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ABSTRACT

A statistical approach of the propagation of solitons in media with spatially random perturbations is developed.
Applying the inverse scattering transform several regimes are put into evidence which are determined by the mass
and the velocity of the incoming soliton and also by the correlation length of the perturbation. The mass of the
transmitted soliton may tend to zero exponentially (as a function of the size of the slab) or following a power law;
or else the soliton may keep its mass if it is initially large enough, while its velocity decreases at a logarithmic rate
or even slower. Numerical simulations are in good agreement with the theoretical results.

Keywords: Soliton, nonlinear Schr�odinger equation, random perturbations.

1. INTRODUCTION

It is well-known that in one-dimensional random linear media strong localization occurs, which means in particular
that the transmitted intensity decays exponentially as a function of the size of the medium.1 This paper is a
contribution of the study competition between nonlinearity and localization e�ects. There exist some results for the
stationary case. It has been shown that the presence of a slight nonlinearity competes with the e�ects which lead
to exponential localization and allows some probability of transmission,2 even though there must be some decay.3

In Ref.4 a power law decay of the transmittivity is demonstrated by the use of the embedding method. These
results are for steady waves and do not apply to a time-dependent problem since the superposition principle fails
due to nonlinearity. Kivshar5 was the �rst one to show that the nonlinearity does have an e�ect in a time-dependent
problem, by studying the propagation of a soliton through a slab of random nonlinear medium. We shall consider in
this paper a random Schr�odinger equation with cubic nonlinearity, and discuss the ability of a soliton to propagate
without distortion.

2. SOLITARY WAVES

A solitary wave is a wave that propagates without change of form or diminution of speed. The study of solitary
waves began in 1838 with the observation by J. Scott Russel of such a water wave while riding on horseback along a
channel. However no mathematical theory available at the time predicted a solitary wave. The problem was resolved
in 1895 by Korteweg and de Vries who derived an equation (now known as the KdV equation) which governs small
shallow-water waves.6 Boussinesq in 1871 also derived a nonlinear wave equation governing such long waves.7

Despite this early work no further application was discovered until the 1960's. In 1967 Gardner, Green, Kruskal, and
Miura �rst discovered an original method of solution of KdV by applying an implicit linearization of the equation:
the so-called inverse scattering transform.8 Lax (1968) considerably generalized these ideas,9 and Zakharov and
Shabat (1972) showed that the method worked for the nonlinear Schr�odinger (NLS) equation.10 At this time it was
known that the NLS equation describes the propagation of short pulses in mono-mode optical �bers.11 Hasegawa
(1973) then claimed that the soliton was the ideal candidate to be the information bit for the next generation of
optical �bers.12 In order to con�rm this hope, it is relevant to study the behavior of a soliton when it propagates
through weakly perturbed media over very large distances. In this paper we shall restrict ourselves to the case of
the NLS equation with spatially random coeÆcients, but the method can be generalized to other types of random
perturbations (time-dependent) and other completely integrable systems. Note that the NLS equation with a random
potential has been studied by many di�erent authors both theoretically5,13{15 and numerically.16,17 We shall present
in the following a rigorous application of the inverse scattering transform that allows us to derive relevant results for
a large class of perturbations.
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3. AN INTRODUCTION TO THE INVERSE SCATTERING TRANSFORM

For more detail about the following statements and their proofs we refer to Refs. 18,19. The scattering transform
aims at studying the solutions of nonlinear partial di�erential equations of the type ut = F (u) with rapidly decaying
initial conditions. It can be applied in the case where the evolution equation is equivalent to an equality between
linear operators:

@L(u)

@t
+ [L;A] = 0: (1)

It is based on the fact that u(t; :) can be characterized by some spectral data of the operator L(u(t; :)). The
homogeneous nonlinear Schr�odinger equation (NLS):

iut + uxx + 2juj2u = 0 (2)

can be expressed in the form (1) if we set

L(u) = iP
@

@x
+Q(u); with P =

�
1 0
0 �1

�
and Q(u) =

�
0 u�

�u 0

�
:

