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Abstract. Pulse propagation in randomly perturbed single-mode waveguides
is considered. By an asymptotic analysis the pulse front propagation is reduced
to an effective equation with diffusion and dispersion. Apart from a random
time shift due to a random total travel time, two main phenomena can be
distinguished. First, coupling and energy conversion between forward- and
backward-propagating modes is responsible for an effective diffusion of the
pulse front. This attenuation and spreading is somewhat similar to the one-
dimensional case addressed by the O’Doherty-Anstey theory. Second, coupling
between the forward-propagating mode and the evanescent modes results in
an effective dispersion. In the case of small-scale random fluctuations we show
that the second mechanism is dominant.

1. Introduction. In one-dimensional random media, pulse propagation is described
by the O’Doherty Anstey (ODA) theory. This theory, originally proposed by geo-
physicists [15, 18], predicts that the pulse front is modified in two ways. First
the pulse front shape spreads out in a deterministic way due to multiple scatter-
ing. Second the wave itself is not deterministic anymore but it is shifted by a
random time delay. The mathematical analysis of the random coupling between
the forward-going mode and the backward-going mode has confirmed these predic-
tions in one-dimensional random media, first in the case of weak fluctuations [3],
and then in presence of strong media fluctuations [5, 11]. Furthermore, it has been
shown that the ODA theory is still valid in three-dimensional randomly layered me-
dia [1, 4], even in the presence of slow variations in the transverse spatial directions
[19].

In randomly perturbed multi-mode waveguides, the coupled mode theory is usu-
ally applied. This theory describes the transfer of energy between the propagating
modes. It was described for applications to underwater acoustics [8, 6], fiber optics
[12, 10], and quantum mechanics [7]. It is efficient to compute pulse spreading in
the regime where the coupling between the forward-propagating modes is the dom-
inant phenomenon. In this theory the evanescent modes are neglected, with the
argument that these modes do not propagate energy over distances larger than the
typical wavelength.
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In this paper we consider wave propagation in an acoustic waveguide whose bulk
modulus is a three-dimensional random function. We shall see that the coupling
with evanescent modes does not remove energy from the propagating modes, as
expected, but it introduces frequency-dependent phases. The overall effect for the
propagating modes is dispersion that can be strong enough to prevail over other
effects. This result is obtained from first principles by using an asymptotic theory
in the case where the waveguide is single-mode, i.e., the waveguide supports only
one pair of forward-backward propagating modes and an infinite set of evanescent
modes. The main tool is a diffusion-approximation theorem [16, 17] for the random
differential equation satisfied by the propagator matrix. We take into account the
coupling mechanisms between forward, backward, and evanescent modes. As far
as the pulse front propagation is concerned, the final result is an extension of the
ODA theory where a dispersion is added to take into account the coupling with the
evanescent modes.

The results obtained in this paper are especially relevant for small-scale trans-
verse fluctuations, as follows from the following simple argument. Let us suppose
that the random perturbations are characterized by a transverse correlation length
rc. If the propagation takes place in a waveguide of constant cross section whose
maximum diameter is smaller than rc, then the dependence of the medium inside
the waveguide on the transverse coordinates can be neglected, and the problem can
be reduced to the one-dimensional case [2]. However, if rc is smaller than the diam-
eter of the waveguide, then a more detailed study is necessary, which is addressed
in this paper. In Section 2 we describe the propagating and evanescent modes of
an acoustic waveguide. We describe the mode coupling induced by the random
medium in Section 3, with special emphasis on the evanescent modes. In Section 4
we describe and discuss the pulse front propagation in a random waveguide.

2. Propagation in homogeneous waveguides. In this section we study wave
propagation in a homogeneous acoustic waveguide that supports a finite number of
propagating modes. In an ideal waveguide the geometric structure and the medium
parameters can have a general form in the transverse directions but they must
be homogeneous along the waveguide axis. There are two general types of ideal
waveguides, the ones that surround a homogeneous region with a confining boundary
and the ones in which the confinement is achieved with a transversely varying index
of refraction. In the next sections we will present the analysis of the effects of
random perturbations on waveguides of the first type and we will illustrate specific
results with a planar waveguide.

2.1. Acoustic waveguide. We consider linear acoustic waves propagating in three
spatial dimensions modeled by the system of wave equations

ρ(r)
∂u

∂t
+ ∇p = F ,

1

K(r)

∂p

∂t
+ ∇ · u = 0 , (1)

where p is the acoustic pressure, u is the acoustic velocity, ρ is the density of the
medium and K the bulk modulus. The source is modeled by the forcing term F(t, r).
We assume that the transverse profile of the waveguide is a simply connected region
D in two dimensions. The direction of propagation along the waveguide axis is z and
the transverse coordinates are denoted by x ∈ D. In the interior of the waveguide
the medium parameters are homogeneous

ρ(z,x) = ρ̄, K(z,x) = K̄, for x ∈ D and z ∈ R .
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By differentiating with respect to time the second equation of (1) and substituting
the first equation into it, we get the standard wave equation for the pressure field

∆p − 1

c̄2

∂2p

∂t2
= ∇ · F , (2)

where ∆ = ∆⊥ + ∂2
z and ∆⊥ is the transverse Laplacian. The sound speed is

c̄ =
√

K̄/ρ̄. We must now prescribe boundary conditions on the boundary ∂D of
the domain D. If the boundary of the waveguide is a rigid wall, then the normal
velocity vanishes on ∂D. By (1) we obtain Neumann boundary conditions for the
pressure:

n · ∇⊥p(t,x, z) = 0 for x ∈ ∂D and z ∈ R . (3)

2.2. The propagating and evanescent modes. A waveguide mode is a monochro-
matic wave p(t,x, z) = p̂(ω,x, z)e−iωt with frequency ω, where p̂(ω,x, z) satisfies
the time-harmonic form of the wave equation (2) without a source term

∂2
z p̂(ω,x, z) + ∆⊥p̂(ω,x, z) + k2(ω)p̂(ω,x, z) = 0 . (4)

Here k = ω/c̄ is the wavenumber and we have Neumann boundary conditions on
∂D. The transverse Laplacian in D with Neumann boundary conditions on ∂D is
self-adjoint in L2(D). Its spectrum is an infinite number of discrete eigenvalues

−∆⊥φj(x) = λjφj(x), x ∈ D, n · ∇⊥φj(x) = 0, x ∈ ∂D,

for j = 0, 1, 2, . . . . The smallest eigenvalue is λ0 = 0 and the corresponding eigen-
vector is the constant mode φ0(x) ≡ φ0, φ0 = 1/

√
|D|. The other eigenvalues

are nonnegative, and we assume for simplicity that they are simple so we have
0 = λ0 < λ1 < λ2 < · · · . The eigenmodes are real and form an orthonormal set

∫

D
φj(x)φl(x)dx = δjl .

