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Length-scale competition for the sine-Gordon kink in a random environment
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This paper deals with the transmission of a kink in a random medium described by a randomly perturbed
sine-Gordon equation. Different kinds of perturbations are addressed, with time or spatial random fluctuations,
with or without damping. We derive effective evolution equations for the kink velocity and width by applying
a perturbation theory of the inverse scattering transform and limit theorems of stochastic calculus. Results are
very different compared to a randomly perturbed nonlinear Sfthger equation. The effect of a random
perturbation is shown to depend strongly on the interplay of the correlation length of the perturbation and the
kink width.
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[. INTRODUCTION these equations an iterative scheme was proposed to calcu-
late the solution by successive approximatidh. This

The sine-GordoiiSG) equation models many applications method is efficient when dealing with short-time dynamics
in solid-state physics.As an important example we may or very small perturbations, so that the expansion of the so-
think at long Josephson junctiofis]J's) which received new lution at first or second order is sufficient to describe the
interest with the appearance of high—temperature30|it0n dynamics® For long-time dynamics, when the cor-
superconductorsThe SG equation is also a paradigm for the rective terms corresponding to the radiation emitted by the
study of topological kinks. A realistic SG model should alsoSoliton become of the same order of magnitude as the soliton
include small random fluctuations of the parameters of thderm, few results are available.
equation. The study of the soliton dynamics driven by small I this paper we discuss general types of perturbations
perturbations has attracted much attention. Kink dynamic@nd proceed under a different asymptotic framework. Our
along nonlinear random systems can be studied by using ®ain contribution is that we use the inverse scattering trans-
collective-coordinate approach® The kink is treated as a form so as to take into account both the variations of the
quasiparticle and the solution is sought in the form of a kinksoliton part and the radiative part of the wave. Both effects
with slowly varying parameters. Substituting this ansatz intoand their interplay are important, especially when the corre-
a conservation law establishes a set of ordinary differentiafation length of the perturbation is of the same order as the
equations for these parameters_ This approach can be genép"ton width. The interaction of different Iength scales is an
alized to nonintegrable systefrand is valid while radiative important issue in localization theory for wave propagation
|Osses are neg||g|b|e A two_stage Scheme was proposed 69 I|near med|a:.|',9'20 SO the I’e|atI0nShIp of the SO|It0n W|dth
McLaughlin and Scotf where the authors first compute and the correlation length of the perturbation is expected to
slow modulations of the kink parameters and then derive th8ave a fundamental effect on the questions we are trying to
first-order correction by a constructed radiative Green’s func&nswer. Our approach is based on a separation of scales tech-
tion. This work was further extended to give analytical rep-nique (between the fast oscillations of the kink parameters
resentation of the complicated Green's functtbased on ~ and the slow emission of radiatipand on the existence of
the method of separation of variables, a direct approach igonservation laws. We consider the influence of small ran-
the study of soliton perturbations has been developed by Yaflom perturbations and aim at reporting the possible
et al!? and Tang and Wantj,where the solution is expanded asymptotic behaviors when the amplitudes of the random
in power series with the leading-order term being the originafluctuations are small while the size of the system is large
solution, and the higher-order terms being derived through &nough so that an evolution of the order of 1 of the soliton
set of linearized equations. and radiation is observed. The effective dynamics for the

A powerful approach to the study of soliton dynamics soliton width and velocity can then be computed.
under random perturbations is perturbation theory based on
the inverse scattering transforriST).}~%6 It is well Il. THE HOMOGENEOUS SINE-GORDON EQUATION
known'’ that the solution of the direct-scattering transform
for a linear operator connected with the Lax pair of a non-
linear evolution equation yields a set of scattering data. The i _
discrete spectrun? descriges localized states whgijle the con- Uit~ U sin(u) =0, &
tinuous spectrum describes dispersive waves. The spectruwhich governs the evolution of a real field The subscripts
is conserved in time in case of an exact integrable systenx andt stand for partial derivatives with respect to position
which implies in particular that the solitons and the disper-and time, respectively. This integrable equation supports
sive waves do not interact. In the presence of perturbationsioving nonlinear excitations in the form of kinks, so we can
the evolutions of the scattering data are coupled and obey study the effects of various perturbations with the known
closed form but complicated system of equations. Usingnalytic behavior of the unperturbed dynamics. We begin by

The equation we consider in this paper is the SG equation
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a short review of the inverse scattering transform applied taAdditional symmetry identities are
the SG equation. Details of the theory can be found for in-

stance in the review by Manakat al !’ PN =97 (X, —N), (X)) =— 5 (X, —N\),

A. Direct transform: The scattering problem P (XN == T (X,—N),  Pa(X,\) =3 (X,—N),
. The Lax Cqmmutative representation of the SG equation a\)=a*(—\), b(\)=—b*(—1\).
is[L,A]=0 with