The operator A is of the type �2iP @2

@x2 + C(u), with C(u) ! 0 when u ! 0, ux ! 0. The domain of L(u) is the
space H 1 (R),

H
1 (R) =

�
 such that  2 L2 (R);  x 2 L

2 (R)
	
;

which is a dense subset of the Hilbert space L2 (R):

L
2 (R) =

�
 =  1e1 +  2e2;  j 2 L

2(R)
	
; e1 =

�
1
0

�
; e2 =

�
0
1

�

equipped with the scalar product:

h ; �i =

Z +1

�1

dx �1�1(x) +  �2�2(x):

Operator L(0). L(0) is self-adjoint. The real axis constitutes its essential spectrum. The eigenspace associated
with the eigenvalue � 2 R has dimension 2 and admits the couple

�
e1e

�i�x; e2e
i�x
�
as a base. Besides the point

spectrum of L(0) is empty, because the non-trivial solutions of vx = i�v are not in L2(R).

Essential spectrum of the operator L(u(t = t0; :)). Let us consider the spectral problem associated with the
operator L(u) = L(0) +Q(u):

L(u(t; x)) (t; x) = �(t) (t; x);  =  1e1 +  2e2: (3)

If u(t = t0; :) 2 L
1(R), then Q(u) is L(0)-compact. As a consequence of the Weyl theorem, the essential spectrum of

L(u) is equal to the real axis. Eq. (3) actually admits two linearly independent solutions when � is real. We introduce
the so-called Jost functions f and g, de�ned as the eigenfunctions of L(u) associated with the real eigenvalue � which
satisfy the following boundary conditions:

f(x; �)
x!+1
�! e2e

i�x; g(x; �)
x!�1
�! e1e

�i�x:

If we denote by � the vector ( �2 ;� 
�
1) associated with a vector  solution of (3), then � is a solution of L � = �� � .

In the case of a real eigenvalue,  and � are linearly independent and form a base of the space of the solutions of
(3). It can then be proved that the Jost functions are related by:

g(x; �) = a(�) �f (x; �) + b(�)f(x; �); f(x; �) = �a(�)�g(x; �) + b�(�)g(x; �): (4)

Substituting the second equality into the �rst one, we also exhibit the following conservation relation:

ja(�)j2 + jb(�)j2 = 1: (5)
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Using (3) we get two more conservation relations which concern the norms of the Jost functions f and g:

jf1(x; �)j
2 + jf2(x; �)j

2 = 1; jg1(x; �)j
2 + jg2(x; �)j

2 = 1:

Multiplying the �rst equality of (4) by the vector �f�, we get an explicit representation of the coeÆcient a as the
Wronskian of f and g:

a(�) = g1(x; �)f2(x; �) � g2(x; �)f1(x; �): (6)

We are able to provide a more explicit representation of the Jost functions f and g. Denoting ~f1(x; �) = ei�xf1(x; �)
and ~f2(x; �) = e�i�xf2(x; �), we can �nd from (3) that ~f satis�es a system of integral equations. Besides ~f1 can be
eliminated from this system by substitution, so that we get a closed equation for ~f2, whose solution is:

~f2(x; �) = 1 +

Z 1

x

dyM(y; x; �)

�
1 +

Z 1

y

dzM(z; x; �) (:::)

�
;

where M(y; x; �) = �u�(y)
R y
x
dzu(z)e2i�(y�z). This expression holds true when u 2 L1, because the associated

sequence absolutely converges. The function ~f1 also admits a similar representation. Let us examine carefully the
properties of ~f . If y 7! jyjnju(y)j 2 L1, then ~f1 and ~f2 are of class C

n over the real axis. Besides, if u 2 L1, then ~f1 and
~f2 can be analytically continued in the upper complex half-plane Im(�) � 0 where they have no singularity. Indeed,
in view of the de�nition ofM one can see that the exponential term has a norm equal to e�2Im�(y�z) (remember that
we integrate over the domain y� z > 0) which decays faster than any polynomial term brought by the �-derivatives.