Let N(ω) be the integer such that c̄λN−1 ≤ ω < c̄λN .
The modal wavenumbers βj(ω) are defined by

βj(ω) =

√
ω2

c̄2
− λj , j = 0, . . . , N(ω) − 1 . (5)

The solutions

p̂j(ω,x, z) = φj(x)e±iβj(ω)z , j = 0, . . . , N(ω) − 1 ,

of the wave equation (4) are the propagating waveguide modes.
For j ≥ N(ω) we define the modal wavenumbers by

βj(ω) =

√
λj −

ω2

c̄2
, j ≥ N(ω) , (6)

and the corresponding solutions

q̂j(ω,x, z) = φj(x)e±βj(ω)z, j ≥ N(ω) ,

of the wave equation (4) are the evanescent waveguide modes.

The planar waveguide. This is the special case where D is (0, d) × R and we
consider only solutions that depend on x ∈ (0, d). In this case

λj =
π2j2

d2
, φj(x) =

√
2√
d

cos

(
πjx

d

)
, j ≥ 1, φ0(x) =

1√
d

,
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and the number of propagating modes is

N(ω) = 1 +

[
ωd

πc̄

]
,

where [x] is the integer part of x.

2.3. Excitation conditions for a source. We consider a source located in the
plane z = 0 that emits a signal with orientation in the z-direction

F(t,x, z) = f(t,x)δ(z)ez . (7)

Here ez is the unit vector pointing in the z-direction. We may think for instance
at a point-like source located at (x0, z = 0), so that f(t,x) = f(t)δ(x−x0). By the
first equation of (1), this source term implies that the pressure satisfies the following
jump conditions across the plane z = 0

p̂(ω,x, z = 0+) − p̂(ω,x, z = 0−) = f̂(ω,x) ,

while the second equation of (1) implies that there is no jump in the longitudinal
velocity so that the pressure field also satisfies

∂z p̂(ω,x, z = 0+) − ∂z p̂(ω,x, z = 0−) = 0 .

Here f̂ is the Fourier transform of f with respect to time:

f̂(ω,x) =

∫
f(t,x)eiωtdt, f(t,x) =

1

2π

∫
f̂(ω,x)e−iωtdω .

The pressure field can be written as a superposition of the complete set of modes

p̂(ω,x, z) =




N−1∑

j=0

âj(ω)√
βj(ω)

eiβjzφj(x) +

∞∑

j=N

ĉj(ω)√
βj(ω)

e−βjzφj(x)



 1(0,∞)(z)

+




N−1∑

j=0

b̂j(ω)√
βj(ω)

e−iβjzφj(x) +
∞∑

j=N

d̂j(ω)√
βj(ω)

eβjzφj(x)



 1(−∞,0)(z) ,

where âj is the amplitude of the jth right-going mode propagating in the right

half-space z > 0, b̂j is the amplitude of the jth left-going mode propagating in

the left half-space z < 0, and ĉj (resp. d̂j) is the amplitude of the jth right-going
(resp. left-going) evanescent mode. Substituting this expansion into the jump
conditions, multiplying by φj(x), integrating with respect to x over D, and using
the orthogonality of the modes, we can express the mode amplitudes in terms of
the source

âj(ω) = −b̂j(ω) =

√
βj(ω)

2

∫

D
f̂(ω,x)φj(x)dx, 0 ≤ j ≤ N(ω) − 1 , (8)

ĉj(ω) = −d̂j(ω) = −
√

βj(ω)

2

∫

D
f̂(ω,x)φj(x)dx, j ≥ N(ω) . (9)
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3. Mode coupling in random waveguides. We consider a randomly perturbed
waveguide section occupying the region z ∈ [0, L/ε2], with two homogeneous waveg-
uides occupying the two half-spaces z < 0 and z > L/ε2. The bulk modulus and
the density have the form

1

K(x, z)
=

{ 1
K

(1 + εν(x, z)) for x ∈ D, z ∈ [0, L/ε2] ,
1
K

for x ∈ D, z ∈ (−∞, 0) ∪ (L/ε2,∞) ,

ρ(x, z) = ρ̄ for x ∈ D, z ∈ (−∞,∞) ,

where ε is a small dimensionless parameter that characterizes the typical amplitude
of the random fluctuations. The function (x, z) 7→ ν(x, z) is a bounded zero-mean
random process. It is stationary and ergodic with respect to the axis coordinate z.
Moreover, it is supposed to possess enough decorrelation, more exactly that it fulfills
the mixing condition “ν is φ-mixing, with φ ∈ L1/2(R+)” (see [9, Section 4-6-2]).
The weak fluctuations of the medium parameters induce a coupling between the
propagating modes, as well as between propagating and evanescent modes, which
build up and become of order one after a propagation distance of order ε−2, as we
shall see below.

The perturbed wave equation satisfied by the pressure field is

∆p − 1 + εν(x, z)

c̄2

∂2p

∂t2
= ∇ ·F , (10)

where the average sound speed is c̄ =
√

K̄/ρ̄. The pressure field also satisfies
the Neumann boundary conditions (3). We consider a source located in the plane

z = 0 modeled by the forcing term (7) and we denote by â
(0)
j (ω) the initial mode

amplitudes given by (8). Our strategy follows the asymptotic analysis carried out
in [8], but we pay special attention to the role of the evanescent modes and we
do not apply the forward scattering approximation, that is, we dot not neglect the
coupling between the right- and left-going modes.