Besidesy exd —ik(\)x/2] and ¢ exd ik(\)x/2] can be ana-

L:i_'_[()\_ cos{u))a _S'n(u)a ux_”tg lytically continued into the upper complex half plane
ox 2 4N Y e 2 ok Im(\)=0 where they have no singularity. From E&) we
_ _ can define an analytic continuation af\) into the upper
A i+ I cogu) sin(u) Uy~ Uy complex half plane. A noticeable feature then appears; If
gt 2 an 737 Tan 92 2 %1 is a zero ofa(\), thenf and g are linearly dependent, so
where theo,, i=1,2.3, are the Pauli matrices there exists a coefficient, such thaté(x,\j)=p;¥(X,\;).

The corresponding eigenfunction is bounded and decays
0 1 0 —i 1 0 exponentially ax— + (becausd y|~e~'™**) and asx

gl:( ) ()'22( _ ) o3= ) — — (becausgp|~e*'™*¥). Thus\; is an element of the
10 0 0 -1 point spectrum ofL. It can then be proved that the set

and AeR* is the real spectral parameter. The scatteringd@(X),b(N).\j,pj,a’(N})) characterizes the Jost functions

problem for the operatot. under the conditions that ¢ and¢ and the solutioru.

—0mod 27 and u,—0 as|x|—= puts into evidence the

existence of two fundamental Jost functions that are defined B. Time evolutions of the scattering data

as the solutions df f =0 that satisfy the following boundary The time equations for the scattering data are
conditions at— and +oe:

a(ta)\):a(toy)\)a }\ER+1 (6)
L ik(\)x/2 [0 —ik(\)x2
PN = | | BxN) = | Je ! b(t,\)=b(te. Nexg —io(\)(t—te)], AeR*, (7)
where the wave numbdeis given by pi()=pj(to)exd —io(\))(t—tx)], j=1,...N, (8
wherew(\)=\+1/(4\). Note that(k(\),w(\)) obeys the
K(N)=A= 7 dispersion relation— w?+k*+1=0 of the linearized SG
o _ equation.
If we denote by .the involution operator that turns a row
vectorf into the row vectorf :=(—f3 ,f¥)T, then it turns out C. The inverse scattering transform
thaty is also a solution ok ¢=0. Furthermore/ andy are The inverse transform is essentially based on the resolu-

linearly independent and form a base of the space of thgy, of the linear integrodifferential Gelfand-Levitan-
solutions ofLf=0. It can then be proved that the Jost func-jarchenko equation. The closed set of equations for the

tions are related by function  reads
G(xN)=a(N)P(x,\) +DN) (X, \), @ Yoonexdik)x2]
- Y * 0 N . .
(X, N)=—a(N) d(X,N) +b* (N) p(X,\). () :( )+ pj elf(x,)\,)exmk()\j)xlz]
Injecting the second equality into the first one, we also ex- 1) = a’'(\) A=A

hibit the following conservation relation:

. fw a2 o) LR ik wiz
a2+ [b(V)]?=1. (@) T oia) IV gD T g XAk X2,

Using L¢=0 we get two more conservation relations that

concern the Euclidian norms of the Jost functighand ¢: PN exdik(N)x/2]

|1 N2+ (X M P=1, [ M) |2+ ha(x, M) P=1. 0\ & o WX\

' ’ o i (D) o PN ik v w2

Multiplying Eq. (2) by the vectory*, we get an explicit 1) Fra’(n) A=\

representation of the coefficiewat as the Wronskian of)

and ¢: . dwg(x')d/(x’mexp[ik(x’)x/z]
2im)_» a N =N '

a(N) =W(, @)= th1(X,N) a(X,N) = tha(X,N) (X, N ).
(5) Given the set of scattering data,
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N N
pj 8 1(= _
cogu/2)=(—1)u+=)m| 1 — (XN E= ——f 4+)"?)In(]al®)(N)dN. (13)
qu/2)=(-1) 2 ) VM) jzlm = in(a®)(n)dX. (
xexgik(\j)x/2]
IIl. PERTURBATION
1 (= dx b(\) , . . o
5| br(x,Nexik(N)x/2] |. We consider a perturbed sine-Gordon equation with a
2im ) N a(N) nonzero right-hand side:
D. Kink Ugi + Uy — Sin(U) = e R(u)(t,X). (14
The so-called kinks are solutions of the SG equation thaf he small parameter(0,1) characterizes the amplitude of
propagate at constant velocities without deformation: the perturbation which has the general form

R(u)=f(u,m),

X—ut
Us(xt)=4 arctar{ex;{ ‘/1_02) ' © wheref is a local function ofu [i.e., f(u,m)(t,x) depends
only onu and its partial derivatives evaluated at poityix{]

Note_that the soli.ton vglocity e(0,1) also _completely ghar- that depends also on a driving random processVe con-
acterizes the soliton widtj1—v . Accordingly the soliton  sider either time random perturbations or spatially random
is all the narrower as its velocity is larger. In terms of IST theperturbations in the sense that eitmeis a time-dependent
kink corresponds to the discrete eigenvalye=iv, where random process or a space-dependent random process. An

1\/m example of the first case R(u)=m(t)u,,, while an ex-
1-v’

ample of a spatially random perturbationR$u) = m(x) u,,
or elseR(u) = (m(X)uy)y .