Point spectrum of the operator L(u(t = t0; :)). From (6) we can de�ne an analytic continuation of a(�) over
the upper complex half-plane. A noticeable feature then appears. If �r is a zero of a(�), then f and g are linearly
dependent, so there exists a coeÆcient �r such that g(x; �r) = �rf(x; �r). The corresponding eigenfunction is
bounded and decays exponentially as x ! +1 (because jf j � e�Im�rx) and as x ! �1 (because jgj � e+Im�rx.
Thus �r is an element of the point spectrum of L(u). Moreover we can compute from (3) and (6) the �-derivative of
a at � = �r:

a0(�r) = �2i�r

Z +1

�1

dxf1f2(x; �r): (7)

It can then be proved that the set (a(�); b(�); �r ; �r; a
0(�r)) characterizes the Jost functions f and g as well as the

solution u. The inverse transform is essentially based on the resolution of the linear integro-di�erential Gelfand-
Levitan-Marchenko equation, whose entries are constituted by the set (a; b; �r; �r; a

0(�r)):

K1(x; y) = ��(x+ y)�

Z 1

x

K1(x; y
00)

Z 1

x

��(y + y0)�(y0 + y00)dy0dy00;

K2(x; y) = �

Z 1

x

K�
1 (x; y

0)��(y + y0)dy0;

where �(y) = �
X
r

i�r
a0(�r)

ei�ry +
1

2�

Z +1

�1

b(�)

a(�)
ei�yd�:

(8)

We can get the eigenvector f from the kernel K solution of (8):

f(x; �) = e2e
i�x +

Z 1

x

K(x; y)ei�ydy: (9)

We then obtain u by the formula u(x) = �2iK�
1(x; x). The study of the inverse problem associated with the operator

L(u) has not yet been completely achieved. In particular the precise characterization of the spectral data which lead
to well-de�ned potentials u has not yet been completed. However, in the case where the initial condition u0 is rapidly
decaying so that it satis�es x 7! jxjnju0j(x) 2 L

1 for any n, the inverse scattering can be rigorously achieved.18

The great advantage of the method is that the evolution equations of the scattering data are uncoupled:

a(t; �) = a(t0; �); b(t; �) = b(t0; �)e
�4i�2(t�t0); �r(t) = �r(t0)e

�4i�2
r
(t�t0):

To sum up, the scattering transform involves the following operations:

u(t0; x)
direct scatt.
�! (a; b; �r; �r; a

0(�r)) (t0)
NLS # # uncoupled evolution equations

u(t; x)
inverse scatt.
 � (a; b; �r; �r; a

0(�r)) (t)
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Figure 1. Solitons at time t = 0. The dashed lines represent the envelops of the solitons, while the solid lines
represent the real and imaginary parts.

4. CONSERVED QUANTITIES AND SOLITON

There exists an in�nite number of quantities which are preserved by the homogeneous NLS equation.19 They can
be represented as functionals of the solution u or in terms of the scattering data. We shall present here only two of
them which are of physical interest.
� The mass of the wave N =

R
juj2dx. Denoting n(�) = ���1 ln ja(�)j2, the mass is also given by

N =
X
r

2i(��r � �r) +

Z
n(�)d�: (10)

� The Hamiltonian or energy H =
R
juxj

2 � juj4dx, which can also be expressed as

H =
X
r

8i

3
(��r

3 � �r
3) + 4

Z
�2n(�)d�: (11)

There exists a special solution with �nite mass and energy of Eq. (2) that is called soliton:

u0(t; x) = 2�0
exp i

�
2�0(x � 4�0t) + 4(�20 + �20)t

�
cosh (2�0(x� 4�0t))

: (12)

The mass and the velocity of the soliton are respectively N0 = 4�0 and V0 = 4�0. The width of the envelop of
the soliton is conversely proportional to its mass. The soliton (12) is associated with the following scattering data:

a0(�) =
�� (�0 + i�0)

�� (�0 � i�0)
; b0(�) = 0: (13)

a0 admits a unique zero in the upper complex half-plane denoted by �0 = �0 + i�0. The coeÆcient associated with
the zero �0 is �0 = i exp

�
�4i(�0 + i�0)

2t
�
. Fig. 1 plots two di�erent solitons at time t = 0. Both have the same

mass, and consequently the same envelop, but they have di�erent velocities. Note that, in the case �0 � �0 (resp.
�0 � �0), the soliton oscillates slowly (resp. quickly) within its envelop.

