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Length-scale competition for the sine-Gordon kink in a random environment

J. Garnier*
Laboratoire de Statistique et Probabilite´s, Universite´ Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 4, France
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This paper deals with the transmission of a kink in a random medium described by a randomly perturbed
sine-Gordon equation. Different kinds of perturbations are addressed, with time or spatial random fluctuations,
with or without damping. We derive effective evolution equations for the kink velocity and width by applying
a perturbation theory of the inverse scattering transform and limit theorems of stochastic calculus. Results are
very different compared to a randomly perturbed nonlinear Schro¨dinger equation. The effect of a random
perturbation is shown to depend strongly on the interplay of the correlation length of the perturbation and the
kink width.
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I. INTRODUCTION

The sine-Gordon~SG! equation models many application
in solid-state physics.1 As an important example we ma
think at long Josephson junctions~LJJ’s! which received new
interest with the appearance of high-temperat
superconductors.2 The SG equation is also a paradigm for t
study of topological kinks. A realistic SG model should al
include small random fluctuations of the parameters of
equation. The study of the soliton dynamics driven by sm
perturbations has attracted much attention. Kink dynam
along nonlinear random systems can be studied by usin
collective-coordinate approach.3–8 The kink is treated as a
quasiparticle and the solution is sought in the form of a k
with slowly varying parameters. Substituting this ansatz i
a conservation law establishes a set of ordinary differen
equations for these parameters. This approach can be g
alized to nonintegrable systems9 and is valid while radiative
losses are negligible. A two-stage scheme was propose
McLaughlin and Scott10 where the authors first comput
slow modulations of the kink parameters and then derive
first-order correction by a constructed radiative Green’s fu
tion. This work was further extended to give analytical re
resentation of the complicated Green’s function.11 Based on
the method of separation of variables, a direct approac
the study of soliton perturbations has been developed by
et al.12 and Tang and Wang,13 where the solution is expande
in power series with the leading-order term being the origi
solution, and the higher-order terms being derived throug
set of linearized equations.

A powerful approach to the study of soliton dynami
under random perturbations is perturbation theory based
the inverse scattering transform~IST!.14–16 It is well
known17 that the solution of the direct-scattering transfo
for a linear operator connected with the Lax pair of a no
linear evolution equation yields a set of scattering data. T
discrete spectrum describes localized states while the
tinuous spectrum describes dispersive waves. The spec
is conserved in time in case of an exact integrable syst
which implies in particular that the solitons and the disp
sive waves do not interact. In the presence of perturbat
the evolutions of the scattering data are coupled and ob
closed form but complicated system of equations. Us
0163-1829/2003/68~13!/134302~11!/$20.00 68 1343
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these equations an iterative scheme was proposed to c
late the solution by successive approximations.14,15 This
method is efficient when dealing with short-time dynam
or very small perturbations, so that the expansion of the
lution at first or second order is sufficient to describe t
soliton dynamics.18 For long-time dynamics, when the co
rective terms corresponding to the radiation emitted by
soliton become of the same order of magnitude as the so
term, few results are available.

In this paper we discuss general types of perturbati
and proceed under a different asymptotic framework. O
main contribution is that we use the inverse scattering tra
form so as to take into account both the variations of
soliton part and the radiative part of the wave. Both effe
and their interplay are important, especially when the cor
lation length of the perturbation is of the same order as
soliton width. The interaction of different length scales is
important issue in localization theory for wave propagati
in linear media,19,20 so the relationship of the soliton widt
and the correlation length of the perturbation is expected
have a fundamental effect on the questions we are tryin
answer. Our approach is based on a separation of scales
nique ~between the fast oscillations of the kink paramet
and the slow emission of radiation! and on the existence o
conservation laws. We consider the influence of small r
dom perturbations and aim at reporting the possi
asymptotic behaviors when the amplitudes of the rand
fluctuations are small while the size of the system is la
enough so that an evolution of the order of 1 of the solit
and radiation is observed. The effective dynamics for
soliton width and velocity can then be computed.

II. THE HOMOGENEOUS SINE-GORDON EQUATION

The equation we consider in this paper is the SG equa

utt2uxx1sin~u!50, ~1!

which governs the evolution of a real fieldu. The subscripts
x and t stand for partial derivatives with respect to positio
and time, respectively. This integrable equation suppo
moving nonlinear excitations in the form of kinks, so we c
study the effects of various perturbations with the kno
analytic behavior of the unperturbed dynamics. We begin
©2003 The American Physical Society02-1
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a short review of the inverse scattering transform applied
the SG equation. Details of the theory can be found for
stance in the review by Manakovet al.17

A. Direct transform: The scattering problem

The Lax commutative representation of the SG equa
is @L,A#50 with

L5
]

]x
2

i

2 F S l2
cos~u!

4l Ds32
sin~u!

