies

W' ol
+a—2q VW' = ﬂ

{WT <z X, X,q,q —l—u> - Wl (z,x,X,q,q)|du, (44)
starting from W'({ = 0,X,X,q,q') = §(X — X')d(q + q'). We assume in this section that

(1) ro < L, which means that the transverse correlation length of the medium is large,
(2) kor3 ~ L, which means that diffractive effects are of order one.

These conditions are equivalent to oy = oclf /r3 ~ 1 and a < 1. Therefore, we can expand the integral of the right-hand side of
(44) with respect to the small parameter ry/l, and we obtain the simplified system

aWT ol P2 .
e wov = Doy -
where
~ 1
D= Co(w)|ul*du = — = AxCo(0). 46
d(zmd/ o)l ZAGo(0) (46)
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Here we have used the fact that fu@(u) du = 0 since C(u) is an even function. In the original variables, the Wigner distribu-
tion W' solves

w' q r kKD, .r
?+E-erw —?Aq/w , (47)
where
1 =~ 2 1 a?l,
D=7/C uw)|u)’du = —= ACo(0) = ==,
Zam | Cowml aGl0 =7
and it has the form
a2 q+q'|2 24\x—x/—q’q,z\2
, , 192 T Zpr — 2ko
W'(z,x,X,q,q)=T; <D2k2z4> B (48)
0

This solution is obtained by solving the advection-diffusion equation (47) after Fourier transforming in q’ and x’' (which
gives a transport equation). It is also possible to compute the limit of the integral representation (43) directly. The Wigner
distribution contains all the relevant information needed to understand the main properties of the transmitted wave, as we
shall see in Section 7.

5.2. Rapid transverse variations

We want now to analyze the regime in which the transverse correlation length I, of the medium is smaller than the beam
width ro. More exactly, we assume in this section that

(1) ro > L, which means that the transverse correlation length of the medium is small,

(2) korol, ~ L, which means that diffractive effects are of order one. Note that we have not yet established the fact that
diffraction plays a role for a propagation distance L of the order of korol, which is smaller than the usual Rayleigh
length kor3. However, this is a well-known result [7,12], and we shall deduce it here in the analytic framework that
we have set forth.

The two conditions ro > I, and korol, ~ L are equivalent to o > 1 and al,/ro ~ 1.
The Wigner distribution can now be written in the form

W' (z,x,X,q.q) = T2m)"W" (?5,5 , th,qflx),
L To To

where W' satisfies

. ,T: ﬁ > T ’ r_ _ T ’ ’
Y = [ eV Exx.aq-w-wizxx.q.q)d (49)

starting from W' ({ = 0,X,X',q,q’) = (X — X')3(q + q'). It is clear from this equation that diffractive effects (characterized by
the term ' - Vy ) are of order one in this regime, in which al,rq ~ 1. We can also consider the integral representation (43) and
write it in dimensionless form

WT(C7X, X,q,q) = # e—i(q’ﬂl)-afi(i(X’—XHqC) 'be/ff;co(aeri’)fco(O)d;’ dadb. (50)
(4m20)?

If additionally, we assume that > 1, then we obtain an expression which, in the original variables, is exactly (48).
Remember that (48) was obtained in the small-oo regime. The fact that the large-p behavior is independent of « can
be seen directly from (43) and (50). Using the fact that the structure function a—Cy(0) — Co(a) is smooth and attains
its minimum at the origin, we find that when B is large, the main contribution to the exponential integral is concen-
trated at small a+bz/ko:

2

b, d47

3+EZ

12 Z
eTOf;co(u%f)fco(omz - ein“

and the integration gives (48).
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6. The Wigner distribution for the reflected wave

We define the two-frequency Wigner distribution of the reflection operator by

Cope (0)k%+€2k2 02 . o . \m y \@ y/
we (zx,X,q,q :elfz//e*’(‘”*q‘y)[E R\ ki,z,—— x+—7—<x’+—>
P .q,9q") 1 \/k—1( 2) NG 2

S \/E y \m /7!/ /
xR(kz,z,\/E(xz),\/k_z<x 2>>}dydy. (51)

If the bandwidth of the incoming wave satisfies (41) and if k;,k, lie in the spectrum of the wave, then we find by
using (33) that the two-frequency Wigner distribution W',jl_kz can be approximated by the simplified Wigner distribu-
tion WR that depends only on the carrier wavenumber k, and not on the lag k; — k, and that satisfies the closed
system

aWR q R q, R __ k(z) s R / / R 7 /
ﬁ“rgvxw +EVX’W - 4(2n)d/C0(u)[W (vavaI*usq)JFW (z7x7x7q7q 7“)
+2WR (z,x,x’,q - %mq’ —%u) cos (u- (X —x'))