In case of time random perturbations the driving process
(m(t));p is assumed to be a zero-mean, stationary and er-
A+i vtanr(z)) godic process. The exact technical condition is thahould

p=—

2

The kink has the corresponding Jost functions

exg ik(\)x/2]
YN = be “¢ mixing” (in the sense discussed by Kushfiein Sec.

4-6-2) with ¢ e LY2 The autocorrelation function ah is

vsechiz)

. exp[—ik()\)x/Z]( — vsechiz) ) denoted by
X1 = . 1
) Mtive In-ivianh(z) m(0)=(MO)M(t) =(m(t)m(t' +1), (15
and scattering data where the brackets stand for the statistical average with re-
spect to the stationary distribution of. The ¢-mixing con-
a(\) = Al bo\)=0, pe=iex vt dition with ¢ e LY? means in particular that the perturba-
S AN+iv' S T 1-v2]’ tion has enough decorrelation properties so that the integral

I|ym(t)|Y2dt is finite. We can then introduce the Fourier

In the LJJ framework the kink represents a fluxon, i.€., &ransform of the autocorrelation function of the perturba-
magnetic flux quantum. tion m,

E. Conserved quantities fx g .
i . . VYm(w):= t)cog wt)dt, 1
Conserved quantities can be worked out as in any inte- Yol @) ocym( Jeodwt) (16

grable system. The momentum L . . L .
which is non-negative real valued since it is proportional to

o the power spectral density by the Wiener-Khintchine
P=- fﬁmutuxdx (10 theoren??For instance, if the perturbationis a white noise
ym(t)=0248(t), then the spectrum of the perturbation is flat
and the energyHamiltonian and given by¥m(w)=0? for any w. In case of spatially
1 1 random perturbations similar assumptions are made on the
N N S SO random procesém(x))y.p: -
€ J',oo Ui 2u"+[l cosu)Jdx (D We investigate the propagation of a kink driven by the

are two of the infinite number of conserved quantities for theperturbatiomR. Our method is based on the inverse scatter-
X . q . ing transform. The random perturbation induces variations of
sine-Gordon equation. They can also be expressed in ter

of the scattering data as MRe spectral data. Calculating these changes we are able to
find the effective evolution of the field and calculate the

1 e characteristic parameters of the wave. We are interested in
__f (4—X"?)In(|a2)(\)dX, the effective dynamics of the kink propagating over long
mJo timesT/&2. The total energy or the total momentum are con-

(12 served by the addressed perturbations, but the discrete and

8Ui

\/1—vi2

N
P=2
=1
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Jk2+1 k)w(l—vz)z

493

continuous components evolve during the propagation. The

evolution of the continuous component corresponding to ra- E(k)= 3,m<
diation can be found from the evolution equations of the Jost

coefficients. Note that the spectral density of the radiative

power has already been obtained for various types of regular

perturbation$?* and then extended to random perturba-

v

tions2° The evolution of the kink velocity and width can then X 5. (24)
be derived from the conservation laws. 5 —v?m
We now describe the evolutions of the Jost coefficients cosh vk°+1 o 2

andb during the propagation. They satisfy the following ex-

H 6
act equations: Note thatF(v) is always nonpositive which means that the

kink is slowing down. Note that the soliton width is given

Ja ie (= ) . .
ik Zf dXR(U)(t,X) (11— hocps), a7 asymptotically by\/l—v2| (t), which means that the soliton
o also broadens.
b ie (= . : : :
il w(N)b— ZJ dXR(U) (t,X) (7 o+ 5 ). B. Derivation of the effective evolution equation
(18) The proofs of the results stated in the above section as
well as in the forthcoming sections are based on a perturbed
The momentum and energy obey the equations IST. We outline the main steps of the analysis that follows
the strategy developed by Garrfferfor the nonlinear
dp * Schralinger equation and we underline the key points.
T R(u)(t,x)uy(t,x)dx, (19
1. A priori estimates
dé’_ * The total energyé=¢&,+¢e&; is preserved by the per-
at _WR(u)(t,x)ut(t,x)dx. (200 turbed SG equation. First assume thats a bounded pro-
cess. Sobolev inequalities then prove that lthenorm and
thus theL™ norm of[1—cos{)](t,.) are uniformly bounded
IV. SPATIALLY RANDOM NONLINEARITY with respect tat e R andee(0,1). This in turn implies that