4l
s21

ux2ut

2
s1G ,

A5
]

]t
1

i

2 F S l1
cos~u!

4l Ds31
sin~u!

4l
s21

ux2ut

2
s1G ,

where thes i , i 51,2,3, are the Pauli matrices

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D ,

and lPR1 is the real spectral parameter. The scatter
problem for the operatorL under the conditions thatu
→0mod 2p and ut→0 as uxu→` puts into evidence the
existence of two fundamental Jost functions that are defi
as the solutions ofL f 50 that satisfy the following boundar
conditions at2 and1`:

c~x,l! .
x→1`S 1

0D eik(l)x/2, f~x,l! .
x→2`S 0

1D e2 ik(l)x/2,

where the wave numberk is given by

k~l!5l2
1

4l
.

If we denote by .̄the involution operator that turns a ro
vectorf into the row vectorf̄ª(2 f 2* , f 1* )T, then it turns out

that c̄ is also a solution ofLc̄50. Furthermorec andc̄ are
linearly independent and form a base of the space of
solutions ofL f 50. It can then be proved that the Jost fun
tions are related by

f~x,l!5a~l!c̄~x,l!1b~l!c~x,l!, ~2!

c~x,l!52a~l!f̄~x,l!1b* ~l!f~x,l!. ~3!

Injecting the second equality into the first one, we also
hibit the following conservation relation:

ua~l!u21ub~l!u251. ~4!

Using Lc50 we get two more conservation relations th
concern the Euclidian norms of the Jost functionsc andf:

uc1~x,l!u21uc2~x,l!u251, uf1~x,l!u21uf2~x,l!u251.

Multiplying Eq. ~2! by the vectorc̄* , we get an explicit
representation of the coefficienta as the Wronskian ofc
andf:

a~l!5W~c,f!5c1~x,l!f2~x,l!2c2~x,l!f1~x,l!.
~5!
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Additional symmetry identities are

c1~x,l!5c1* ~x,2l!, c2~x,l!52c2* ~x,2l!,

f1~x,l!52f1* ~x,2l!, f2~x,l!5f2* ~x,2l!,

a~l!5a* ~2l!, b~l!52b* ~2l!.

Besidesc exp@2ik(l)x/2# andf exp@ik(l)x/2# can be ana-
lytically continued into the upper complex half plan
Im~l!>0 where they have no singularity. From Eq.~5! we
can define an analytic continuation ofa(l) into the upper
complex half plane. A noticeable feature then appears. Ifl j
is a zero ofa(l), then f and g are linearly dependent, s
there exists a coefficientr r such thatf(x,l j )5r jc(x,l j ).
The corresponding eigenfunction is bounded and dec
exponentially asx→1` ~becauseucu;e2Im l j x) and asx
→2` ~becauseufu;e1Im l j x). Thusl j is an element of the
point spectrum ofL. It can then be proved that the s
„a(l),b(l),l j ,r j ,a8(l j )… characterizes the Jost function
f andc and the solutionu.

B. Time evolutions of the scattering data

The time equations for the scattering data are

a~ t,l!5a~ t0 ,l!, lPR1, ~6!

b~ t,l!5b~ t0 ,l!exp@2 iv~l!~ t2t0!#, lPR1, ~7!

r j~ t !5r j~ t0!exp@2 iv~l j !~ t2t0!#, j 51, . . . ,N, ~8!

wherev(l)5l11/(4l). Note that„k(l),v(l)… obeys the
dispersion relation2v21k21150 of the linearized SG
equation.

C. The inverse scattering transform

The inverse transform is essentially based on the res
tion of the linear integrodifferential Gelfand-Levitan
Marchenko equation. The closed set of equations for
function c reads

c̄~x,l!exp@ ik~l!x/2#

5S 0

1D 1(
j 51

N
r j

a8~l j !

c~x,l j !

l2l j
exp@ ik~l j !x/2#

1
1

2ipE2`

`

dl8
b

a
~l8!

c~x,l8!

l82l1 i0
exp@ ik~l8!x/2#,

c̄~x,l l !exp@ ik~l l !x/2#

5S 0

1D 1(
j 51

N
r j

a8~l j !

c~x,l j !

l l* 2l j

exp@ ik~l j !x/2#

1
1

2ipE2`

`

dl8
b

a
~l8!

c~x,l8!

l82l l*
exp@ ik~l8!x/2#.

Given the set of scattering data,
2-2
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cos~u/2!5~21!u(1`)/(2p)S 12(
j 51

N
r j

l ja8~l j !
c2~x,l j !

3exp@ ik~l j !x/2#

1
1

2ipE2`

` dl

l

b~l!

a~l!
c2~x,l!exp@ ik~l!x/2# D .