5. SOLITONS IN RANDOM MEDIA

We consider a perturbed Schr�odinger equation with a non-zero right-hand side:

iut + uxx + 2juj2u = "R(u)(t; x): (14)
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The small parameter " 2 (0; 1) characterizes the amplitude of the perturbation. The model of the perturbation is
taken to be:

R(u)(t; x) = m1(x)u(t; x) +m2(x)juj
2u(t; x) + (m3(x)ux)x :

We shall assume that the incoming wave is a soliton incoming from the left and that m1, m2, and m3 are random,
stationary, ergodic, zero-mean, and independent processes. We aim at showing that, for a slab of size L="2, the
two following statements hold true in the limit " ! 0. First the transmitted wave consists of a soliton plus some
scattered waves. Second the soliton dynamics for almost every realization is described by non random evolution
equations, where only the Fourier transforms of the autocorrelation functions of the random processes appear. From
the physical point of view this fact was earlier established by Doucot and Rammal.20 The remainder of the paper
is devoted to the rigorous statements and discussions of these assertions.

First note that it is necessary to assume that the processesmj ful�ll some technical conditions, namely that there
exists a function z 7! �(z) vanishing as z ! +1 such that:21

sup
s>0

�
P(B=A)� P(B); A 2 Fs

0 ; B 2 F
1
s+z

	
� �(z);

where Fz
s is the natural �ltration associated to the processes mj :

Fz
s = �(mj(x); s � x � z; j = 1; 2; 3):

Roughly speaking �(z) is proportional to the coherence degree of the process mj evaluated at two points distant
from z. The following results have been demonstrated in the case when the function z 7! �(z) decays at least as
z�4. However we believe that this hypothesis can be weakened and we expect the condition

R1
0 �1=2(z)dz < 1 to

be suÆcient. The proof of the following proposition is sketched out in the appendix.

-

0 L="2 x

-

�

-

+iut + uxx + 2juj2u = "R(u)

Figure 2. Scattering of a soliton.

Proposition 1.Let us consider a slab of size L="2.
1. With probability that goes to 1 as "! 0, the scattered wave consists of one transmitted soliton plus some radiation.

2. The coeÆcients of the transmitted soliton converge in probability to the deterministic functions �l(L), �l(L) which
satisfy the system of ordinary di�erential equations:8><

>:
d�l
dx

= F (�l; �l); �l(0) = �0;

d�l
dx

= G(�l; �l); �l(0) = �0;
(15)

where F and G are deterministic functions where only the Fourier transforms of the autocorrelation functions appear:

F (�; �) = �
1

2�

3X
j=1

Z 1

�1

jcj j
2(�; �; �)�j(k(�; �; �))d�;

G(�; �) = �
1

4�

3X
j=1

Z 1

�1

�
�2

��
+
�

�
�
�

�

�
jcj j

2(�; �; �)�j(k(�; �; �))d�:

The coeÆcients �j and k are de�ned by:

�j(k) =

Z 1

0

E [mj (0)mj(x)] cos(kx)dx; k(�; �; �) =
(�� �)2 + �2

�
:
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The functions cj can be computed explicitly:

c1(�; �; �) =
�

24�3
(�� �+ i�)2

cosh (�(�2 � �2 � �2)=(4��))
;

c2(�; �; �) =

�
(�+ �)2 + �2

� �
�2 + 17�2 � 6��+ �2

�
12�2

c1(�; �; �);

~c(�; �; �) =

�
(�� �)2 + �2

�2
+ 8�2(��2 + ��� �2)