A. The perturbed model €& can be bounded uniformly with respect te R by
2&|lm|..e. Let us now assume that is not bounded, but is
€a Gaussian process. Then sug,/.z|m(x)|<KelIn(s)*2
and e&; can be bounded uniformly with respecttta R by
2&K e In(e)| Y2

We consider in this section that the nonlinear term of th
SG equation is spatially randomly perturbed:

R(u)=m(x)sin(u). (21
In the framework of the LJJ, this corresponds to a random 2. Prove the stability of the zero of the Jost coefficieat
variation of the maximum Josephson current derfdifyhe The zero corresponds to the kink. This part strongly relies
perturbed Hamiltonian of the systemds+ &, where on the analytical properties @f in the upper complex half
. plane. We apply Rouctstheorem so as to prove that the
&=— f [1—cogu)]m(x)dx. number of zeros is constant. This method is gfficient to prove
—w that the zero is preserved, but it does not bring control on its

) - precise location in the upper half plane. This step is not
We then get that, with probability that goes to 1eas0, the  gyficient to compute the variations of the kink parameters.
scattered wave at tintée? consists of one kink with velocity
ve(t) [and width V1—v®(t)?] and radiation. The process 3. Compute the radiation
(v®(t))re[o CONverges in probability as—0 to the deter- . . .
ministic function (v(t));. o Which satisfies the ordinary The Jost coefficienta andb satisfy the coupled equations

differential equation (17) and(18). In a first approximation we can substitute for
¢, ¥, andu in the right-hand sides of Eqél7) and(18) the
do, corresponding expressionss, s, and ug for the unper-
E:F(vl), (22 turbed kink:
where P o
(1_v2)3/2 o E:_Iw()\)b_ 4()\2+V2)f_ochR(u5)
F(U)Z_Tf dkE(k) (23

X

exd —ik(N\)x].

X—ut
) i o AZ2—1p2—2ip\ tan
andE(k) is the scattered energy density per unit time, 1—v?
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From these equations we can estimate the amount of radia-
tion which is emitted during some time interval in terms of
energy. We are then able to deduce the evolution equation of

the kink velocity by using the conservation of the total en-
ergy. For times of the order @(1), since&,,; is conserved,
the variationsA(- - -) of the relevant quantities are linked to- z ‘
. S 04
gether by the relations 0 }
0.35¢ g
8 % [T
0=A +f AE(N)AN+eA(&;), (25) 03f [--- =05 o
( \/1—vz> 0 ( ! ozl L— =1 E ! 1
} , ik
whereE(\) is the scattered energy density per unit time: 02 ‘ . . ! .
"0 1000 2000 3000 4000
E(N)=—m"14+x"?)In(Ja]?>) () (@ t
___1=0.125
L b|? e
= (4+N9)In| 1+ —=(N).
|al 0.5
AE(MN) is of the order ofe?, but the last term in the expres- 0.45¢

sion of the total energy as well as in the balance idert#g)

is of the order ofe. Thus our strategy is not efficient for
estimating the variations of the kink parameters for times of 0.35-
the order of 1. Actually the collective-coordinate approach or
the variational approach aims at dealing with this regime by

velocity
o
n

0.3r

taking care off;. Let us now consider times of the order of 0.25¢

e~ 2. AE(\) is now of the order of 1, while the last term in 02 ‘ ‘ . ‘
the expression of the total energy is of the ordek diy the "o 1000 2000 3000 4000
a priori estimates. Thus we can efficiently compute the long- (b) !

time behavior of the kink paramgters in the a_symptotic FIG. 1. Kink velocity as a function of time. The perturbation
frameworks—_>0, When the Iast. term in the expression of t.he model isR(u)=m(x)sin) with m a Gaussian process with zero
total energy is uniformly negligible. Applying probabilistic mean and autocorrelation functiop,(x)=o2exd —x2/(413)] and
limit theorems(approximation-diffusionestablishes that the ower spectral density(k) = exp(—ka2)2y7l o2 with o7g=0.05.
kink parameters converge in probability to nonrandom funce start from the initial condition (t=0)=wv, and consider differ-
tions which satisfy ent correlation lengthk,. The thick lines represent the theoretical
solutionsv, , while the thin lines are the numerical solutions.
(1_02)3/2 .
F(v)=———=——] d\E(N),
(v) & f )