D. Kink

The so-called kinks are solutions of the SG equation t
propagate at constant velocities without deformation:

us~x,t !54 arctanFexpS x2vt

A12v2D G . ~9!

Note that the soliton velocityvP(0,1) also completely char
acterizes the soliton widthA12v2. Accordingly the soliton
is all the narrower as its velocity is larger. In terms of IST t
kink corresponds to the discrete eigenvaluels5 in, where

n5
1

2
A11v

12v
.

The kink has the corresponding Jost functions

cs~x,l!5
exp@ ik~l!x/2#

l1 in S l1 in tanh~z!

nsech~z!
D ,

fs~x,l!5
exp@2 ik~l!x/2#

l1 in S 2nsech~z!

l2 in tanh~z!
D ,

and scattering data

as~l!5
l2 in

l1 in
, bs~l!50, rs5 iexpS vt

A12v2D .

In the LJJ framework the kink represents a fluxon, i.e.
magnetic flux quantum.

E. Conserved quantities

Conserved quantities can be worked out as in any in
grable system. The momentum

P52E
2`

`

utuxdx ~10!

and the energy~Hamiltonian!

E5E
2`

` 1

2
ut

21
1

2
ux

21@12cos~u!#dx ~11!

are two of the infinite number of conserved quantities for
sine-Gordon equation. They can also be expressed in te
of the scattering data as

P5(
j 51

N
8v i

A12v i
2

2
1

pE0

`

~42l22!ln~ uau2!~l!dl,

~12!
13430
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E5(
j 51

N
8

A12v i
2

2
1

pE0

`

~41l22!ln~ uau2!~l!dl. ~13!

III. PERTURBATION

We consider a perturbed sine-Gordon equation with
nonzero right-hand side:

utt1uxx2sin~u!5«R~u!~ t,x!. ~14!

The small parameter«P~0,1! characterizes the amplitude o
the perturbation which has the general form

R~u!5 f ~u,m!,

where f is a local function ofu @i.e., f (u,m)(t,x) depends
only onu and its partial derivatives evaluated at point (t,x)]
that depends also on a driving random processm. We con-
sider either time random perturbations or spatially rand
perturbations in the sense that eitherm is a time-dependen
random process or a space-dependent random process
example of the first case isR(u)5m(t)uxx , while an ex-
ample of a spatially random perturbation isR(u)5m(x)uxx
or elseR(u)5„m(x)ux…x .

In case of time random perturbations the driving proc
„m(t)…tPR is assumed to be a zero-mean, stationary and
godic process. The exact technical condition is thatm should
be ‘‘f mixing’’ ~in the sense discussed by Kushner,21 in Sec.
4-6-2! with fPL1/2. The autocorrelation function ofm is
denoted by

gm~ t !ª^m~0!m~ t !&5^m~ t8!m~ t81t !&, ~15!

where the brackets stand for the statistical average with
spect to the stationary distribution ofm. The f-mixing con-
dition with fPL1/2 means in particular that the perturb
tion has enough decorrelation properties so that the inte
* ugm(t)u1/2dt is finite. We can then introduce the Fourie
transform of the autocorrelation function of the perturb
tion m,

ĝm~v!ªE
2`

`

gm~ t !cos~vt !dt, ~16!

which is non-negative real valued since it is proportional
the power spectral density by the Wiener-Khintchi
theorem.22 For instance, if the perturbationm is a white noise
gm(t)5s2d(t), then the spectrum of the perturbation is fl
and given byĝm(v)5s2 for any v. In case of spatially
random perturbations similar assumptions are made on
random process„m(x)…xPR .

We investigate the propagation of a kink driven by t
perturbation«R. Our method is based on the inverse scatt
ing transform. The random perturbation induces variations
the spectral data. Calculating these changes we are ab
find the effective evolution of the field and calculate t
characteristic parameters of the wave. We are intereste
the effective dynamics of the kink propagating over lo
timesT/«2. The total energy or the total momentum are co
served by the addressed perturbations, but the discrete
2-3
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continuous components evolve during the propagation.
evolution of the continuous component corresponding to
diation can be found from the evolution equations of the J
coefficients. Note that the spectral density of the radiat
power has already been obtained for various types of reg
perturbations23,24 and then extended to random perturb
tions.25 The evolution of the kink velocity and width can the
be derived from the conservation laws.

We now describe the evolutions of the Jost coefficienta
andb during the propagation. They satisfy the following e
act equations:26

]a

]t
52

i«

4 E2`

`

dxR~u!~ t,x!~c1f12c2f2!, ~17!

]b

]t
52 iv~l!b2

i«

4 E2`

`

dxR~u!~ t,x!~c1* f21c2* f1!.

~18!