3� ((�� �)2 + �2)
c1(�; �; �);

c3(�; �; �) = (4(�2 � �2)c1 � 4�~c� 2c2) + i(2�c1 + ~c)k(�; �; �):

Note that �j(k) is nonnegative since it is proportional to the k-frequency evaluation of the power spectral density
of the stationary process mj by Wiener-Khintchine theorem.22 The analysis of the e�ective system (15) exhibits
several possible regimes. Two of them are stable and attractive, the �rst one being characterized by a logarithmic
decay of the velocity for solitons of suÆciently large mass, and the second one by an exponential decay of the mass
for solitons of small mass. There are also intermediate regimes where both the mass and the velocity decrease at a
polynomial rate. More exactly:

1) If the mass of the incoming soliton is small (below a critical value depending on �j(:) and �0), then the velocity
of the soliton is almost constant, while its mass decreases to 0 as a function of the size of the slab L:
- as exp(�L=Lloc), where Lloc = 32�20=�1(4�0) (perturbation of the linear potential),23

- as L�1=4 (perturbation of the nonlinear coeÆcient),23

- as L�1=2, then as exp(�L=L0loc) (dispersive perturbation).
24

2) If the mass of the soliton is large enough, then the mass of the soliton is almost constant, while its velocity
of the soliton slowly decreases to 0. The decay rate depends on the tail of the spectrum of the perturbation, but we
can state in great generality that it is at most logarithmic. For instance, if E [m1 (0)m1(x)] = �2 (1� jxj=lc)1jxj�lc ,
then

lim
L!1

�l(L)� ln(L) =
��0
2
;

which means that the velocity decreases as the logarithm of the length. However the decay rate may be much slower.
As an example, if the autocorrelation function is E [m1 (0)m1(x)] = �2 exp(�x2=l2c), then the velocity decreases as
the square root of the logarithm of L:

lim
L!1

�l(L)�
p
ln(L) =

�20 lc
2
:

It can be noted that, in the limit case �0=�0 ! 0, the incoming soliton can be approximated by a linear wavepacket:

u0(t; x) '

Z +1

�1

dkf(k)eikx�ik
2t; with f(k) =

1

2
cosh�1

�
�

4

�
k � 2�0
�0

��
;

whose spectrum is narrow around the carrier wavenumber k0 = 2�0. The result is in agreement with the linear
approximation, since the localization length Lloc corresponding to a perturbation of the linear potential can be
written in terms of the carrier wavenumber as Lloc = 8k20=�1(2k0). It is equal to the localization length of a
monochromatic wave with wavenumber k0 scattered by a slab of random linear medium.25

6. NUMERICAL SIMULATIONS

The results in the previous sections are theoretically valid in the limit case " ! 0, where the amplitudes of the
perturbations go to zero and the size of the random slab goes to in�nity. In this section we aim at showing that
the asymptotic behaviors of the soliton can be observed in numerical simulations in the case where " is small,
more precisely smaller than any other characteristic scale of the problem. We use a fourth-order split-step method
to simulate the perturbed nonlinear Schr�odinger equation (14). This numerical algorithm provides accurate and
stable solutions.16 For the sake of simplicity we only consider perturbations of the linear potential m1 and take
m2 = m3 = 0.
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Let �t be the elementary time step and h be the elementary space step. Let us denote by
�
u0(jh)

�
j=�K;:::;K�1

the initial wave solution. By induction we compute un+1 from un := (u(n�t; jh))j=�K;:::;K�1:

�rst step: un+1=3 = A(�t=2)un;

second step: un+2=3 = B(�t)un+1=3;
third step: un+1 = A(�t=2)un+2=3;

where A(�t=2) is the linear operator generated by i@2x and B is simply a scalar multiplication in the physical space
by exp i

�
2juj2 � "m1

�
�t. The �rst and third steps can be solved using a Fourier transform. Indeed, in Fourier space

the e�ect of the exponential operator A(�t=2) is a scalar multiplication by exp�i(k2�t=2).