0 Radiation looks like any linear dispersive wave far from the

where E(\) is the mean scattered energy density per unikink, but it has complex structure in the neighborhood of the

time: kink. Roughly speaking, the support of the radiation lies in
an interval with length of the order of 2. Since thel?
1-v 1 1+v\ w7 norm of 1—cos() is bounded, we can expect that the am-
E(N)=Ym| A + w 16 plitude of the radiation is of the order efaround O behind
v the kink and around 2 in front of the kink. It can be rigor-
11+v)\? ously proved that the amplitude of the radiation can be
(4+N"2)| N2+ 11, bounded above bi{¢|In |.%®
X [ 2
)\ZCOS?{ N+ i 1-v? z C. Numerical simulations
4N v 2 To check our theoretical predictions we perform full nu-
(1-02)2(1-v)2 merical simulations of Eqg14) and (21). For this purpose
— Egs. (14) and (21) are transformed into a set of difference
v® equations in the spatial domaiwith second-order accuracy

and we apply an explicit sixth-order Runge-Kutta scheme.
We use a shifting computational domain which is always
centered at the center of mass of the solution. Moreover we
impose boundaries of this domain which absorb outgoing
waves. The reader can observe in.Flga good agreement
By applying the inverse scattering transform we find thatbetween the numerical simulations and the theoretical pre-
the total wave is given by the sum of a kink and of radiation.dictions. We would like to comment on the oscillations of the

Performing the change of variables>k:=\ — 1/(4\) estab-
lishes the result.

4. Compute the form of the scattered wave
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velocity that can be observed. Indeed, in the configuration at dX
hand, the Hamiltonian is preserved, which also reads as x—>X such that&Z V1+2em(x) (29
8 1

is well defined as soon as S&él?o,L/321|2m(X)| <1/e which is
always the case in our framework. In this new frame the new
functionT(t,x) :=u(t,X(x)) satisfies

fw(4+)\’2)ln(|a|2)(t,)\)d)\
0

o o 7

+ —

| mooteogust]-cogutt ) dx e
whereuy is the initial condition. The last term of the right-

hand side is negligible in the asymptotic framewark0, T = [1+26M(X) Uyt eMy(X) u
but whene >0 it gives rise to local fluctuations of the un- . 1+ 2em(x)

perturbed Hamiltonian as defined by Ed1), hence local
fluctuations of the velocity whose amplitudes are of the ordeiThen the perturbed SG equation reads as
of ¢ over times of the order of 1the important point for the

asymptotic analysis is that they are still of the ordee dbr U — Uyt SIN(T) = eMy(X)
times of the order ot ~2). The fluctuations are all the more
important as the correlation length of the medium is of the 1 1 ~
X : ) X - Uy, .
same order or even larger than the kink wifiee Fig. 1a)]. Jit2em(x) 1+2em(x)) ™
They are smoothed when the correlation length is much
smaller than the kink widtlisee Fig. 1)]. The perturbation can be expanded adm(x)m,(x)u,
+0(e?). For propagation times of the order ef 2 this
V. SPATIALLY RANDOM DISPERSION O(e?) zero-mean perturbation does not involve any macro-

. . _— scopic(i.e., of the order of L modification of the kink ve-
A. First model: A simple Hamiltonian form locity and width
In the first part of this section devoted to spatially random

dispersion we analyze the case where the perturbation reads - A natural model of spatially random dispersion

R(u) = (M(X)Uy)y. (26) Let us finally address the following case:
The perturbed Hamiltonian i§+e&;, where R(U)=m(x)U,,. (30)
< :lfw m(x) uZdx This model is the most natural model of spatially random
172/ . X dispersion. In the LJJ framework it corresponds to fluctua-

_ . ~ tions of the inductance of the junctiGfIn terms of pertur-
We get the same conclusion as in the case of the nonlinedation analysis this model presents taepriori drawback
perturbation, by taking care to define the scattered energphat it neither preserves the momentum nor the energy of the

density per unit time as solution. Thus it seems not possible to apply our method to
this perturbation. However if we perform the change of space
VKZ+1 2 variable (29), then we get that the perturbed SG equation

. -k reads in this new frame as

Vk2+1 T
E(K) =%y —— —k | — .
43 1-vlw
cos?{ Vk?+1 E)

v
v

T — Uyy T SIN(T) = e (M(X)Ty ), + negligible terms.

This is our first mode(26) up to terms which have negligible
(27 influence for propagation times of the order of?. The
ecay of the kink velocity thus obeys the effective equations
23) and(27) ase—0.
Note that the fact that perturbatiori80) and (26) are
_ o equivalent follows from the second-order dispersion. A third-
B. A model without radiation order dispersiorisuch as the one of the Korteweg-de Vries

Let us now consider the following perturbation model: ~equation would have led us to a different conclusion.

Note that this is the same expression as for the spatiall
random nonlinearity, up to a factor (lv?)2.