The momentum and energy obey the equations

dP
dt

52«E
2`

`

R~u!~ t,x!ux~ t,x!dx, ~19!

dE
dt

5«E
2`

`

R~u!~ t,x!ut~ t,x!dx. ~20!

IV. SPATIALLY RANDOM NONLINEARITY

A. The perturbed model

We consider in this section that the nonlinear term of
SG equation is spatially randomly perturbed:

R~u!5m~x!sin~u!. ~21!

In the framework of the LJJ, this corresponds to a rand
variation of the maximum Josephson current density.27 The
perturbed Hamiltonian of the system isE01«E1, where

E152E
2`

`

@12cos~u!#m~x!dx.

We then get that, with probability that goes to 1 as«→0, the
scattered wave at timet/«2 consists of one kink with velocity
v«(t) @and width A12v«(t)2] and radiation. The proces
„v«(t)…tP[0,T] converges in probability as«→0 to the deter-
ministic function „v l(t)…tP[0,T] which satisfies the ordinary
differential equation

dv l

dt
5F~v l !, ~22!

where

F~v !52
~12v2!3/2

8v E
2`

`

dkE~k! ~23!

andE(k) is the scattered energy density per unit time,
13430
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E~k!5ĝmS Ak211

v
2kD p~12v2!2

4v3

3

S Ak211

v
2kD 2

coshS Ak211
A12v2

v

p

2
D 2 . ~24!

Note thatF(v) is always nonpositive which means that th
kink is slowing down. Note that the soliton width is give
asymptotically byA12v l

2(t), which means that the soliton
also broadens.

B. Derivation of the effective evolution equation

The proofs of the results stated in the above section
well as in the forthcoming sections are based on a pertur
IST. We outline the main steps of the analysis that follo
the strategy developed by Garnier28 for the nonlinear
Schrödinger equation and we underline the key points.

1. A priori estimates

The total energyE5E01«E1 is preserved by the per
turbed SG equation. First assume thatm is a bounded pro-
cess. Sobolev inequalities then prove that theH1 norm and
thus theL` norm of @12cos(u)#(t,.) are uniformly bounded
with respect totPR and «P~0,1!. This in turn implies that
«E1 can be bounded uniformly with respect totPR by
2E0imi`«. Let us now assume thatm is not bounded, but is
a Gaussian process. Then supxP[0,L/«2] um(x)u<K«u ln(«)u1/2

and«E1 can be bounded uniformly with respect totPR by
2E0K«u ln(«)u1/2.

2. Prove the stability of the zero of the Jost coefficienta

The zero corresponds to the kink. This part strongly rel
on the analytical properties ofa in the upper complex half
plane. We apply Rouche´’s theorem so as to prove that th
number of zeros is constant. This method is efficient to pro
that the zero is preserved, but it does not bring control on
precise location in the upper half plane. This step is
sufficient to compute the variations of the kink paramete

3. Compute the radiation

The Jost coefficientsa andb satisfy the coupled equation
~17! and ~18!. In a first approximation we can substitute fo
f, c, andu in the right-hand sides of Eqs.~17! and~18! the
corresponding expressionsfs , cs , and us for the unper-
turbed kink:

]b

]t
52 iv~l!b2

i«

4~l21n2!
E

2`

`

dxR~us!

3Fl22n222inl tanhS x2vt

A12v2D Gexp@2 ik~l!x#.
2-4
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From these equations we can estimate the amount of ra
tion which is emitted during some time interval in terms
energy. We are then able to deduce the evolution equatio
the kink velocity by using the conservation of the total e
ergy. For times of the order ofO(1), sinceEtot is conserved,
the variationsD~¯! of the relevant quantities are linked to
gether by the relations

05DS 8

A12v2D 1E
0

`

DE~l!dl1«D~E1!, ~25!

whereE(l) is the scattered energy density per unit time:

E~l!52p21~41l22!ln~ uau2!~l!

5p21~41l22!lnS 11
ubu2

uau2
D ~l!.

DE(l) is of the order of«2, but the last term in the expres
sion of the total energy as well as in the balance identity~25!
is of the order of«. Thus our strategy is not efficient fo
estimating the variations of the kink parameters for times
the order of 1. Actually the collective-coordinate approach
the variational approach aims at dealing with this regime
taking care ofE1. Let us now consider times of the order
«22. DE(l) is now of the order of 1, while the last term i
the expression of the total energy is of the order of« by the
a priori estimates. Thus we can efficiently compute the lon
time behavior of the kink parameters in the asympto
framework«→0, when the last term in the expression of t
total energy is uniformly negligible. Applying probabilisti
limit theorems~approximation-diffusion! establishes that the
kink parameters converge in probability to nonrandom fu
tions which satisfy

F~v !52
~12v2!3/2

8v E
0

`

dlE~l!,

where E(l) is the mean scattered energy density per u
time:

E~l!5ĝmS l
12v

v
1

1

4l

11v

v
D p

16

3

~41l22!S l21
1

4

11v

12v
D 2

l2coshF S l1
1

4l
DA12v2

v

p

2
G 2

3
~12v2!2~12v !2

v5
.