—2WR (z, X, X, q— %u, q+ %u) cos (u- (x—x)) —2WR(z,x,X,q,q) |du,
starting from W=®(z = 0,x,X,q,q') = R32n)*s(x — X)5(q + q').
6.1. Slow transverse variations

In the regime in which the transverse correlation length of the medium is larger than the beam width
(ro < Ik and kor3 ~ L), as in Section 5.1, we obtain the simplified system

Wr  q q kD

V+E-VXWR+E-VX,WR =5 (Va+Va)- (Vg + V)W~ (52)
This system can be integrated and the solution reads
dj2 /2
27.[ . q _ q/ Jq+2q\
R / N _ p2 v _ 2k Dz
W% (z,x,X,q,q') = Rg <k§Dz> 0 (x X % z)e 0%, (53)

6.2. Rapid transverse variations

The regime in which ro > I, and koroly ~ L, as in Section 5.2, is more delicate and more interesting to study because Wk
exhibits a multi-scale behavior. So we shall first cast the Wigner distribution in a suitable dimensionless form. We consider
the following Fourier transform V¥ of the Wigner distribution W*:

WR(Z7X,X'7q, ql) = (Zl)d /VR (Z7q;q q— q/,c)eic.(xr,x) de

which we introduce because the stationary maps that we will identify in Lemma 2 in the asymptotic regime o — co have
simple representations in this new frame. Note also that this ansatz incorporates the fact that W® does not depend on
X + X/, only on x — X'. The Fourier-transformed operator V*(z,a, b, c) has the form

Vi(z,a,b,c) = Ré(nlx)de'%b'cv" (%,alx, bl,, clx>,

where VR is the solution of the dimensionless system

aVR ﬁ > R ([« 1 —iousul R ([« 1 iosul R 1 —ior-ul
TC:W CowV{{q-sur-usje VLA -surtus e £V {q-surs—u)e ™™
+WR <C, q- %u, IS+ u) elrrus — YR ({, q- %u, r-us+ u) elltr—s)u-jui’c
—WR <C, q- %u, r-us-— u) e sy usulll _oyR(r q ., s)} du, (54)
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starting from VR(¢, q,r,s) = 6(q). The parameters « and § are given by (40). The regime o — oo corresponds to rapid trans-
verse fluctuations of the random medium. In (54) this regime gives rise to rapid phases. The following proposition describes
the asymptotic behavior of VF as o« — co. The presence of singular layers at r = 0 and at s = 0 requires particular attention.

Lemma 2.

1. For any r#0, s#0:
V(L q.r8) = 3(q)e 20 0r, (55)

2. For any s#0 we have VR((,q,X,s) "= V(¢, q) where VR(¢,q) is solution of

oWR 2 ~ ., 1 . .

= ey [ G (ca-gu)coste-w Vi@ (56)
and is given explicitly by

VR(C,q) = (Zl)d /e—iq.ue/ff:; o5 )~Co00dl” g1 .

Similarly, for any r=0 we have V*((,q.r,%) "= VE((, q).
3. For any r and s we have

I S\ au—oo . .
W(Ca- o) VR )+ 0) - o(@e Mo, (58)

Proof. In case (1), the rapid phases cancel the contributions of all but the last term in (54), and we get % = —2BCo(0)VR,
which gives (55).
In case (2), we obtain in the limit o — oo the simplified system
vk B
ol m
We then Fourier transforms this equation in q and s, and obtain that the solution does not depend on s, that it satisfies (56),
and that it is given by (57).
In case (3) we obtain the simplified system for V¥(((,q) = lim,_...VR((,q,L,5):
Vs 28
O 2nf

du.

Co(u) {Vf ((,q - %u,s - u)e*i"“: + VR <C,q - %u, s+ u)e""“‘f -2, q,s)

/80(u) {Vf (C,q - %u) cos(s - uf) + W <(:,q - %u) cos(r - uf) — Vf,s({,q)}du.

Using Eq. (56) satisfied by VF and V¥, we get
avfs avf avf R R R
5= e 2ROV VS V],

which yields (58). O

The parameter f characterizes the loss of coherence: if f < 1, then the random medium has no influence on the propa-
gation; if § > 1, then scattering is strong. If we assume that 8 > 1, then the function V¥(¢,q) has the Gaussian form

Vi)' (nDﬁg)*d/Ze—ﬁ\q\k%imz ,

where D is defined by (46).
7. Analysis of the transmitted and reflected waves for slow transverse fluctuations