To sum up, the split step algorithm involves a sequence of steps that include free-space propagation over a half-
step, then a nonlinear correction, and free space propagation over the �nal half-step. Practically, it is easy to see
that the two back-to-back free-space half-steps can be combined into a single free-space step over �t. The error of
the split-step algorithm comes from the splitting process, because the operators A and B do not commute. It is
well-known that the method described here above is of second-order.11 However, since the NLS equation is time
reversible, we can use a standard method which transforms a second-order method into a fourth-order method.26

Indeed, if C(�t)u(t; x) is a second-order approximation to u(t + �t; x), then C(��t)C(���t)C(��t)u(t; x) is a
fourth-order approximation to u(t+�t; x), if we take care to choose � = 1=(2� 21=3) and � = 21=3=(2� 21=3). The
drawback of this method is that we implicitly impose periodicity on the solutions because of the Fourier transform
that is used on a �nite interval. We can control it by using a shifting computational domain which is always centered
at the center of the mass of the solution. Moreover we shall impose boundaries of this domain which absorb outgoing
waves. This can be readily achieved by adding a complex potential which is smooth so as to reduce re
ections. We
choose to substitute the complex potential m(x) = m1(x)� imabs(x) for the random potential m1(x):

mabs(x) =

8>>>><
>>>>:

mabsmax sin
2

�
�

2

xl � x

xl �Xl

�
, if Xl � x < xl;

0 , if xl � x < xr ;

mabsmax sin
2

�
�

2

x� xr
Xr � xr

�
, if xr � x < Xr;

where Xl (resp. Xr) is the left (resp. right) end of the computational domain, and [Xl; xl] (resp. [xr; Xr]) is the left
(resp. right) absorbing slab. The energy (or Hamiltonian) de�ned by (18) is theoretically preserved by the split-step
method up to the machine accuracy in case of a truly periodic situation without absorption. The domain that we
consider is not periodic, since it shifts along the simulation and the outgoing wave is absorbed by an imaginary
potential at the boundaries of the domain. However the size of the shifting domain is taken so that the distortion
imposed by the non-periodicity has a negligible e�ect.

We assume in this section that the potential is constant over elementary intervals of length lc and take independent
random values over each interval:

m1(x) = Ai if ilc � x < (i+ 1)lc; i = 0; :::;M;

where (Ai)i2N is a sequence of independent and identically distributed variables which obey uniform distributions
over the interval [�1; 1]. The autocorrelation function of the ergodic process m1 is equal to 1

3 (1� jxj=lc)1jxj�lc .
The integer M which is proportional to the size of the random slab will be chosen so large that we can observe the
e�ect of the small perturbation "m1. We measure the mass (i.e. the L2-norm) and center of the solution during the
propagation, and also the envelop of the transmitted solution, that we can compare with the envelop of the incoming
soliton. The mass N(n�t) and the center C(n�t) are computed at time n�t from the data (u(n�t; jh))j=�K;:::;K�1

as:

N(n�t) = h�

K�1X
j=�K

ju(n�t; jh)j2; C(n�t) = h�

K�1X
j=�K

ju(n�t; jh)j2j=N(n�t):

We �nally deal with the set of data (C(n�t))n in order to compute the velocity of the solution, de�ned here
as the time-derivative of the center. We present simulations where the initial wave at time t = 0 is a soliton with
mass N0 = 2 and velocity V0 = 1:6 centered at x = 0 (see Fig. 3a). In the �rst one we simulate the homogeneous
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Figure 3. Picture (a): Envelop of the initial soliton (solid line) whose mass is N0 = 2 and velocity V0 = 1:6. In
dashed line is plotted the pro�le of one realization of the random potential "m1 with " = 0:05 and lc = 0:4. Picture
(b): Envelops of the soliton when its center crosses di�erent depth lines l for one of the realization of the random
potential. The coordinate x is normalized around the depth line l.