Performing the change of variablesl°kªl21/(4l) estab-
lishes the result.

4. Compute the form of the scattered wave

By applying the inverse scattering transform we find th
the total wave is given by the sum of a kink and of radiatio
13430
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Radiation looks like any linear dispersive wave far from t
kink, but it has complex structure in the neighborhood of t
kink. Roughly speaking, the support of the radiation lies
an interval with length of the order of«22. Since theL2

norm of 12cos(u) is bounded, we can expect that the am
plitude of the radiation is of the order of« around 0 behind
the kink and around 2p in front of the kink. It can be rigor-
ously proved that the amplitude of the radiation can
bounded above byK«u ln «u.28

C. Numerical simulations

To check our theoretical predictions we perform full n
merical simulations of Eqs.~14! and ~21!. For this purpose
Eqs. ~14! and ~21! are transformed into a set of differenc
equations in the spatial domain~with second-order accuracy!
and we apply an explicit sixth-order Runge-Kutta schem
We use a shifting computational domain which is alwa
centered at the center of mass of the solution. Moreover
impose boundaries of this domain which absorb outgo
waves. The reader can observe in Fig. 1 a good agreemen
between the numerical simulations and the theoretical p
dictions. We would like to comment on the oscillations of t

FIG. 1. Kink velocity as a function of time. The perturbatio
model isR(u)5m(x)sin(u) with m a Gaussian process with zer
mean and autocorrelation functiongm(x)5s0

2exp@2x2/(4lc
2)# and

power spectral densityĝ(k)5exp(2k2lc
2)2Ap l cs0

2 with s050.05.
We start from the initial conditionv(t50)5v0 and consider differ-
ent correlation lengthsl c . The thick lines represent the theoretic
solutionsv l , while the thin lines are the numerical solutions.
2-5
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velocity that can be observed. Indeed, in the configuratio
hand, the Hamiltonian is preserved, which also reads as

E05
8

A12v~ t !2
2

1

pE0

`

~41l22!ln~ uau2!~ t,l!dl

1«E
2`

`

m~x!$cos@u0~x!#2cos@u~ t,x!#% dx,

whereu0 is the initial condition. The last term of the righ
hand side is negligible in the asymptotic framework«→0,
but when«.0 it gives rise to local fluctuations of the un
perturbed Hamiltonian as defined by Eq.~11!, hence local
fluctuations of the velocity whose amplitudes are of the or
of « over times of the order of 1~the important point for the
asymptotic analysis is that they are still of the order of« for
times of the order of«22). The fluctuations are all the mor
important as the correlation length of the medium is of
same order or even larger than the kink width@see Fig. 1~a!#.
They are smoothed when the correlation length is m
smaller than the kink width@see Fig. 1~b!#.

V. SPATIALLY RANDOM DISPERSION

A. First model: A simple Hamiltonian form

In the first part of this section devoted to spatially rando
dispersion we analyze the case where the perturbation r

R~u!5„m~x!ux…x . ~26!

The perturbed Hamiltonian isE01«E1, where

E15
1

2E2`

`

m~x!ux
2dx.

We get the same conclusion as in the case of the nonli
perturbation, by taking care to define the scattered ene
density per unit time as

E~k!5ĝmS Ak211

v
2kD p

4v3

S Ak211

v
2kD 2

coshS Ak211
A12v2

v

p

2
D 2 .

~27!

Note that this is the same expression as for the spat
random nonlinearity, up to a factor (12v2)2.

B. A model without radiation

Let us now consider the following perturbation model:

R~u!5„m~x!ux…x1m~x!uxx5mxux12muxx . ~28!

This model preserves the total momentum. Calculati
show that this perturbation gives rise to no radiation:E(k)
[0. This is not at all surprising. Indeed the change
variable
13430
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x°X such that
dX

dx
5A112«m~x! ~29!

is well defined as soon as supxP[0,L/«2] u2m(x)u,1/« which is
always the case in our framework. In this new frame the n
function ũ(t,x)ªu„t,X(x)… satisfies

ũx5A112«m~x!ux ,

ũxx5@112«m~x!#uxx1
«mx~x!

A112«m~x!
ux .

Then the perturbed SG equation reads as

ũtt2ũxx1sin~ ũ!5«mx~x!

3S 1

A112«m~x!
2

1

112«m~x!D ũx .