In the next two sections we discuss important consequences of the effective systems of transport equations for the trans-
mission and reflection operators. We consider first, in this section, the case with slow transverse fluctuations (I, > rp). As
mentioned in Section 1, the situation analyzed in this paper in which a wave propagates in a random medium, is reflected
by an interface, and then propagates back in the same medium, can be encountered in many situations of interest, and in
particular in optical coherence tomography. The problem has been analyzed in [18-20], where it is assumed that the statis-
tics of the forward- and backward-propagating waves are independent. One of the main goals of the next two sections is to
identify the regimes in which this approximation, the so-called independent approach, is valid. We will stress in this section
that it is important to take into account that the waves propagate in the same medium in the regime in which the transverse
correlation radius is larger than the beam width, because the predictions of the “rigorous” approach and the independent
approach are quantitatively different for the reflected intensity profiles and qualitatively very different for the spatial auto-
correlation function.
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We assume that
(a) the reflectivity function of the interface at z = 0 is constant,

(b) the pulse has carrier frequency ko and it is narrowband in the sense that it satisfies (41),
(c) the input beam spatial profile is Gaussian with radius ro,

\x\z

binc(t,X) = f(t)e ™ote T + cc

(d) the transverse correlation radius I, of the random fluctuations of the medium is larger than ro and kor3 ~ L.

7.1. Statistics of the transmitted wave

As stated in Proposition 1, the transmitted wave pi (s, X) in the plane z = 0 converges to the random field p,. (s, X) given by
(18) where

Binc(k,X) f(k — kO) _7 k /f ekt dt.

In a homogeneous medium, the transmitted wave has the Gaussian form

—1datan< 2L ) 2L
e\ XE g

2\ P 2(q1 4 42 l 514l
41 T + 5 ka4
<1 + Tg:g) 0 K2 7o

fls)e™™ +cc,

Dtr homo (S,X) =To

which exhibits the usual diffractive spreading.
In a random medium the coherent (i.e. mean) transmitted wave is

2
Elpq (5.) = exp {WL} Pchamol5.X). (59

which exhibits a strong damping, but the shape is not affected compared to the homogeneous case. In fact, the wave be-
comes incoherent and its statistical properties are captured by its second-order statistics. The autocorrelation function of
the transmitted wave is

Atr($7 Slv X, x’) = IE[ptr(s7 x)ptl‘(s/ﬁ XI)L
and it can be expressed in terms of the Wigner distribution as

W‘z a2r2

Atr(s,5’7x,x’)eXp[ Gl )kOL}f( P S [ [ [wr (15w )e e © T dxdadg e

The results of this subsection so far are valid under the assumptions (a)-(c) and that we now specialize to the slow trans-
versal variation case by assuming also (d). Using the expression (48) of the Wigner distribution, we obtain
x* - x?

/ AN _ 1\ piko(s'—s) 1”70 ‘ 7|X| +|xl| 7|X—X/‘2 in
Auls.5 %) = T expl-qr LI 0569 (125 exp( e L e )+cc, (60

where
arit) - a0 (61)
1(L) = kﬁ—% + k"ZLZ 7 (62)
rr(l) =T <1 + ;%ng gg) " (63)
(D) = (L) (korséDL N Ié%g N kégD;L“) 71/2_ (64)
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The factor g;(L) given by (61) gives the damping of the autocorrelation function. By comparing with the damping factor of
the coherent wave, one finds that the transmitted wave is essentially incoherent in the situation with Cy,(0) < Co(0). The
damping factor (61) expresses the loss due to incoherent backscattering, while the damping factor (59) expresses the loss
due to incoherent forward and backward scattering.

The beam radius r7(L) is given by (63). If DLl<§r§ < 1, then the random component is negligible and we obtain the usual
formula for the paraxial beam spreading. If DLkérﬁ > 1, then the random component is dominant and the beam radius in-
creases as L>/2. This result is well known, it was obtained in the physical literature in Ref. [8] and confirmed mathematically
for instance in Ref. [6].

The correlation radius of the beam p;(L) is given by (64). lfDLkér(z) < 1, then the correlation radius is much larger than ro,
which simply means that randomness plays no role. If DLkér% > 1, then the correlation radius decays as L™/, This asymp-
totic result can also be found in [6].