R(u) = (M(X)Uy)x+M(X) Uy, = MUy +2MUy,.  (28) D. Numerical simulations

This model preserves the total momentum. Calculations To check our theoretical predictions we have performed
show that this perturbation gives rise to no radiatiiik) full numerical simulations of Eq914) and (26), Eqgs. (14)
=0. This is not at all surprising. Indeed the change ofand (28), and Eqs.(14) and (30). Note that the dispersive
variable perturbation was discretized as follows for the three models:
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"N" i vH

\
| i‘llﬂ

velocity
o
~

0.351

acceleration

0.3r

0.25F

0'20 1000 2000 3000 4000
t

0 0.5 1 1.5 2 25 3

FIG. 2. Kink velocity as a function of time. The perturbation
model is R(u)=m(x)u,, with m a Gaussian process with zero
mean and autocorrelation functiop,(x) = ogexd —x%(413)] and
power spectral densit§(k) =exp(—k32)2\/xl 03 with o;,=0.05.
We start from the initial condition(t=0)=v,. The solid lines
stand forl,=1 and the dashes lines fof=0.5. The thick lines
represent the theoretical solutions, while the thin lines are the
numerical solutions.

FIG. 3. Kink acceleration. The perturbation model Rgu)
=m(t)sin(u) with m a Gaussian process with zero mean and auto-
correlation functionym(t)=a§exq—t2/(4t§)] and power spectral
density 5= exp(— w?t?)2\/mt 05 with 0o=0.1. The lines represent
the functionsF(vg) as a function of the coherence time.

P(k)=¥m(V1+k®—kv)

model 1:(mxu)X:m'%+m'u}‘+l+ mj%ﬂnju?,l X(Vk2+1—kv)2 mk(1—0v?)? (34
J1+k%Z 4 coshiky1—v2m/2)?
mj_1+2mj+mj+l n
- 2 uj, It appears that the acceleration functi®fw) does not pos-

sess a definite sign, and can be either positive or negative as
shown in Fig. 3. Actually this phenomenon can be studied
analytically and we now show that the sign of the accelera-
and model 2model 1+model 3. Full numerical simulations tion function essentially depends on the coherence time of
for these models show complete agreement with the theorethe perturbation. For short-correlation tirtia the sense that

. — n n n
model 3:muy,=m;(Uj, 1 +Uj_,—2u;),

ical predictions(see Fig. 2 J1-v%t.<1), we havey(w)=o? for wt.<1, so
VI. TIME RANDOM NONLINEARITY m(1-v)%vk?
P(k)+P(—k)=—o? —
The perturbation that is addressed in this section is the KV1—02 )
following: COSI{ v
R(u)=m(t)sin(u). (31)  which in turn implies that
This perturbation conserves the total momentum. By apply- 1- 0272, . K2
ing the same strategy as in Sec. IV B but using the momen- F(v)= (1-v% UzJ' dk
tum conservation law, we get that, with probability that goes 8 0 coshikyl—v?m/2)?
to 1 ase—0, the scattered wave at tinte:? consists of one 5
kink with velocity v®(t) [and width1—v?(t)?] and radia- _7 (1-p2)2
tion. The procesgv®(t));c(o 1) converges in probability as 12
&—0 to the deterministic functiou,(t)); o1} which satis- o . L . )
fies the ordinary differential equatid®DE) ’ which is positive. Thus the kink is speeding up. Its velocity

increases to 1. The kink also becomes narrower. Its width

V1- v,z(t) decays to 0.

U
ﬁ:F(UI)' (32) For long-correlation time(in the sense that/1—v?t,
>1), the integral in Eq(33) concentrates around the wave
where numberk,=v/\1—v? which is such thaty1+k>—kv is
minimal. And then
( -0 )3/2 I
F(U):_Tj P(k)dk, (33
% 7TU(1_U2)3/2 © 5
. _ o F(v)zf—J Ym(V1+k“—kv)dk
and P(k) is the scattered momentum density per unit time: 32 costiv 7/2)% ) -
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0.9r t
My(t):= d

ol () skm@>s

0.7 is the accumulated dissipation. Once this identity is known,

06 we can apply the very same approach as in the previous
z sections. There then appears a dichotomy. Indeed the appli-
205 cation of a standard diffusion-approximation theorem to the
>

accumulated dissipation shows that in the asymptotie,
the total momentum in the scalée? evolves as

o
'S

o
w
.