nonlinear Schr�odinger equation (2), which admits as an exact solution (12). We can therefore check the accuracy
of the numerical method, since we can see that the computed solution maintains a very close resemblance to the
initial soliton (data not shown), while the mass and velocity are almost constant. The seven other simulations are
carried out with seven di�erent realizations of the random potential with " = 0:05 and lc = 0:4. The simulated
evolutions of the coeÆcients of the soliton are presented in Fig. 4 and compared with the theoretical evolutions
given by (15) in the scale x="2. It thus appears that the numerical simulations are in very good agreement with the
theoretical results. The simulated masses follow very closely the theoretical ones. This is partly due to the fact that
the split-step method preserves the total mass:

Ntot = 4� +

Z 1

�1

n(�)d�; (16)

where n(�) is the density of scattered mass at frequency 2�. This implies stability for the coeÆcient � and the mass
of the soliton. The results may seem a bit less convincing when one looks at the velocity. Indeed the split-step
method preserves the total energy which can be expressed from (11) and (18) as:

Etot = 16

�
��2 �

�3

3

�
+ 4

Z 1

�1

�2n(�)d� + "

Z
m1(x)juj

2 +
1

2
m2(x)juj

4 �m3(x)juxj
2dx: (17)

The last term is negligible in the asymptotic framework "! 0, but when " = 0:05 it gives rise to local 
uctuations of
the coeÆcient � and of the instantaneous velocity of the soliton. The velocities plotted in Fig. 4 have actually been
smoothed by averaging over intervals of length �xave = 20. This instability could explain the slight dispersal of the
lines plotting the simulated velocities. Fig. 3b plots the envelops of the solution at di�erent depths corresponding
to one of the simulations, which shows that the wave keeps the basic form of a soliton although it looses some mass.
All these results con�rm that system (15) describes with accuracy the transmission of a soliton through a random
slab for small perturbations and large slabs.

7. CONCLUSION

We have studied the propagation of a soliton in a nonlinear dispersive medium with spatially random perturbations
by applying the powerful inverse scattering transform. If the incoming soliton has large mass, we have shown that
the mass of the soliton is almost constant. Furthermore the velocity is found to decrease at a slow rate (at most
logarithmic) which depends on the high-frequency behavior of the power spectrum of the spatial dispersive random
perturbation. In case of small mass, we have proved that the mass of the soliton decays to zero exponentially or
algebraically with the length of the system.

Proc. SPIE Vol. 4271 39



(a) x

m
as

s

0 1000 2000 3000 4000 5000
0

1

2

0.5

1.5

(b) x

ve
lo

ci
ty

0 1000 2000 3000 4000 5000
0

1

0.5

1.5

Figure 4. CoeÆcients of the transmitted soliton whose initial coeÆcients are N0 = 2, V0 = 1:6 with a random
potential whose amplitude is " = 0:05 and correlation length lc = 0:4. Picture (a) (resp. picture (b)) is devoted to
the mass (resp. velocity). The thick solid lines represent the theoretical coeÆcients of the transmitted soliton. In
thin dotted lines are plotted the simulated coeÆcients of the soliton when no random potential is present. In thin
dashed and dotted lines are plotted the simulated masses and velocities of the transmitted solitons for 7 di�erent
realizations of the random potential.

We feel that it should be of great interest to consider other integrable systems with a di�erent type of dispersion.
For instance the Korteweg-de Vries equation, with a third order dispersion, is worth studying. Besides the interaction
of solitons in random dispersive media represents also a challenge for practical applications to telecommunications.

APPENDIX A. PROOF OF PROPOSITION 1

We now list the main steps of the proof.23,24

a. A priori estimates.

The following quantities (mass and energy) are preserved by the perturbed Schr�odinger equation (14):

Ntot =

Z
juj2dx; Etot =

Z
juxj

2 � juj4dx+ "

Z
H1(x)dx; H1(x) := m1(x)juj

2 +
1

2
m2(x)juj

4 �m3(x)juxj
2: (18)

Assume that the mj are bounded processes. Sobolev inequalities then prove that the H1-norm, the L4-norm and
the L1-norm of u(t; :) are uniformly bounded with respect to t 2 R and " 2 (0; 1). Furthermore "

R
H1(x)dx can be

bounded uniformly with respect to t 2 R by K(Ntot; Etot)".

b. Prove the stability of the zero of the Jost coeÆcient a.
The zero corresponds to the soliton. This part strongly relies on the analytical properties of a in the upper complex
half plane. Basically we apply Rouch�e's theorem so as to prove that the number of zeros is constant. This method
is eÆcient to prove that the zero is preserved, but it does not bring control on its precise location in the upper half
plane. This step is not suÆcient to compute the variations of the soliton parameters.

c. Compute the radiation.