7.2. Statistics of the reflected wave

As stated in Proposition 2, the reflected wave pé.(s,X) converges to the random field p,(s,x) given by (32). In a homo-
geneous medium, the reflected wave has the Gaussian form

id 4
—idatan (—2) i
€ o x? X o —ikos
pref,homo(svx) =Ro aa exp |— - + lr_z ] 16L2 f(s)e o 4 c,
) ) 8
4

which can be obtained from the expression of the homogeneous transmitted field simply by substituting L by 2L (and Ty by
Rp). In a random medium the coherent reflected wave is

2
E[Per(s.X)] = exp [—wq Prehomo 5. %), (65)

which exhibits an exponential damping with a damping rate multiplied by two compared to the one of the transmitted wave.
Eq. (65) is valid under the assumptions (a)-(c) and we now specialize to the slow transversal variation case by assuming also
(d). As in the case of the transmitted wave, the reflected wave is essentially incoherent. The autocorrelation function of the
reflected wave is

Aref(S,S/,x, X’) = [E[pref(svx)pref(s/’x/)]'

Using the expression (53) of the Wigner distribution, we obtain

d 2 712 / /
Aves (5, ' , 1 — RZ —ag.(L 7\ eiko(s'—s) (T’_(]) _ |X| + |X| _ ‘X - X‘ | | | | : 66
£(S,5',X,X') = R exp[—qr(L)If (5)f (s")e ) P 20) 20 +igp(l) =7 2) +cc,  (66)
where
2
aut) = 200 (67)
1r(L) = AL S+ 2koDL?, (68)
kor?
1612 4pr*\ "
(L) =10 (] +W+7> ) (69)
krpL 207\
pr(l) = TR(L)< of ) 2 ) : (70)

The beam radius k(L) is given by (69). Qualitatively, the beam spreading is of the same type as the one of the transmitted
wave, but quantitatively, it is enhanced compared to a propagation through a random medium with length 2L (see below for
a quantitative comparison).

The correlation radius of the beam pg(L) is given by (70). If DLkérﬁ < 1, then the correlation radius is very large, which
simply means that the reflected wave is still coherent. More surprisingly, if DLkéré > 1, then the correlation radius goes
to the constant value v/2r,. This result is in contrast with the one obtained for the transmitted wave, whose correlation ra-
dius decays as L~'/2. This means that the wave looses its coherence as it propagates deep into the random medium, but it
recovers part of it when it is reflected. This fact is related to the special case addressed here in which the lateral variations
of the random medium are very slow. However, this configuration can be encountered for instance when addressing laser
propagation in the atmosphere or acoustic/elastic waves in the earth crust.
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Let us compare these results with the ones that we can obtain using the simple and naive approach in which we assume
that the statistics of the forward- and backward-propagating waves are independent. Within this approach, the intensity
profile and autocorrelation function of the reflected wave in the plane z = L are given by (60) where L should be replaced
by 2L (and the overall multiplicative factor Ré/Tg should be applied). We therefore see that the beam spreading is slightly
underestimated by the independent approach, which predicts that

rR(L)‘ind =Toy| 1+

(71)

while the last term should have a factor 4 instead of 8/3 according to the exact formula (69). This comes from the fact that
the wave revisits the same perturbations when propagating back in the same random medium, and it is well known that (for
instance) E[(B; + B,)?] < E[(2B.)?] for two independent Brownian motions B; and B;. The independent approach does not cap-
ture the correct coherence properties of the reflected wave either, since it predicts that the correlation radius should be

2 3
1 16L 8DL
+ kar + 3r2 DLkgrg>>l 4

pR(L)‘ind =To = )
K3r2DL L ap2 | Kot kovDL
4 372 6

ok

(72)

while it should converge to v/2r, as DLkéré > 1 according to (70), a qualitatively different result.
7.3. The reflected wave for a diffusive mirror

In the previous sections we considered the (standard) case of a specular reflection at the interface z = 0. For applications,
it is important to discuss the case of diffuse backscattering. For instance, in optical coherence tomography, it is diffuse back-
scattering that actually occurs in the case of (skin) tissue [19]. In this subsection, we revisit the theory in the case in which an
inhomogeneous mirror is inserted in the plane z = 0, with the impedance Zy(x), so that the second boundary condition in (9)
now reads

a‘(k,0,x) = Ry(x)b’(k,0,x),

where Ry (X) = (Zu(X) — 1)/(Zm(x) + 1) is the local reflection coefficient of the mirror. In this case, the initial condition at the
reflecting interface z = 0 for the reflection operator is

R¥(k,0,X,X) = Ry (X)d(x — X').
We shall assume here that Ry, is a stationary random process, with mean zero and autocorrelation function

E[Rw (X)Ru (X)] = Ry (x — X').
Under these conditions, the initial condition for the Wigner distribution is W®(z = 0,x,x,q,q') = R36(x — X )j/(q + q').
Assuming that i/ is Gaussian:

Y(X)=e @, (73)
where a is the correlation radius of the diffusive mirror, we then find by integrating (52) that

d/2 , __la+q?
WXz, x,X,q.q) =R} (_kZDZR 2) B (x x4 7{ q z) e .
Z + 2

By taking the limit a — oo, we recover the result obtained with a standard mirror with specular reflection.
If the input beam is Gaussian with carrier wavenumber ko and radius r, then the autocorrelation function of the reflected
wave has the form (66) where the parameter y,(L), the beam width rg(L), and the correlation radius pg(L) are now given by
oL /1 1
40 =5 (5
0