e—0

P(tle?) — P(t) :=Poexp— aW,),

o
[

0.1 ‘ - - '
0 1000 2000 3000 4000 where W, is a standard one-dimensional Brownian motion

and o:=y,(0). By the Wener-Khintchine theorem it is
FIG. 4. Kink velocity as a function of time. The perturbation known that Ym(0) is non-negative. We should then distin-

model isR(u)=m(t)sin(u) with m a Gaussian process with zero gujsh between the casés,(0)=0 (absence of an effective
mean and autocorrelation functiop,(t) = o3exd —t%/(4t2)] and damping and %,,(0)>0 (presence of an effective dampjng
power spectral density=exp( w’t2)2\/7t.of with 0o=0.1. We
start from the initial conditionv(t=0)=v,. The solid lines stand
for t;=1 and the dashes lines foy=0.5. The thick lines represent
the theoretical solutions,, while the thin lines are the numerical We assume in this section that,(0)=0. We may think
solutions. at the case wherm is the time derivativen’ of some sta-

tionary processv with continuously differentiable realiza-
which is negative. Thus the kink is slowing down and be-tions, autocorrelation functiory,,, and power spectral den-
comes wider. It eventually stops at some finite distaxnge  sity ¥,,. The autocorrelation functions @f andm are then
This distance can be computed numerically from the ODEelated through the identity
(32), and in the case when the initial kink velocity is small,
we can compute the explicit expression YD) = (W ()W (s+1)) = —(W(S)W'(s+1)) = — ¥ (1),

A. Dissipation without effective damping

160, o so that their respective power spectral densities satisfy
Xg=——" Ezzf Ym(V1+K2)dk. ) .
T 0 Ym(@) =0 yy(w).

It can be shown that these two behaviors are the only oneg/e then get that, with probability that goes to 1eas0, the
that can be observed. More exactly, for a given power specscattered wave at tintés? consists of one kink with velocity
trum %, there exists a critical value. of the initial kink  2(t) [and width 1—v?(t)?] and radiation. The process
velocity vq such that, ifvg>v, then the velocity goes to 1, (v*(t)), o) converges in probability to the deterministic
while if vo<v, then the velocity decays to 0 and the kink function (v|(t));. o} Which satisfies the ordinary differen-

stops. tial equation

These theoretical predictions are confirmed by the nu-
merical simulations that we carried o{gee Fig. 4. dv,

Gt =F@), (36
VIl. TIME RANDOM DAMPING
where

We now address the case of a random damping. We con-
sider that the damping has zero mean, and we analyze the (1-v?)%2 (=
effective influence of this damping onto the kink. The ques- Flv)=- TJ wP(k)dk, (37

tion whether the kink takes benefit or not of the damping

fluctuations is not obvious. We are going to show that théang p(k) is the scattered momentum density per unit time:
answer is not unique and strongly depends on the spectral

property of the damping process. Let us consider K 4
P(K) = Y V1T K2 —kv) i
m .
R(u)=m(t)u,. (35) V1+Kk? coshtky1—v?m/2)?
(38)
Note that this perturbation gives rise to a computable change ) ) )
of the total momentum As pointed out above, a very natural question from which we
could expect a simple answer is the following: what is the
P(t)=P(0)exd —Mq4(t)], total effect of this zero-mean dissipation? Surprisingly, the
answer depends on the coherence time of the prongaad
where more generally on its power spectral density.
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For short coherence time, we can expapdas y(w) 0.8y
=aw? while |o|t;<1, wherea= [t?y,(t)dt/2= [ y,,(t)dt
>0. Then for any wave numbére (0,[(1+v)t.] 1)

47k%v®

coshk\1—v2m/2)2’ ] wim J ik
so tha,ifo <18/ & T

P(k)+P(—K)=—a

velocity

Fo) (1—112)3/2 J“dk wk%y® av®
U o e—— a = —
2 o coshky1—v?m/2)? 3
02 ‘ ‘ ‘ -
which is positive. Thus the kink is speeding up and becomes (&) ° 1000 2000 3000 4000
narrower. Note that, ifue(1—8t§/7r2,1), then the above 0.8¢
expansion is not valid anymore and one should take into 05

account the complete expressidi33) and (38).

For long coherence time, the integral in E7) concen- _ '
trates around the wave number=v/+/1—v? which is such
that \1+k?—kv is minimal. Accordingly

o
3
—~
1

it

o
j2)
[}

compensated velocity
o o
= 2
3

o

f I

(1_U2)3/2 ’7TU5 J<w
YW1+ K2 —kv)dk
8 coslv 7/2)? w)/m( )

which is negative. Thus the kink is slowing down and be-

comes wider. ‘ ‘ ‘ ,
In Fig. 4 we compare numerical simulations with the the- b) 0 1000 2000 3000 4000

oretical predictions in the case=w’ wherew is a station-

ary random process with Gaussian statistics, Gaussian auto- FIG. 5. Kink velocity as a function of time. The perturbation

correlation functiony,,(t) = exq—t2/(4t§)] with coherence model isR(u) =m(t)u, with m a Gaussian process with zero mean

time t.. The curve that stands for the kink velocity is ran- and autocorrelation function,(t)= o5[1—t%/(2t2) Jexd—t¥(4t2)]

domly modulated at time scale 1. Indeed the total momenturand power spectral density= w?exp(—w’dd/mt3o3 with o