The perturbation can be expanded as«2m(x)mx(x)ux
1O(«3). For propagation times of the order of«22 this
O(«2) zero-mean perturbation does not involve any mac
scopic ~i.e., of the order of 1! modification of the kink ve-
locity and width.

C. A natural model of spatially random dispersion

Let us finally address the following case:

R~u!5m~x!uxx . ~30!

This model is the most natural model of spatially rando
dispersion. In the LJJ framework it corresponds to fluctu
tions of the inductance of the junction.29 In terms of pertur-
bation analysis this model presents thea priori drawback
that it neither preserves the momentum nor the energy of
solution. Thus it seems not possible to apply our method
this perturbation. However if we perform the change of spa
variable ~29!, then we get that the perturbed SG equati
reads in this new frame as

ũtt2ũxx1sin~ ũ!5«„m~x!ũx…x1negligible terms.

This is our first model~26! up to terms which have negligible
influence for propagation times of the order of«22. The
decay of the kink velocity thus obeys the effective equatio
~23! and ~27! as«→0.

Note that the fact that perturbations~30! and ~26! are
equivalent follows from the second-order dispersion. A thi
order dispersion~such as the one of the Korteweg-de Vri
equation! would have led us to a different conclusion.

D. Numerical simulations

To check our theoretical predictions we have perform
full numerical simulations of Eqs.~14! and ~26!, Eqs. ~14!
and ~28!, and Eqs.~14! and ~30!. Note that the dispersive
perturbation was discretized as follows for the three mod
2-6
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model 1: ~mxu!x5
mj 111mj

2
uj 11

n 1
mj 211mj

2
uj 21

n

2
mj 2112mj1mj 11

2
uj

n ,

model 3:muxx5mj~uj 11
n 1uj 21

n 22uj
n!,

and model 25model 11model 3. Full numerical simulation
for these models show complete agreement with the theo
ical predictions~see Fig. 2!.

VI. TIME RANDOM NONLINEARITY

The perturbation that is addressed in this section is
following:

R~u!5m~ t !sin~u!. ~31!

This perturbation conserves the total momentum. By app
ing the same strategy as in Sec. IV B but using the mom
tum conservation law, we get that, with probability that go
to 1 as«→0, the scattered wave at timet/«2 consists of one
kink with velocity v«(t) @and widthA12v«(t)2] and radia-
tion. The process„v«(t)…tP[0,T] converges in probability as
«→0 to the deterministic function„v l(t)…tP[0,T] which satis-
fies the ordinary differential equation~ODE!

dv l

dt
5F~v l !, ~32!

where

F~v !52
~12v2!3/2

8 E
2`

`

P~k!dk, ~33!

andP(k) is the scattered momentum density per unit tim

FIG. 2. Kink velocity as a function of time. The perturbatio
model is R(u)5m(x)uxx with m a Gaussian process with zer
mean and autocorrelation functiongm(x)5s0

2exp@2x2/(4lc
2)# and

power spectral densityĝ(k)5exp(2k2lc
2)2Ap l cs0

2 with s050.05.
We start from the initial conditionv(t50)5v0. The solid lines
stand for l c51 and the dashes lines forl c50.5. The thick lines
represent the theoretical solutionsv l , while the thin lines are the
numerical solutions.
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P~k!5ĝm~A11k22kv !

3
~Ak2112kv !2

A11k2

pk~12v2!2

4 cosh~kA12v2p/2!2
. ~34!

It appears that the acceleration functionF(v) does not pos-
sess a definite sign, and can be either positive or negativ
shown in Fig. 3. Actually this phenomenon can be stud
analytically and we now show that the sign of the accele
tion function essentially depends on the coherence time
the perturbation. For short-correlation time~in the sense tha
A12v2tc!1), we haveĝ(v).s2 for vtc!1, so

P~k!1P~2k!.2s2
p~12v !2vk2

coshS kA12v2
p

2 D 2 ,

which in turn implies that

F~v !.
~12v2!7/2v

8
s2E

0

`

dk
pk2

cosh~kA12v2p/2!2

5
s2

12
v~12v2!2

which is positive. Thus the kink is speeding up. Its veloc
increases to 1. The kink also becomes narrower. Its w
A12v l

2(t) decays to 0.
For long-correlation time~in the sense thatA12v2tc

@1), the integral in Eq.~33! concentrates around the wav
number kc5v/A12v2 which is such thatA11k22kv is
minimal. And then

F~v !.2
pv~12v2!3/2

32 cosh~vp/2!2E2`

`

ĝm~A11k22kv !dk

FIG. 3. Kink acceleration. The perturbation model isR(u)
5m(t)sin(u) with m a Gaussian process with zero mean and au
correlation functiongm(t)5s0

2exp@2t2/(4tc
2)# and power spectra

densityĝ5exp(2v2tc
2)2Aptcs0

2 with s050.1. The lines represen
the functionsF(v0) as a function of the coherence time.
2-7
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which is negative. Thus the kink is slowing down and b
comes wider. It eventually stops at some finite distancexd .
This distance can be computed numerically from the O
~32!, and in the case when the initial kink velocity is sma
we can compute the explicit expression

xd5
16v0

ps̄2
, s̄25E

0

`

ĝm~A11k2!dk.