22
5 oa

rr(L) =1 1+8—L2 E+l +4DL3 "
e kerz \rg @ 5 7

2 a?\ i2epL 2o\
m@—m@(“(H >+%3 * :

a 2 2
a2 kord 3

) + 2koDL?,

The presence of a diffusive mirror in place of a specular mirror affects both the beam radius and the correlation radius. In
particular, the correlation radius is not infinite but equal to a for L — 0. However, the long-distance behavior is the same
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as in the case of a specular mirror, and we confirm the previous result that the correlation radius is approximately v/2ro
when random scattering is strong.

7.4. Numerical simulations

One of the most striking results obtained in this section is that, compared to the case where one assumes that the forward
and backward propagations are independent, the fact that the wave visits the same medium in the forward and in the back-
ward propagation induces an increase of the beam width, as can be seen by comparing (69) and (71), and an increase of the
correlation radius, as can be seen by comparing (70) and (72). We have performed numerical simulations to illustrate and
confirm these predictions.

The numerical simulations are performed in the paraxial regime with a one-dimensional transverse space. We assume the
presence of a perfectly reflecting mirror at z= 0 and a Gaussian input beam with carrier wavenumber ko = 1 and radius
ro =4 at z =L = 10. The random medium is modeled by a Gaussian process with Gaussian autocorrelation function with
transverse correlation radius I. = 80, longitudinal correlation length 1, and standard deviation 30//7. These parameters
are at the border of our theoretical regime, but allow for easy numerical simulations. Here D = 0.28. We use a split-step Fou-
rier method for discretizing the wave propagation. Finally, we perform a series of 1000 independent simulations to extract
the mean intensity profiles x—E[p,.(x)*] and the autocorrelation function x—E[p,ef(X)Prer (0)].

We simulate the backward propagation either with the same random medium as during the forward propagation (Fig. 2),
or with an independent medium (Fig. 3). Then we compare the numerically averaged intensity profiles and autocorrelation
functions with the theoretical formulas obtained above, which gives excellent agreement. In particular, in Fig. 2, one can

mean intensity profile, reflected wave

mean intensity profile, wave at the mirror

0.50 — 0.20
0.45 P 0.181
0.40 0.16
0.351 Py 0.14+
0.30 0.121
0.25 0.10
0.201 0.08 1
0.15 0.06 1
0.10 0.04
0.05 0.021
0.00 T T T T L T I T T T T 0.00 L B e A T = T
-30 -20 -10 0 10 20 30 -80 -60 -40 -20 20 40 60 80

autocorrelation, wave at the mirror

Fig. 2. Mean intensity profiles and autocorrelation functions of the wave at the mirror z = 0 (left) and of the reflected wave at z = L (right). The dotted lines
represent the intensity profile of the input beam. The solid lines are the results of the numerical simulations. The dashed lines are the theoretical formulas
predicted by the rigorous theory that takes into account that the medium is the same in the forward and in the backward propagations. The dot-dashed
lines are the theoretical formulas predicted by the independent approach. Here, in the numerical simulations, the medium is the same in the forward and in
the backward propagations (i.e. it is the real situation). One can check that the numerical results are in agreement with the theoretical formulas predicted
by the rigorous approach.
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mean intensity profile, wave at the mirror mean intensity profile, reflected wave

0.50 P 0.201 T

0.451 P 0.181 i

0.40 P 0.16 L

0.35 P Al 0.14- =

0.301 / 0.12

0.25: 0-10j

0.20 0.081

0.151 0.061

0.107 0.041

0.05+ 0.021

0.00+— ; 0.00 — ‘ —

-30 30 —80 -60 -40 -20 O 20 40 60 80

Fig. 3. The same as in Fig. 2, but here, in the numerical simulations, the medium is different in the forward and in the backward propagations (i.e. it is an
artificial situation). One can check that the numerical results are in agreement with the theoretical formulas predicted by the independent approach.

check that the correlation radius of the reflected beam is larger than the correlation radius of the wave that reaches the mir-
ror: when propagating back, the wave continues to spread out, but it recovers some coherence.

8. Analysis of the transmitted and reflected waves for rapid transverse fluctuations

In this section we assume the hypotheses (a)-(c) of Section 7, but instead of (d) we assume that the beam width ry is such
that ro > I, and korol, ~ L.

We will show that, in this regime, the independent approach essentially gives the correct answer. The only important
phenomenon not captured by the independent approach is the enhanced backscattering phenomenon, which we discuss
in Section 8.3.