3.1. Coupled amplitude equations. We fix the frequency ω and we expand the
field p̂ in terms of the transverse eigenmodes

p̂(x, z) =

N−1∑

j=0

p̂j(z)φj(x) +

∞∑

j=N

q̂j(z)φj(x) , (11)

where p̂j is the amplitude of the jth propagating mode, q̂j is the amplitude of the
jth evanescent mode.

For j ≤ N − 1 we introduce the right-going and left-going propagating mode

amplitudes âj and b̂j defined by

p̂j(z) =
1√
βj

(
âj(z)eiβjz + b̂j(z)e−iβjz

)
, (12)

dp̂j(z)

dz
= i

√
βj

(
âj(z)eiβjz − b̂j(z)e−iβjz

)
. (13)

Then it follows that âj and b̂j have the form

âj(z) =
iβj p̂j +

dp̂j

dz

2i
√

βj

e−iβjz , b̂j(z) =
iβj p̂j − dp̂j

dz

2i
√

βj

eiβjz , j ≤ N − 1 .

We finally introduce the normalized amplitude of the evanescent modes:

ĉj(z) =
√

βj q̂j(z) j ≥ N .
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The total field p̂ satisfies the time-harmonic wave equation in the perturbed
waveguide

∆p̂(ω,x, z) + k2(1 + εν(x, z))p̂(ω,x, z) = 0 . (14)

Using (11) in this equation, multiplying it by φj(x), and integrating over x ∈ D,
we deduce from the orthogonality of the eigenmodes (φj)j≥0 the following system
of coupled differential equations for the mode amplitudes

dâj

dz
= iε

N−1∑

l=0

Cjl(z)
(
âle

i(βl−βj)z + b̂le
−i(βl+βj)z

)

+iε

∞∑

l=N

Cjl(z)ĉl(z)e−iβjz , 0 ≤ j ≤ N − 1 , (15)

db̂j

dz
= −iε

N−1∑

l=0

Cjl(z)
(
âle

i(βl+βj)z + b̂le
i(−βl+βj)z

)

−iε
∞∑

l=N

Cjl(z)ĉl(z)eiβjz , 0 ≤ j ≤ N − 1 , (16)

d2ĉj

dz2
− β2

j ĉj + 2εβj ĝj(z) = 0, j ≥ N . (17)

Here the coupling coefficients are given by

Cjl(z) =
k2

2
√

βjβl

∫

D
φj(x)φl(x)ν(x, z)dx , j, l ≥ 0 , (18)

ĝj(z) =

∞∑

l=N

Cjl(z)ĉl +

N−1∑

l=0

Cjl(z)
(
âle

iβlz + b̂le
−iβlz

)
, j ≥ N . (19)

Note that ĝj is a linear function of â, b̂, and ĉ. The system (15-17) is complemented
with the boundary conditions

âj(0) = âj,0, b̂j

(
L

ε2

)
= 0, 0 ≤ j ≤ N − 1 , (20)

for the propagating modes. The second conditions at z = L/ε2 indicate that no
wave is incoming from the right. We also use the radiation conditions

lim
z→±∞

ĉj(z) = 0, j ≥ N ,

which imply that the evanescent modes are decaying. The solution of (17) that
satisfies the radiation conditions is

ĉj(z) = ε

∫ ∞

−∞
ĝj(z + s)e−βj |s|ds . (21)

3.2. Conservation of energy flux. Energy flux conservation in the one-dimensional
case implies a conservation relation for the right- and left-propagating wave ampli-

tudes that has the form |â|2−|b̂|2 = constant [3]. We now generalize this relation to

waveguides. Let us denote |â|2 =
∑N−1

j=0 |âj|2 and |b̂|2 =
∑N−1

j=0 |b̂j|2. Using (15-16)
we have

d

dz
(|â|2 − |b̂|2) = −2εIm




N−1∑

j=0

∑

l≥N

Cjl(âje
−iβjz + b̂je

iβjz)ĉl



 .
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By (19) the right-hand side can be rewritten as

d

dz
(|â|2 − |b̂|2) = −2εIm




∑

l≥N

(ĝl −
∑

l′≥N

Cll′ ĉl′)ĉl



 = −2εIm




∑

l≥N

ĝlĉl





Note that ĝl(z) is vanishing for z < 0 because the waveguide in homogeneous for

z < 0. This shows that (|â|2 − |b̂|2)(z) = (|â|2 − |b̂|2)(0) for any z < 0. Next, we use
the integral representation (21) and we integrate over z to get

(|â|2 − |b̂|2)(z) − (|â|2 − |b̂|2)(0) = −2ε2
∑

l≥N

Ĝl(z) , (22)

Ĝl(z) =

∫ z

−∞

∫ ∞

−∞
Im
[
ĝl(y)ĝl(y + s)

]
e−βl|s|dsdy .

The quantity Ĝl(z) can be written as

2iĜl(z) =

∫ z

−∞

∫ ∞

−∞
ĝl(y)ĝl(y + s)e−βl|s|dsdy −

∫ z

−∞

∫ ∞

−∞
ĝl(y)ĝl(y + s)e−βl|s|dsdy .

We transform the second term as follows
∫ z

−∞

∫ ∞

−∞
ĝl(y)ĝl(y + s)e−βl|s|dsdy =

∫ ∞

−∞

∫ z+s

−∞
ĝl(y − s)ĝl(y)dye−βl|s|ds

=

∫ ∞

−∞

∫ z−s

−∞
ĝl(y + s)ĝl(y)dye−βl|s|ds ,

so that we get

Ĝl(z) =
1

2

∫ ∞

−∞

∫ z

z−s

Im[ĝl(y)ĝl(y + s)]dye−βl|s|ds .

The waveguide is homogeneous in the section (L/ε2,∞), which implies that ĝl(y) =
0 if y > L/ε2. In the previous double integral, we can notice that, if s < 0, then
y > z, while if s > 0, then y + s > z. As a consequence, if z ≥ L/ε2, then either
y or y + s is larger than L/ε2, so that the product ĝl(y)ĝl(y + s) is always 0. This

shows that Ĝl(z) = 0 if z ≥ L/ε2. By (22) we thus obtain

|â|2(L/ε2) − |b̂|2(L/ε2) = |â|2(0) − |b̂|2(0) .