F(v)=-

o
w

is preserved in the asymptotic framewark>0, but fore>0 =0.1. We start from the initial condition(t=0)=uv,. Picture a
plot compare the theoretical velocities (thick lines with the nu-
P(t)="Poexp|—e[w(t)—w(0)]}, merical velocities ,,, (thin lines. In (b) we compare the theoret-

ical velocities with the compensated numerical velocities defined by
Ucomp- This allows us to get rid of the fast oscillations whileis

Viocal(tot At) =v(to){v(te)®+[1—v(to)?] close tov,.

which in turn involve local fluctuations of the kink velocity

X ex 2eW(to+At) — 2ew(t) ]}~ 2 The process(v®(t)).jo7; converges in probability to the
These local fluctuationgof amplitude~¢) involve the ob- random function(v|(t))ico,r) Which satisfies thetochastic
served short-scale modulations observed in Fig).5How-  differential equation
ever thesg fluctuations have no i[nzportke‘l.n(k:]elwhen wedcobnsider
he long-tim havi | which is im _
tqus.c()SEQS)t—(3g).bIe:uz?thgsﬁlntosrce:f1 ﬁswe) recocrd r?umgr(i)s:”y t)k:e dv|=F(v|)dt—a(l_vg)l/2voe TMOdWe,  v1(0)=vo,
values of the accumulated dissipatiag,, and plot the nu- (39)
merical velocityv,,, divided by the local fluctuations,

(1_02)3/2

whereF(v) is given by Eqs(37) and(38) and O stands for
vcomp(t)::vnum(t){v§+(1—v(2)) the Stratonovich integral. In case of a white noigg(t)
—12 = o2 5(t) the scattered momentum density is odd, so we have
Xexg 2eWnym(t) —2eW,,(0) 1}~ 74 F(v)=0. As a consequence the solution of the stochastic
we get a smooth curve that follows the asymptotic formulaglifferential equation has a closed-form expression
(36)—(38) as shown in Fig. ).
o) =volvg+(1-vg)exp2oW) ]2 (40)
B. Dissipation with effective damping We could have obtained this expression by a more direct
We assume in this section th3t,(0)>0 and setoc  technique based on a collective-coordinate approach. How-
=J¥m(0). Wethen get that, with probability that goes to 1 ever the application of this technique gives expressith
ase—0, the scattered wave at tiniés? consists of one kink  as a result whatever the power spectral density of the damp-
with velocity v®(t) [and width 1—v?(t)?] and radiation. ing fluctuationsm, because this approach neglects the radia-
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tive effects. The above analysis shows that Ef) holds 8 —— 002

true only in case of short-correlation noise, and that the ra- 7 e To02 |
diative effects become truly important as the correlation time T T=2 |
increases and the power spectral den$ity cannot be as- | L S T=20 |
similated to a flat spectrum.
Note that, in the white-noise case, a closed-form expres- 5‘;
sion for the probability density function af, can be com- L ]
. o7 4
puted: ; ]
3r: H

pi(v)= e A

t V2moltu(1—v?) e B
1 v(z) 1-v? 06 R e— 08 = 1

_ 2 :
Xexp{ 802t|n (1_03 2 1,013

FIG. 6. Probability density function of the velocity for different
normalized timed = ¢%t. The perturbation model im(t)u,, where
m is a white noise with covariance functiarf 8(t). We start from
As o?t>1, the probability density function becomes close tothe initial conditionv (T=0)=v.
two Dirac masses with equal weights 1/2vat0 andv=1

(see Fig. 6. the kink velocity decays and its width increases. This is the
case for many realistic perturbation models with position-
dependent coefficients. However we have also exhibited
some time-dependent models where our analysis shows that
We have studied the propagation of a kink by a randonthe kink is speeded up and becomes narrow.

sine-Gordon equation by applying the inverse scattering We have focused our attention on the role of the correla-
transform. Our method can be applied to a large class dfion length/time of the noise. The qualitative conclusion of
random perturbations that are stationary and ergodic. Ththis study is that time random perturbations with short coher-
only but important condition is that some integral of motion ence time involve a speeding-up and a narrowing of the kink,
should be preserved by the perturbation, or else that it could/hile time random perturbations with long coherence time
be a priori computed. Indeed, if the amount of scatteredmake the kink slow down and broaden. This is true in par-
radiation can be estimated in very great generality, the feedicular for a stochastic damping. The importance of the inter-
back of the radiative scattering onto the kink evolution isplay of the correlation length of the perturbation and the
imposed by the underlying conservation law and it stronglycharacteristic lengths of kinks may be seen as the manifesta-
depends on the nature of the conserved quantity. If the ertion of the general phenomenon which has been termed
ergy or some modified form of the energy is preserved, thetength-scale competitioi.

(41)
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