The Jost coeÆcients a and b satisfy coupled equations27:8><
>:

@a(�; t)

@t
= 0 +" (a(�; t)�
(�; t) + b(�; t)
(�; t)) ;

@b(�; t)

@t
= �4i�2b(�; t) �" (a(�; t)
�(�; t) + b(�; t)�
(�; t)) ;

where 
(�; t) = �
R
dxR(u)f22 + R(u)�f21 and �
(�; t) = �

R
dxR(u)�f�1 f2 � R(u)f1f

�
2 . From these equations we can

estimate the amount of radiation which is emitted during some time interval in terms of mass and energy thanks
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to (10) and (11). We are then able to deduce the evolution equations of the coeÆcients of the soliton by using the
conservations of the total mass and energy. For times of order O(1), since Ntot and Etot are conserved, the variations
�(::) of the relevant quantities are linked together by the relations:

0 = 4�� +

Z
�n(�)d�;

0 = 16�
�
��2 � �3=3

�
+ 4

Z
�2�n(�)d� + "�

�Z
R

H1(x)dx

�
:

�n(�) is of order "2, but the last term in the expression of the total energy is of order ". Thus our strategy is not
eÆcient for estimating the variations of the coeÆcients of the soliton for times of order O(1). Let us now consider
times of order O("�2). �n(�) is now of order 1, while the last term in the expression of the total energy is of
order " by the a priori estimates. Thus we can eÆciently compute the long-time behavior of the coeÆcients of the
soliton in the asymptotic framework " ! 0, when the last term in the expression of the total energy is uniformly
negligible. Applying probabilistic limit theorems (approximation-di�usion), we then �nd that the coeÆcients of the
soliton converge in probability to non-random functions which satisfy the system (15).

d. Compute the form of the scattered wave.

Neglecting the terms of higher order, the total wave is given by the sum u(t="2; x) = uS(t="
2; x)+uL(t="

2; x), where
uS is a soliton of mass 4�(t="2) and velocity 4�(t="2):

uS(
t

"2
; x) = �2i�

exp i (2�(x� xs) + �s)

cosh (2�(x� xs))
; (19)

xs and �s are respectively the position and the phase of the soliton at time t="2:

xs =
1

2�
ln

�
1

2�

���� �r(t="
2)

a0(t="2; �s)

����
�
; �s = arg

�
�i

�r(t="
2)

a0(t="2; �s)

�
+ 2�xs; (20)

�s = �(t="2) + i�(t="2) and uL admits the following expression:

uL(
t

"2
; x) =

1

i�

Z 1

�1

b

a
(�)

(�� �+ i� tanh (2�(x� xs)))
2

(� � �+ i�)2
e2i�xd�

+
�2

i�

exp 2i (2�(x� xs) + �s)

cosh2 (2�(x� xs))

Z 1

�1

b�

a�
(�)

1

(� � �� i�)2
e�2i�xd�:

(21)

uS is the soliton part of the total wave. The �rst component of uL represents the radiated wavepacket, with a
correction in the neighborhood of the soliton x � xs(t="

2). The second component of uL represents the interaction
of the soliton and the radiation, which is only noticeable in the neighborhood of the soliton. This result is not
surprising. Roughly speaking, the support of the radiation lies in an interval with length of order "�2. Since the
L2-norm is bounded by the conservation of the total mass, we can expect that the amplitude of the radiation is of
order ". More exactly it can be rigorously proved that the amplitude of the radiated wavepacket can be bounded
above by K"j ln "j.23
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