Using the boundary conditions (20) at 0 and L/ε2, we get the conservation of energy
flux

|â|2(L/ε2) + |b̂|2(0) = |â(0)|2 , (23)

which is exact for any ε.

3.3. Evanescent modes in terms of propagating modes. In this and the next
subsection we show how to obtain asymptotically a closed system of equations for
the propagating mode amplitudes which takes into account the coupling with the
evanescent modes.

We first substitute (19) into (21) and rewrite it in the vector-matrix form

(Id − εΨ)ĉ = εc̃ . (24)

Here the operator Ψ is defined by

(Ψĉ)j(z) =
∑

l≥N

∫ ∞

−∞
Cjl(z + s)ĉl(z + s)e−βj|s|ds, j ≥ N ,
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and the vector-valued function c̃ is given by

c̃j(z) =

N−1∑

l=0

∫ ∞

−∞
Cjl(z + s)

×
(
âl(z + s)eiβl(z+s) + b̂l(z + s)e−iβl(z+s)

)
e−βj|s|ds, j ≥ N .(25)

Introducing the norm ‖ĉ‖ =
∑

j≥N β
−1/2
j supz |ĉj(z)|, we have

‖Ψĉ‖ ≤
∑

j≥N

β
−1/2
j sup

z

∑

l≥N

∫ ∞

−∞
|Cjl(z + s)||ĉl(z + s)|e−βj|s|ds .

Note that

sup
z

|Cjl(z)| ≤ k2

2
√

βjβl

sup
z

∫

D
φjφlν(x, z)dx ≤ k2

2
√

βjβl

‖ν‖∞ ,

where we have used the normalizing condition
∫

φ2
jdx = 1. This implies

‖Ψĉ‖ ≤ ‖ν‖∞k2

2

∑

j≥N

β−1
j

∑

l≥N

β
−1/2
l sup

z
|ĉl(z)|

∫ ∞

−∞
e−βj|s|ds

≤ ‖ν‖∞k2
∑

j≥N

β−2
j

∑

l≥N

β
−1/2
l sup

z
|ĉl(z)| = ‖ν‖∞Kβk2‖ĉ‖ ,

where Kβ =
∑

j≥N β−2
j . Note that Kβ is indeed finite for a broad class of waveg-

uides. This is, for example, the case in the planar waveguide because we have
βj =

√
π2j2/d2 − ω2/c̄2 ∼ πj/d for j ≫ N . Thus Ψ is a bounded operator and so

for ε small enough, Id−εΨ is invertible and can be approximated by Id+εΨ+O(ε2).
The vector c̃ defined by (25) has finite ‖ · ‖ norm:

‖c̃‖ ≤ Kβk2‖ν‖∞
N−1∑

l=0

sup(|âl|, |b̂l|) .

By inverting (24) we can therefore write for j ≥ N

ĉj(z) = ε

N−1∑

l=0

∫ ∞

−∞
Cjl(z + s)

×
(
âl(z + s)eiβl(z+s) + b̂l(z + s)e−iβl(z+s)

)
e−βj|s|ds + O(ε2) .

Furthermore, over a distance of order 1, the variation of â and b̂ is at most of order

ε, so we can substitute âl(z) and b̂l(z) for âl(z + s) and b̂l(z + s) up to an error of
order ε and we obtain, for j ≥ N ,

ĉj(z) = ε

N−1∑

l=0

∫ ∞

−∞
Cjl(z + s)

(
âl(z)eiβl(s+z) + b̂l(z)e−iβl(s+z)

)
e−βj|s|ds + O(ε2) .

(26)

3.4. Propagating mode amplitude equations. We introduce the rescaled pro-

cesses âε
j , b̂ε

j , j = 0, . . . , N − 1 given by

âε
j(z) = âj

( z

ε2

)
, b̂ε

j(z) = b̂j

( z

ε2

)
. (27)
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Substituting (26) into (15-16) we have the following system of differential equations
for the propagating mode amplitudes

dâε

dz
=

[
1

ε
H(a)

( z

ε2

)
+ G(a)

( z

ε2

)]
âε +

[
1

ε
H(b)

( z

ε2

)
+ G(b)

( z

ε2

)]
b̂ε , (28)

db̂ε

dz
=

[
1

ε
H(b)

( z

ε2

)
+ G(b)

( z

ε2

)]
âε +

[
1

ε
H(a)

( z

ε2

)
+ G(a)

( z

ε2

)]
b̂ε . (29)

Here the matrices G(·)(z) and H(·)(z) are given by

H
(a)
jl (z) = iCjl(z)ei(βl−βj)z , (30)

H
(b)
jl (z) = −iCjl(z)ei(βl+βj)z , (31)

G
(a)
jl (z) = i

∑

l′≥N

∫ ∞

−∞
Cjl′ (z)Cll′ (z + s)eiβl(z+s)−iβjz−βl′ |s|ds , (32)

G
(b)
jl (z) = −i

∑

l′≥N

∫ ∞

−∞
Cjl′ (z)Cll′(z + s)eiβl(z+s)+iβjz−βl′ |s|ds . (33)

The system (28-29) and the boundary conditions

âε
j(0) = â

(0)
j , b̂ε

j(L) = 0 (34)

determine the propagating mode amplitudes. Even though this system involves only
the propagating mode amplitudes, it takes into account the effect of the evanescent
modes through the matrices G(·). If one is interested in determining the evanes-
cent modes, one should first integrate the system (28-29) and then substitute the
solutions into the integral representations (26) of the evanescent modes.

3.5. Propagator matrices. The two-point linear boundary value problem for
Eqs. (28-29) can be solved using propagator matrices. The system (28-29) can
be put into full vector-matrix form

dXε

dz
=

1

ε
H
( z

ε2

)
Xε + G

( z

ε2

)
Xε , (35)

where Xε is the 2N -vector obtained by concatenating the N -vectors âε and b̂ε

Xε(z) =

[
âε(z)

b̂ε(z)

]
,

while H and G are the 2N × 2N matrices:

H(z) =

[
H(a)(z) H(b)(z)

H(b)(z) H(a)(z)

]
, G(z) =

[
G(a)(z) G(b)(z)

G(b)(z) G(a)(z)

]
.