8.1. Second-order statistics of the transmitted wave

The autocorrelation function of the transmitted wave is given by

d/2

i / 2 ‘ ‘2 x+x 1 rx=x' r

Atr(57 SI,X,X/) _ Tﬁ exp[—qT(L)lf(s)f(s’)elkO“ -s) <8 r02[2> / 2,2‘ S+ | 212 —zs S e/ifo Co(SLH¥EX)~Co(0) dl ds + cc. (74)
oL,

This expression is valid for any values of & and g.1f & > 1 and o ~ 1o/l (equivalently I, < 1o and korol, ~ L), then we have to
leading order

_xxP2

- xax 1 . xX .
2% e*ls'meﬁ‘ﬁ) C0(55+%)*CD(0) déds +cc. (75)

5 dj2
Au(s, S, X,X) = Ty exp[—qr(L)If (s)f (s')e'ols =) (—TO ) / e 8*2‘2‘5‘

8mo2l?

If moreover, > 1, then we obtain that the autocorrelation function has the Gaussian shape given by (60) with
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4_ o2k pr2\ "
T (L) = ro( ) =Ty <1 +3r2) ) (76)
0 0

-1/2 2274\ 1/2
B pDrg  pPD%*o? 3 Kor2DL kiDL
pr(L) = TT(L)< 2P =% =) g —+"g ; (77)
2
a(L) = ppo = KOOF 78)

As noted in Section 5.2, the large p-behavior of the transmitted wave is independent of o.. This is why we find the same result
as in Section 7.1 (see (63) with korZ > L).

8.2. Second-order statistics of the reflected wave

Using the function W}, we find the following integral representation for the autocorrelation function of the reflected wave:

r:

2
_0] x\x x X r
At (5,8, X,X') = R2 exp[—qr(L)If (s)f (s')e'el®—) (8 12> /// a1 1r-20Prfars -t (qﬁ)v‘*(l,q,r,s)dqdrds+cc,
T

(79)

which holds true for any values of « and . Using the asymptotic results of Lemma 2 (second item) we get that, in the regime
o> 1:

dj2 2

. , 2 » __ 0 HZ [x—x' sxj\/x 1 x—x' o) .

At (5,8, X, X') = R% exp[—qr(L)If (5)f (s')e'e® — (32;(;212> / o 28 22 S 2/ff0 Co( R +s~> GO L (80)
X

This is the form (75) of the autocorrelation function of the transmitted wave, upon the substitution 2o for « and 2 for B.
Therefore, the autocorrelation function of the reflected wave has the form of the autocorrelation function of the transmitted
wave for a propagation distance 2L. This shows that we would have obtained the same result if we had assumed that the
backward propagation was independent of the forward propagation. The independent approach is valid in the regime
o> 1, but not in the regime o < 1 as we have seen in Section 7, nor in the regime o ~ 1 as can be seen by comparing
the full expressions (74) and (79).

If we consider a diffusive mirror with the autocorrelation (x) as introduced in Section 7.3, then the autocorrelation func-
tion of the reflected field is given by (79) where VR is the solution of the system (54) with the initial condition
V(¢ =0,q,r,s) = (nh,) “¥(2q/L,). In the limit & — oo, we find that the function V¥((,q,r, #) for any r=0 converges to

Vi(G,q) = (2:1)‘1 /l//<lx7u>efiq'ueﬁf;’CU(%“C/)%O(O)W du. (81)

As a result we get that, in the regime o > 1:

a2 B o w 1

I 2 I,s ——%s \27!75-"1’; % (¢ <u g)fc 0)dc

Arer (5,5, X.X') = R exp[—qr(L)]f (s)f (s )e™o 9 —L— l// Lix-x)e % w0 1y o (X555t ) o ds+cc.
32n02l ) . 2

If, additionally, we assume that g > 1 and the function i is Gaussian with radius a as in (73), then the autocorrelation func-
tion of the reflected wave has the Gaussian shape given by (66) in which

8DI® 82 )” :

2 2 9.2
3r5 katr?

rR(L) =To (1 +

-1/2

kDL k2D*L* 2DL* 12
pR(L)—rR(L)< it e taata| o
Toll) = koDI? + .

The presence of a diffusive mirror in place of a specular mirror affects both the beam radius and the correlation radius. How-
ever, the large-distance behavior is the same as the case of the specular mirror.

8.3. Enhanced backscattering

The comparison of the autocorrelation function of the reflected wave and that of the transmitted wave for the propaga-
tion distance 2L shows that, in the regime o >> 1, there is no coherent effect building up between the forward and backward
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propagations. However, there are some effects in the corrective terms. In this section we show that the reflected intensity
presents a singular picture in a very narrow cone, of angular width of order «~', around the backscattered direction. This
phenomenon called enhanced backscattering or weak localization is widely discussed in the physical literature [2,16]. It
is here analyzed in the situation with an incoming wave with a narrow wave vector spectrum, or a “quasi” plane-wave,
and it then arises as a consequence of the multiscale behavior of the regime o > 1 that is exhibited in Lemma 2.