It can be shown that these two behaviors are the only o
that can be observed. More exactly, for a given power sp
trum ĝ, there exists a critical valuevc of the initial kink
velocity v0 such that, ifv0.vc , then the velocity goes to 1
while if v0,vc , then the velocity decays to 0 and the kin
stops.

These theoretical predictions are confirmed by the
merical simulations that we carried out~see Fig. 4!.

VII. TIME RANDOM DAMPING

We now address the case of a random damping. We c
sider that the damping has zero mean, and we analyze
effective influence of this damping onto the kink. The que
tion whether the kink takes benefit or not of the damp
fluctuations is not obvious. We are going to show that
answer is not unique and strongly depends on the spe
property of the damping process. Let us consider

R~u!5m~ t !ut . ~35!

Note that this perturbation gives rise to a computable cha
of the total momentum

P~ t !5P~0!exp@2Md~ t !#,

where

FIG. 4. Kink velocity as a function of time. The perturbatio
model isR(u)5m(t)sin(u) with m a Gaussian process with zer
mean and autocorrelation functiongm(t)5s0

2exp@2t2/(4tc
2)# and

power spectral densityĝ5exp(2v2tc
2)2Aptcs0

2 with s050.1. We
start from the initial conditionv(t50)5v0. The solid lines stand
for tc51 and the dashes lines fortc50.5. The thick lines represen
the theoretical solutionsv l , while the thin lines are the numerica
solutions.
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Md~ t !ª«E
0

t

m~s!ds

is the accumulated dissipation. Once this identity is know
we can apply the very same approach as in the prev
sections. There then appears a dichotomy. Indeed the a
cation of a standard diffusion-approximation theorem to
accumulated dissipation shows that in the asymptotic«→0,
the total momentum in the scalet/«2 evolves as

P~ t/«2! →
«→0

P̄~ t !ªP0exp~2sWt!,

where Wt is a standard one-dimensional Brownian moti
and sªAĝm(0). By the Wiener-Khintchine theorem it is
known that ĝm(0) is non-negative. We should then distin
guish between the casesĝm(0)50 ~absence of an effective
damping! andĝm(0).0 ~presence of an effective damping!.

A. Dissipation without effective damping

We assume in this section thatĝm(0)50. We may think
at the case wherem is the time derivativew8 of some sta-
tionary processw with continuously differentiable realiza
tions, autocorrelation functiongw , and power spectral den
sity ĝw . The autocorrelation functions ofw andm are then
related through the identity

gm~ t !5^w8~s!w8~s1t !&52^w~s!w9~s1t !&52gw9 ~ t !,

so that their respective power spectral densities satisfy

ĝm~v!5v2ĝw~v!.

We then get that, with probability that goes to 1 as«→0, the
scattered wave at timet/«2 consists of one kink with velocity
v«(t) @and width A12v«(t)2] and radiation. The proces
„v«(t)…tP[0,T] converges in probability to the determinist
function „v l(t)…tP[0,T] which satisfies the ordinary differen
tial equation

dv l

dt
5F~v l !, ~36!

where

F~v !52
~12v2!3/2

8 E
2`

`

P~k!dk, ~37!

andP(k) is the scattered momentum density per unit tim

P~k!5ĝm~A11k22kv !
k

A11k2

pv4

cosh~kA12v2p/2!2
.

~38!

As pointed out above, a very natural question from which
could expect a simple answer is the following: what is t
total effect of this zero-mean dissipation? Surprisingly, t
answer depends on the coherence time of the processm, and
more generally on its power spectral density.
2-8
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For short coherence time, we can expandĝ as ĝ(v)
.av2 while uvutc,1, wherea5* t2gm(t)dt/25*gw(t)dt
.0. Then for any wave numberkP„0,@(11v)tc#

21
…

P~k!1P~2k!.2a
4pk2v5

cosh~kA12v2p/2!2
,

so that, ifv,128tc
2/p2

F~v !.
~12v2!3/2

2
aE

0

`

dk
pk2v5

cosh~kA12v2p/2!2
5

av5

3

which is positive. Thus the kink is speeding up and becom
narrower. Note that, ifvP(128tc

2/p2,1), then the above
expansion is not valid anymore and one should take
account the complete expressions~37! and ~38!.