The 2N×2N propagator matrices Pε(z) are the solution of the initial value problem

dPε

dz
=

[
1

ε
H
( z

ε2

)
+ G

( z

ε2

)]
Pε ,

with the initial condition Pε(z = 0) = I. The general solution of (28-29) satisfies
for any 0 ≤ z ≤ L [

âε(z)

b̂ε(z)

]
= Pε(z)

[
âε(0)

b̂ε(0)

]
.
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When we specialize this relation to z = L and use the boundary conditions (34),
with â(0) successively the unit vectors, we get

[
Tε(L)

0

]
= Pε(L)

[
I

Rε(L)

]
. (36)

Here we have defined the N×N random reflection and transmission matrices Rε(L)
and Tε(L).

We can check that, if (âε(z), b̂ε(z))T is a solution of (35), then (b̂ε(z), âε(z))T is
also a solution. This imposes that the propagator has the form

Pε(z) =

[
Pε

a(z) Pε
b(z)

Pε
b(z) Pε

a(z)

]
. (37)

Note that the matrix Pε
a describes the coupling between different right-going modes,

while Pε
b describes the coupling between right-going and left-going modes.

In addition to the general symmetry or reciprocity relation that gives the form
(37) for the propagator matrices, we also have the global flux conservation relation
(23). When this relation is used in conjunction with (36) we get the N -mode
generalization of the reflection-transmission conservation relation

Rε†Rε(L) + Tε†Tε(L) = I , (38)

where the sign † stands for the conjugate transpose. This relation holds in general,
with the evanescent modes taken into consideration and for any ε > 0.

3.6. Convergence of the propagator matrix in the single-mode case. Re-
member that λ1 > 0 is the first nonzero eigenvalue of the Laplacian operator
∆⊥ over D with Neumann boundary conditions at ∂D. The critical frequency
ωc =

√
λ1c̄ is such that the number of propagating modes N(ω) = 1 for all ω < ωc.

In this section, we consider a frequency ω < ωc such that N(ω) = 1. This means
that the waveguide supports only one propagating mode, with modal wavenumber
β0(ω) = ω/c̄ and eigenmode φ0(x) = 1/

√
|D|. The propagator matrix is a 2 × 2

matrix:

Pε(z) =

[
αε

ω(z) βε
ω(z)

βε
ω(z) αε

ω(z)

]
,

where (αε
ω, βε

ω) is solution of the coupled random differential equations

dαε
ω

dz
=

[
1

ε
H(a)

( z

ε2

)
+ G(a)

( z

ε2

)]
αε

ω +

[
1

ε
H(b)

( z

ε2

)
+ G(b)

( z

ε2

)]
βε

ω ,(39)

dβε
ω

dz
=

[
1

ε
H(b)

( z

ε2

)
+ G(b)

( z

ε2

)]
αε

ω +

[
1

ε
H(a)

( z

ε2

)
+ G(a)

( z

ε2

)]
βε

ω ,(40)

starting from αε
ω(z = 0) = 1 and βε

ω(z = 0) = 0. Here the functions G(·)(z) and
H(·)(z) are given by

H(a)(z) = iC00(z),

H(b)(z) = −iC00(z)e2i ω
c̄

z ,

G(a)(z) = i
∑

l≥1

∫ ∞

−∞
C0l(z)C0l(z + s)ei ω

c̄
s−βl|s|ds ,

G(b)(z) = −i
∑

l≥1

∫ ∞

−∞
C0l(z)C0l(z + s)ei ω

c̄
(2z+s)−βl|s|ds .
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By (38) the transmission and reflection coefficients satisfy the conservation of energy
relation

|Rε(ω, L)|2 + |T ε(ω, L)|2 = 1 . (41)

By (36) they are given in terms of the entries of the propagation matrix by

Rε(ω, L) = −βε
ω(L)

αε
ω(L)

, T ε(ω, L) =
1

αε
ω(L)

. (42)

The following proposition is an application of Theorem 2-7 [17] to the system (39-
40) satisfied by (αε

ω , βε
ω). The infinitesimal generator of the limit process (αω, βω)

has a simple form provided we write it in terms of αω, βω, αω, and βω, rather than
in terms of the real and imaginary parts of αω and βω. This generator will be used
in the next section to compute the expectation of the pulse transmitted through a
randomly perturbed single-mode waveguide.

Proposition 1. The processes (αε
ω(z), βε

ω(z))z≥0 converge in distribution as ε → 0
to the diffusion process (αω(z), βω(z))z≥0 whose infinitesimal generator is

L =
γ(c)(ω)ω2

8c̄2

(
Aαωβω

Aαωβω
+ Aαωβω

Aαωβω

)
+

iγ(s)(ω)ω2

8c̄2
(Aβωβω

− Aαωαω
)

+
γ(1)ω2

8c̄2
(Aαωαω

+ Aβωβω
)(Aαωαω

+ Aβωβω
) + iκ(ω)(Aαωαω

− Aβωβω
)(43)

Aab = a
∂

∂b
− b

∂

∂a
= −Aab .

Here we have defined the complex derivatives in the standard way: if a = x + iy,
then ∂a = (1/2)(∂x − i∂y) and ∂a = (1/2)(∂x + i∂y). The coefficients γ(c), γ(s), and

γ(1) are given by

γ(c)(ω) = 2

∫ ∞

0

cos
(
2
ω

c̄
z
)

E[ν0(0)ν0(z)]dz , (44)

γ(s)(ω) = 2

∫ ∞

0

sin
(
2
ω

c̄
z
)

E[ν0(0)ν0(z)]dz , (45)

γ(1) = 2

∫ ∞

0

E[ν0(0)ν0(z)]dz , (46)

κ(ω) =

∞∑

l=1

ω3

2c̄3βl(ω)

∫ ∞

0

E[νl(0)νl(z)] cos
(ω

c̄
z
)

e−βl(ω)zdz , (47)

νl(z) =

∫

D
ν(x, z)φl(x)φ0(x)dx . (48)