In this section, we assume that the incoming wave has the form

binc(tv X) :f(t)eiikot inc(x) =+ CC,
and that it is nearly a plane wave, in the sense that g;,.(x) is concentrated at some «;,c, With an angular width smaller than
o~ 1. The reflected signal in the direction x; is

() = [ (s x)e = g [ R Lo, )bl e ™ dk

The moment of the square modulus of pé.(s, ko) only involves specific moments of the form (35) (with distinct k). Therefore
this moment converges to the one of the limit process pr.(S, ko) defined as the Fourier transform in x of p,(s,X) given by
(32). This means that the mean reflected intensity in the direction «, satisfies

E[|BLer(s, %o0)["] = RS expl—ar(L)]f?(5)I" (xo),

Fwa) =27 [ V(152750 G+ 1), 0) i) .

Using the fact that gi,(x) is concentrated at xi,c, we get

IR(K()) = PVR<1,wlx~, (KO + Kinc)lmO)a

where P = R227¢ [ |ginc (1) [* dicy.
If random scattering is weak 8 < 1, then we have the usual specular reflection

< (K0 — Kinc
(ko) ey = PO (M55 ).

In the presence of random scattering, the specular reflection takes the form of a Dirac peak at xj,c with intensity
exp(—2pCy(0)) and a diffusive cone centered at «i,.. More exactly, far enough from the backscattered direction —xiyc, the
mean reflected intensity is

R\ _ pyR(q Ko = Kinc , —1 _ pp-26Co(0) | 5(¥0 — Kinc 1 ik
(ko) = PYS(1, 557 L), for  [wo + kil > 0! = Pe {(’( 2 l*>+(2n)d/e

K0 fine (62/%70 ("z')‘1> dll} .

In a narrow cone around the backscattered direction, the reflected intensity is locally larger:
F(—kine + 007 'k) = P[Vﬁ(l, —Kincly) + V',f,x(l, —Kinclx) — e’z’gcﬂ(‘”é(xmclx)] (82)

If we assume, moreover, that g > 1, then we have
J"O’;inc‘z
R(xo) = (P2dl;d)AK’d e “wee | for |rg + Kinc|lle > o, (83)

spec

where the width of the diffusion cone around the specular direction i, is:

A 2y/Dp _ VDaoko/LL, — /Dlk,. (84)

spec — I lx

On the top of this broad cone, we have an arrow cone of relative maximum equal to 2 centered along the back scattered
direction —jnc:

2
_|ko—Kinc!
Dp,

R(—sine + 0 k) = (P2 AR e e [1 +e’T"“2’5]. (85)

spec
This shows that the width of the enhanced backscattering cone is:

V3 _ 23, :2\/§
LDBL /5, ﬁw il

AKgpe =

(86)

Note that the angular width Afgsc = Axgpc/ko of the cone is proportional to the wavelength, as predicted by physical argu-
ments (diagrammatic expansions) [16].
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If we consider a diffusive mirror with the autocorrelation (x) as introduced in Section 7.3, then the reflected intensity is
still given by (82) in the regime o >> 1, with V¥ given by (81). If, additionally, we assume that > 1 and the function 1/ is
Gaussian with radius a, then we find that the diffusion cone is increased by the presence of the diffusive mirror is (83) with
the width of the diffusion cone around the specular direction x;,. given by

2Dp+k /Do, + 4
L I N

DLK, + %.

AK:spec =

However, the relative amplitude, the width, and the shape of the enhanced backscattering cone are not affected by the pres-
ence of the diffusive mirror and the mean reflected intensity around the backscattered direction —x;, is still given by (85).
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Appendix A. Derivation of the transmission model

We want to compute the expectations in (27) and define

N

=17k, z %%

j=1

Using (14) we find

—IF Z H T® (ki,z, k1, {/’]A'S(kj,z, x,—,xa)Zg(k,-,z, Kq, ;) kg
j=1 I=1#j
21I<z

ted /T (kj, z, Kj,Ka) (ki z, kg, kp) R C(kj,z,xb,x})dxadkb}. (A1)

We next apply the diffusion approximation to get transport equations for the moments, see [9] for background material on
and related applications of the diffusion approximation. Observe that the random coefficients are rapidly fluctuating in view
of (15). Those coefficients that are of order &' are centered and fluctuate on the scale &2, moreover they are assumed to be
rapidly mixing, giving a white-noise scaling situation. We can thus apply diffusion approximation results to obtain equations
for the moments E[I§] in the limit ¢ — 0:

In(z) = lim E[13(2)].
&E—
We obtain from (A.1) that Iy solves a system of integro-differential equations
d- i x|
dzIN( )= 2 (; ki ) "8 ZIN’ (A2)

with the initial conditions Iy(ki, ..., Ky, k1, .., kN, ), .., Ky, Z = 0) = Tg’é(xl —«}) - d(ky — x)). The first term to the right-
hand side of (A.2) is the contributions of the determlmstic diffractive terms in (15). We next discuss the particular forms
of the source terms Zy;. We have

Tai(z <Zk Co(0 ) (Z:E)d-z Zkk,/co iz %, — kK + 1) d

which comes from the interaction of the first term in the right-hand side of (A.1) with the dynamics for 7¢ as given in (14)
and where we only show the shifted arguments for Iy. The second term in the right-hand side of (A.1) interacts with the
dynamics for R¢ as given in (13) and gives

Ina(z <ch2k ) 2).

We can conclude that

%IN(Z) = ;(

N N
Z i) In(2) f% (Z ka(CO(O) + Cay (0)))7 d Z Z kiki / Co(x)In(z; K| — &, K + k) dk.
i) j=1

j=1 I=1#j
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Using in particular the relation

[E{///OZH /OZb J(Sa, Ka)A(Sp, k) dBs, (1q) dBs, (p) dkq dkb} = /'/Omin(zf]‘zb) E[A(s, k) A(s, —)](27)* Co () ds dx,

we can then verify that

In@z) = [E{ﬂ 7 (k;z, xj./x]’.)]y

j=1

when the right-hand side expectation is taken with respect to the Itd—-Schrédinger model for the transmission operator in (28).

Appendix B. Derivation of wave pulse reflection model

We now want to compute the expectations in (35) and define

N
v@) =] R (ki.z,x,%)).

j=1

Using (13) we find

N N 2ikiz Zxkz

%ﬁv(z) =>1I Rs(k,.,z,nl,x;){e’ufzjﬁa(kj,z,xj +e2 //R (kj, 2, K}, Ka) L (K, Z, Ka, k) R* (K;, 2, K, &) dlicq Ay
[y
+/Zg(kj,z,xj,xa)ﬁg(kj,z,ka,xj’-)dxa+/ﬁ“(kj,z,xj,xa)zg(kj,z,xu,x]’-)dxa}. (B.1)

We again apply diffusion approximations to get transport equations for the moments. We obtain from (B.1) that the limiting
moments Jy:

In() = lim 3 (2)],
solve a system of integro-differential equations

/ 5
JN( )=-3 (Z W) ,‘11 S I (B.2)

j=1 j=1

with the initial conditions Jy(k1, ..., kn, %1, .., kN, K}, ..., Ky, Z=0) = R)(k1 — &) - - - 5(xn — K}y). The first term to the right-
hand side of (B.2) is the contributions of the deterministic diffractive terms in (15). We next discuss the particular forms
of the source terms Jy;. We consider first the interaction of the first two terms in the curly brackets in (B.1), this gives
the contribution

Ina(z <Z kzczk ) (2).

We consider next the interaction of the last two terms in the curly brackets in (B.1). The interaction of these terms with
themselves gives the contribution

TIna(z (Z k7 Co(0) ) (B.3)

The cross interaction of these terms gives the contribution
Ins(z dz /co (2 K — K, % — ) d. (B.4)

We consider finally the cross interaction of the terms in the first line of (B.1), the terms R¢(kj, z, x;, k}), with those in the curly
brackets. The cross interaction with the third term in the curly brackets gives the contribution

TIna(z d Z Z kiki / E0(“) GN(ZZ, K — K, K — k) + In(Z; 5 — 16, %) + x))dx. (B.5)

Jj=1 I=1#j
The cross interaction with the fourth term in the curly brackets gives the contribution

Tnale) =55 Z Z kk,/c0 ) (2, — = ) + (2~ o+ ) ) (B.6)

j=1 I=1#j
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We conclude that Jy(z) solves

. / N
%jN(z): —% ZM J;IZC0 ) + k7 Cai (0) ) (2) Zk /co (K)In(z; K — K, K] — K) dx

P kj

d Z Z kiki / Co(x) (]N(Z; Kj — K, K| — k) + N (Z; K — 6,5 — &) + [N (Z; K — K, K1+ K)

Jj=1 I=1#j

+]N( — K, x,+x))dk,

and can then verify that

N

In@) =E|][Rk.z.5.%)|,
j=1

when the right-hand side expectation is taken with respect to the Itd6-Schrodinger model for the reflection operator in (36).
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