For long coherence time, the integral in Eq.~37! concen-
trates around the wave numberkc5v/A12v2 which is such
that A11k22kv is minimal. Accordingly

F~v !.2
~12v2!3/2

8

pv5

cosh~vp/2!2E2`

`

ĝm~A11k22kv !dk

which is negative. Thus the kink is slowing down and b
comes wider.

In Fig. 4 we compare numerical simulations with the th
oretical predictions in the casem5w8 wherew is a station-
ary random process with Gaussian statistics, Gaussian a
correlation functiongw(t)5exp@2t2/(4tc

2)# with coherence
time tc . The curve that stands for the kink velocity is ra
domly modulated at time scale 1. Indeed the total momen
is preserved in the asymptotic framework«→0, but for«.0

P~ t !5P0exp$2«@w~ t !2w~0!#%,

which in turn involve local fluctuations of the kink velocit

v local~ t01Dt !5v~ t0!$v~ t0!21@12v~ t0!2#

3exp@2«w~ t01Dt !22«w~ t0!#%21/2.

These local fluctuations~of amplitude;«! involve the ob-
served short-scale modulations observed in Fig. 5~a!. How-
ever these fluctuations have no importance when we cons
the long-time behavior~at scale«22) which is imposed by
Eqs. ~36!–~38!. Furthermore, if we record numerically th
values of the accumulated dissipationwnum and plot the nu-
merical velocityvnum divided by the local fluctuations,

vcomp~ t !ªvnum~ t !$v0
21~12v0

2!

3exp@2«wnum~ t !22«wnum~0!#%21/2,

we get a smooth curve that follows the asymptotic formu
~36!–~38! as shown in Fig. 5~b!.

B. Dissipation with effective damping

We assume in this section thatĝm(0).0 and sets
5Aĝm(0). We then get that, with probability that goes to
as«→0, the scattered wave at timet/«2 consists of one kink
with velocity v«(t) @and widthA12v«(t)2] and radiation.
13430
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The process„v«(t)…tP[0,T] converges in probability to the
random function„v l(t)…tP[0,T] which satisfies thestochastic
differential equation

dv l5F~v l !dt2s
~12v l

2!3/2

~12v0
2!1/2

v0e2sWtsdWt , v l~0!5v0 ,

~39!

whereF(v) is given by Eqs.~37! and~38! ands stands for
the Stratonovich integral. In case of a white noisegm(t)
5s2d(t) the scattered momentum density is odd, so we h
F(v)50. As a consequence the solution of the stocha
differential equation has a closed-form expression

v l~ t !5v0@v0
21~12v0

2!exp~2sWt!#
21/2. ~40!

We could have obtained this expression by a more dir
technique based on a collective-coordinate approach. H
ever the application of this technique gives expression~40!
as a result whatever the power spectral density of the da
ing fluctuationsm, because this approach neglects the rad

FIG. 5. Kink velocity as a function of time. The perturbatio
model isR(u)5m(t)ut with m a Gaussian process with zero me
and autocorrelation functiongm(t)5s0

2 @12t2/(2tc
2)#exp@2t2/(4tc

2)#
and power spectral densityĝ5v2exp(2v2tc

2)4Aptc
3s0

2 with s0

50.1. We start from the initial conditionv(t50)5v0. Picture a
plot compare the theoretical velocitiesv l ~thick lines! with the nu-
merical velocitiesvnum ~thin lines!. In ~b! we compare the theoret
ical velocities with the compensated numerical velocities defined
vcomp. This allows us to get rid of the fast oscillations whilev l is
close tov0.
2-9
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tive effects. The above analysis shows that Eq.~40! holds
true only in case of short-correlation noise, and that the
diative effects become truly important as the correlation ti
increases and the power spectral densityĝm cannot be as-
similated to a flat spectrum.

Note that, in the white-noise case, a closed-form exp
sion for the probability density function ofv l can be com-
puted:

pt~v !5
1

A2ps2tv~12v2!

3expF2
1

8s2t
ln2S v0

2

12v0
2

12v2

v2 D G1vP[0,1] .

~41!

As s2t@1, the probability density function becomes close
two Dirac masses with equal weights 1/2 atv50 andv51
~see Fig. 6!.

VIII. CONCLUSION

We have studied the propagation of a kink by a rand
sine-Gordon equation by applying the inverse scatter
transform. Our method can be applied to a large class
random perturbations that are stationary and ergodic.
only but important condition is that some integral of moti
should be preserved by the perturbation, or else that it co
be a priori computed. Indeed, if the amount of scatter
radiation can be estimated in very great generality, the fe
back of the radiative scattering onto the kink evolution
imposed by the underlying conservation law and it stron
depends on the nature of the conserved quantity. If the
ergy or some modified form of the energy is preserved, t
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