4. Pulse propagation in random waveguides.

4.1. Integral representation of the transmitted field. We assume that a
source is located in the plane z = 0 and modeled by the forcing term (7). This
source generates evanescent modes, left-going propagating modes that we do not
need to consider as they propagate in a homogeneous half-space, and right-going
modes that we analyze. As shown in Subsection 2.3 the interface conditions at z = 0
and z = L have the form

âε
j(ω, 0) =

1

2

√
βj(ω)

∫

D
f̂(ω,x)φj(x)dx , b̂ε

j(ω, L) = 0 , 0 ≤ j ≤ N(ω) − 1 .
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The transmitted field observed at time t is therefore

p

(
t,x,

L

ε2

)
=

1

2π

∫ N(ω)−1∑

j,l=0

1√
βj(ω)

φj(x)T ε
jl(ω, L)âε

l (ω, 0)eiβj(ω) L

ε2
−iωtdω ,

where Tε is the transmission matrix defined by (36). We now assume that the

support of the pulse spectrum f̂ is contained in (−ωc, ωc) so that N(ω) = 1 for all
frequencies in the integral representation of the transmitted field. In this case, the
transmitted pulse is

p

(
t,x,

L

ε2

)
=

1

4π|D|

∫
f̂(ω)T ε(ω, L)ei ω

c̄
L

ε2
−iωtdω ,

where T ε is the transmission coefficient given by (42) and

f̂(ω) =

∫

D

∫
f(t,x)eiωtdtdx .

We observe the field in a time window of order 1, which is comparable to the pulse
width, and centered at time L/(c̄ε2), which is the average travel time to go from
z = 0 to z = L/ε2:

pε(t, L) := p

(
L

c̄ε2
+ t,x,

L

ε2

)
,

pε(t, L) =
1

4π|D|

∫
f̂ (ω)T ε(ω, L)e−iωtdω . (49)

4.2. Tightness.

Lemma 1. The transmitted pulse ((pε(t, L))−∞<t<∞)ε>0 is a tight (i.e. weakly
compact) family in the space of continuous trajectories equipped with the sup norm.

Proof. We must show that, for any δ > 0, there exists a compact subset K of the
space of continuous bounded functions such that:

sup
ε>0

P(pε(·, L) ∈ K) ≥ 1 − δ .

On the one hand (41) yields that pε(t, L) is uniformly bounded by:

|pε(t, L)| ≤ 1

4π|D|

∫
|f̂(ω)|dω . (50)

On the other hand the modulus of continuity

M ε(δ) = sup
|t1−t2|≤δ

|pε(t1, L) − pε(t2, L)|

is bounded by

M ε(δ) ≤ 1

4π|D|

∫
sup

|t1−t2|≤δ

|1 − exp(iω(t1 − t2))||f̂(ω)|dω ,

which goes to zero as δ goes to zero uniformly with respect to ε. �

The uniform bound (50) also shows that the finite-dimensional distributions are
characterized by the moments

E[pε(t1, L)q1 · · · pε(tk, L)qk ] (51)

for every real numbers t1 < · · · < tk and every integers q1, . . . , qk.
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4.3. First moment. Let us first address the first moment. Using the representa-
tion (49) the expectation of pε(t, L) is

E[pε(t, L)] =
1

4π|D|

∫
e−iωtf̂(ω)E[T ε(ω, L)]dω .

We denote T ε
ω (z) = E[T ε(ω, z)]. By (42) we have T ε

ω (z) = E[αε
ω(z)−1]. By applica-

tion of Proposition 1, T ε
ω (z) converges as ε → 0 to the limit Tω(z) = E[αω

−1]. Here
αω is the first coordinate of the diffusion process whose infinitesimal generator L is
defined by (43). By application of the infinitesimal generator L, we have

L(αω
−1) = − ω2

8c̄2

(
γ(c)(ω) + iγ(s)(ω) + γ(1)

)
αω

−1 + iκ(ω)αω
−1 .

Thus, the limit Tω satisfies the equation

dTω

dz
= ξ(ω)Tω , where ξ(ω) = − ω2

8c̄2

(
γ(c)(ω) + iγ(s)(ω) + γ(1)

)
+ iκ(ω) ,

starting from Tω(0) = 1. The solution of this ordinary differential equation is:
Tω(L) = exp(ξ(ω)L). The expectation of T ε(ω, L) thus converges to Tω(L). Using
the fact that |T ε| ≤ 1 and applying Lebesgue’s theorem, we finally obtain that the
expectation of pε(t, L) converges to:

E[pε(t, L)]
ε→0−→ 1

4π|D|

∫
e−iωtf̂(ω) exp(ξ(ω)L)dω .

4.4. Higher moments. Let us now consider the general moment (51). Using the
representation (49) for each factor pε, these moments can be written as multiple

integrals over n =
∑k

j=1 qj frequencies:

E [pε(t1, L)q1 · · · pε(tk, L)qk ] =
1

(4π|D|)n

∫
· · ·
∫ ∏

1 ≤ j ≤ k

1 ≤ l ≤ qj

f̂(ωj,l)e
−iωj,ltj

×E




∏

1 ≤ j ≤ k

1 ≤ l ≤ qj

T ε(ωj,l, L)




∏

1 ≤ j ≤ k

1 ≤ l ≤ qj

dωj,l . (52)

The dependency in ε and in the randomness only appears through the quantity
E[T ε(ω1, L) · · ·T ε(ωn, L)]. Our problem is now to find the limit, as ε goes to 0,
of these moments for n distinct frequencies. In other words we want to study the
limit in distribution of (T ε(ω1, L), . . . , T ε(ωn, L)) which results once again from the
application of a diffusion-approximation theorem (Theorem 2-7 [17]).

Proposition 2. The multi-frequency processes

(αε
ω1

(z), βε
ω1

(z), . . . , αε
ωn

(z), βε
ωn

(z))z≥0

converge in distribution as ε → 0 to the diffusion process

(αω1
(z), βω1

(z), . . . , αωn
(z), βωn

(z))z≥0
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whose infinitesimal generator is

L =

n∑

j=1

γ(c)(ωj)ω
2
j

8c̄2

(
Aαωj

βωj
Aαωj

βωj
+ Aαωj

βωj
Aαωj

βωj

)

+
n∑

j=1

γ(s)(ωj)ω
2
j

8c̄2
(Aβωj

βωj
− Aαωj

αωj
)

+
n∑

j,l=1

γ(1)ωjωl

4c̄2
(Aαωj

αωj
+ Aβωj

βωj
)(Aαωl

αωl
+ Aβωl

βωl
)

+i

n∑

j=1

κ(ωj)(Aαωj
αωj

− Aβωj
βωj

) . (53)

The quantity of interest E[T ε(z, ω1) · · ·T ε(z, ωn)] is denoted by T ε(z). Applying
the infinitesimal generator (53)

L




n∏

j=1

αωj

−1



 = − 1

8c̄2




n∑

j=1

ω2
j

(
γ(c)(ωj) + iγ(s)(ωj)

)
+

n∑

j,l=1

ωjωlγ
(1)




n∏

j=1

αωj

−1

+i




n∑

j=1

κ(ωj)




n∏

j=1

αωj

−1

gives the following equation for T (z) = limε→0 T ε(z):

dT (z)

dz
=


−

n∑

j=1

ω2
j

8c̄2

(
γ(c)(ωj) + iγ(s)(ωj)

)
−

n∑

j,l=1

ωjωl

8c̄2
γ(1) + i

n∑

j=1

κ(ωj)


 T (z) ,

with the initial condition T (0) = 1. This linear equation has a unique solution but
instead of solving it and computing explicitly the moments one can easily see that

it is also satisfied by T̃ (z) = E




n∏

j=1

T̃ (z, ωj)


 where

T̃ (z, ω) = exp

(
i
ω
√

γ(1)

2c̄
Bz − ω2(γ(c)(ω) + iγ(s)(ω))

8c̄2
z + iκ(ω)z

)
,

and (Bz)z≥0 is a standard Brownian motion. Therefore T (L) = T̃ (L) and the limit
of the moment (52) is

lim
ε→0

E [pε(t1, L)q1 · · · pε(tk, L)qk ] =
1

(4π|D|)n

∫
· · ·
∫ ∏

1 ≤ j ≤ k

1 ≤ l ≤ qj

f̂(ωj,l)e
−iωj,ltj

×E




∏

1 ≤ j ≤ k

1 ≤ l ≤ qj

T̃ (ωj,l, L)




∏

1 ≤ j ≤ k

1 ≤ l ≤ qj

dωj,l , (54)

which can be factorized as

lim
ε→0

E [pε(t1, L)q1 · · · pε(tk, L)qk ] = E




k∏

j=1

(
1

4π|D|

∫
f̂(ω)e−iωtj T̃ (ω, L)dω

)qj



 .
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This shows that the finite-dimensional distributions of the continuous processes

t 7→ pε(t, L) converge as ε → 0 to those of t 7→ (4π|D|)−1 ∫
e−iωtf̂(ω)T̃ (ω, L)dω.

4.5. Pulse front stabilization. We have seen that the processes (t 7→ pε(t, L))ε>0

are tight in the space of the continuous functions, and that their finite-dimensional
distributions converge. This proves the main result of this section.

Proposition 3. As ε → 0, the processes (pε(t, L))t∈(−∞,∞) converge in distribution
in the space of the continuous functions to (p̃(t, L))t∈(−∞,∞) given by

p̃(t, L) = f ∗ GL

(
t −

√
γ(1)

2c̄
BL

)
, (55)

where BL is a standard Brownian motion and the Fourier transform of the convo-
lution kernel GL is

ĜL(ω) =
1

2|D| exp

(
iκ(ω)L − ω2(γ(c)(ω) + iγ(s)(ω))

8c̄2
L

)
. (56)

The coefficients κ, γ(c), γ(s), and γ(1) are given by (44-48).

This proposition shows that the transmitted pulse experiences a random time
shift described by the Brownian motion BL and a deterministic deformation de-
scribed by the convolution kernel GL. Apart from the random time shift, the limit
pulse shape P (L, t) = GL ∗ f(t) is solution of the equation

∂P

∂L
= L(1)P + L(2)P, P (t, 0) =

1

2|D|f(t), (57)

where the operators L(j) can be written explicitly in the Fourier domain as
∫ ∞

−∞
L(1)P (t)eiωtdt = −ω2(γ(c)(ω) + iγ(s)(ω))

8c̄2

∫ ∞

−∞
P (t)eiωtdt , (58)

∫ ∞

−∞
L(2)P (t)eiωtdt = iκ(ω)

∫ ∞

−∞
P (t)eiωtdt . (59)

In the next two subsections we discuss in more detail the properties of these oper-
ators.

4.6. Role of the coupling between propagating modes. L(1) is a pseudo-
differential operator that models the deterministic pulse deformation due to the
coupling between the right- and the left-going propagating modes. This operator
depends only on the statistics of ν0 given by (48), that is the transversely-averaged
random perturbation ν. The first qualitative property satisfied by the pseudo-
differential operator L(1) is that it preserves the hyperbolic nature of the original
equation. Indeed, in the time domain, we can write

L(1)P (t) =

[
1

8c̄
R0

(
c̄t

2

)
1[0,∞)(t)

]
∗
[
∂2P

∂t2
(t)

]
=

1

8c̄

∫ ∞

0

R0

( c̄s

2

) ∂2P

∂t2
(t − s)ds ,

where R0(z) = E[ν0(0)ν0(z)]. The indicator function 1[0,∞) is essential to interpret
correctly the convolution. If t0 is a time such that P is vanishing for t < t0, then
L(1)P is also vanishing for t < t0. This means that the coupling between right-
going and left-going modes cannot diffuse the wave in the right direction (ahead the
front), but only in the left direction (behind the front).
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The pseudo-differential operator L(1) can be divided into two parts

L(1) = L(1)
r + L(1)

i , (60)
∫ ∞

−∞
L(1)

r P (t)eiωtdt = −γ(c)(ω)ω2

8c̄2

∫ ∞

−∞
P (t)eiωtdt, (61)

∫ ∞

−∞
L(1)

i P (t)eiωtdt = − iγ(s)(ω)ω2

8c̄2

∫ ∞

−∞
P (t)eiωtdt. (62)

By the Wiener-Khintchine theorem [14], γ(c) is proportional to the power spectral
density of the random stationary process ν0. As a result, γ(c) is nonnegative and

L(1)
r can be interpreted as an effective diffusion operator. More precisely, for small

frequencies, L(1)
r behaves like a second-order diffusion. Let us denote by rc the

correlation length of the process ν0 and by ω the typical pulse frequency. If ωrc/c̄ ≪
1, then γ(c)(ω) ≃ 2µ0 where µ0 :=

∫∞
0 R0(z)dz, and

L(1)
r ≃ µ0

4c̄2

∂2

∂t2
.

L(1)
i is an effective dispersion operator, it preserves the energy. It behaves like a

third-order dispersion for small frequencies. Indeed, if ωrc/c̄ ≪ 1, then γ(s)(ω) ≃
4ωµ1/c̄ where µ1 :=

∫∞
0 zR0(z)dz, and

L(1)
i ≃ − µ1

2c̄3

∂3

∂t3
.

It is interesting to determine which operator, L(1)
r or L(1)

i , is the most important
one. By scaling arguments, we get that ω3µ1/c̄3 is of order (ωrc/c̄) × µ0(ω/c̄)2

which is smaller than µ0(ω/c̄)2 if ωrc/c̄ ≪ 1. As a result, the effective dispersion is
usually smaller than the effective diffusion.

Note finally that the regime ωrc/c̄ ≪ 1 is typically the one that is encountered in
randomly perturbed single-mode waveguides. Indeed, it is natural to assume that
rc is much smaller than the typical diameter d of the waveguide, so that transverse
random modulations of the medium can be observed. Besides, it is necessary for
ω to be smaller than the cutoff frequency of the waveguide to ensure single-mode
propagation. Qualitatively, this means that ωd/c̄ should be smaller than 1, and
thus ωrc/c̄ should be much smaller than 1.

4.7. Role of the coupling with the evanescent modes. L(2) is a pseudo-
differential operator that models the deterministic pulse deformation due to the
coupling between the right-going propagating mode and the evanescent modes. This
operator depends only on the statistics of νl, l ≥ 1, that is to say it depends only
on the statistics of the transverse fluctuations ν(x, z) − ν0(z). Note that this is in
contrast with the operator L(1) studied in the previous section, that depends only
on the transversely-averaged process ν0.

The operator L(2) is an effective dispersion operator, it does not remove energy
from the pulse front. It is a pseudo-differential operator with a complicated symbol,
which makes it difficult to infer the dispersion order. However L(2) can be reduced
to a much simpler operator with a supplementary assumption. Remember that
ωc = c̄

√
λ1 is the cutoff frequency and that we have assumed the single-mode

condition ω < ωc. If, moreover, ω ≪ ωc, then the propagation modal wavenumbers
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are βl(ω) ≃
√

λl and

κ(ω) ≃ µ2ω
3

2c̄3
, with µ2 =

∞∑

l=1

1√
λl

∫ ∞

0

E[νl(0)νl(z)]e−
√

λlzdz .

This shows that the operator L(2) is a third-order dispersion in the regime where
the typical pulse frequency ω satisfies ω ≪ ωc

L(2) ≃ µ2

2c̄3

∂3

∂t3
.

4.8. The planar waveguide. We now address a particular example. We consider
the case of a planar waveguide in which the random perturbation ν is a stationary
zero-mean random process with Gaussian autocorrelation function:

E[ν(x′, z′)ν(x′ + x, z′ + z)] = σ2 exp

(
−x2 + z2

2r2
c

)
,

where σ is the standard deviation of the random fluctuations and rc is the correlation
length, that is assumed to be much smaller than d. This is achieved if ν(x, z) =∑∞

l=0 νl(z)φl(x) where the νl are independent, stationary, zero-mean processes with
autocorrelation function

E[νl(z
′)νl(z

′ + z)] =
σ2rc√
2πd

exp

(
− z2

2r2
c

− π2r2
c l2

2d2

)
.

The typical pulse frequency ω is smaller than the cutoff frequency ωc = πc̄/d to
ensure single-mode propagation. We have

µ0 =
σ2r2

c

2d
, µ1 =

σ2r3
c√

2πd
, µ2 =

σ2r2
c

2π

∑

l≥1

erfc

(
πrcl√

2d

)
,

where erfc(x) = 1 − erf(x) = (2/
√

π)
∫∞

x
exp(−s2)ds. As pointed out above, it is

also natural in this study to assume that rc ≪ d. As a result, we have ωrc/c̄ ≪ 1.
This assumption allows us to give estimates for the different terms that appear
in the diffusion-dispersion equation (57). On the one hand, the typical orders of
magnitude of the two terms of the operator L(1)P are

µ0ω
2

4c̄2
∼ σ2r2

cω2

dc̄2
,

µ1ω
3

2c̄3
∼ σ2r3

cω3

dc̄3
∼ σ2r2

cω2

dc̄2
× ωrc

c̄
,

which shows that the effective second-order diffusion prevails over the effective third-
order dispersion. On the other hand, the typical order of magnitude of the term
L(2)P is

µ2ω
3

2c̄3
∼ σ2r2

cω3

c̄3
ln

(
d

πrc

)
∼ µ0ω

2

4c̄2
× ωd

c̄
ln

(
d

πrc

)
.

In the regime where ω ∼ c̄/d and d ≫ rc, this formula shows that the operator L(2)

plays a dominant role. In this case the coupling of the propagating mode with the
evanescent modes can be responsible for the main pulse distortion in the form of
strong dispersion.
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5. Conclusion. In this paper we have analyzed the role of evanescent modes in
pulse propagation in randomly perturbed waveguides. We have shown that the
random coupling between the propagating and evanescent modes induces dispersion.
The analysis is based on separation of scales when the propagation distance is large
compared to the size of the inhomogeneities. The asymptotic analysis is carried out
with single-mode waveguides. However, it is natural to conjecture that it could be
extended to multi-mode waveguides, in the case in which the number of propagating
modes is finite and fixed. This generalization deserves further investigation.
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