Instability of a quantum particle induced by a
randomly varying spring coefficient
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Abstract. This paper investigates the evolution of a quantum particle in a
harmonic oscillator whose spring coefficient randomly fluctuates around its
mean value. The perturbations are small, but they act long enough so that
we can solve the problem in the asymptotic framework corresponding to a per-
turbation amplitude which tends to zero and a perturbation duration which
tends to infinity. We describe the effective evolution equation of the state
vector which reads as a stochastic partial differential equation. We exhibit
a closed-form equation for the transition probabilities, which can be inter-
preted in terms of a jump process. Using standard probability tools, we are
then able to compute explicitly the probabilities for observing the different
energy eigenstates and give the exact statistical distribution of the energy of
the particle.
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1. Introduction

This paper is a contribution to the study of time-dependent perturbations of quan-
tum systems. One can find in the literature a lot of work devoted to special types
of perturbations: sudden, adiabatic, periodic, .... [27]. The considered phenomena
are described by a Hamiltonian which is the sum H° + H! of a time-independent
piece H? whose eigenvalue problem has been solved, and of a small time-dependent
perturbation. The typical question one asks is the following. If at ¢ = 0 the system
is in the eigenstate ¢° of H?, what is the probability for it to be observed in a
given eigenstate ? Most results that have been obtained follow a scheme in which
the answers are computed in a perturbation series in powers of H! [27, 21]. We
shall apply a new method for obtaining answers to the above questions, which is
based on the one hand on some rigorous asymptotic theory and on the other hand
on a representation of the evolution of the transition probabilities in terms of a
Markov jump process. In this paper we shall focus on a quadratic perturbation
of the harmonic oscillator, although the method can be applied to more general
situations.
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The quantum harmonic oscillator has been extensively studied because a
lot of systems close to a stable equilibrium can be described by an oscillator or
a collection of decoupled harmonic oscillators [21]. Furthermore modifications of
this model have been investigated, handling by the perturbation theory. Indeed,
even for this simple model it is exceptional to find closed-form expressions, ex-
cept for very particular types of perturbations [17]. Nevertheless rigorous results
have been obtained for time-dependent perturbations of the harmonic oscillator.
Most of them concern periodic driven force [8, 9, 16]. Although the problem is far
less understood in the case of random perturbations, one can find some results
in the literature devoted to systems with randomly time-dependent external driv-
ing force. A general class of quantum systems in Markovian potentials has been
treated in detail [25, 26]. Under suitable conditions on the dynamics of the random
potential, it is shown in Ref. [23] that the spectrum of the quasi-energy operator
is continuous. In Ref. [7] the authors study the long-time stability of oscillators
driven by time-dependent forces originating from dynamical systems with varying
degrees of randomness and focus on the asymptotic energy growth. Recently in
Ref. [13] we have studied the energy density of a charged particle in a harmonic
oscillator driven by a time-dependent homogeneous electric field. In this paper we
consider a particle in a harmonic oscillator whose spring coefficient is not constant
but randomly fluctuates around its mean value. We aim at studying this prob-
lem by a rigorous and non-perturbative method. Our approach is inspired by the
works of Papanicolaou and its co-workers about waves in random media [19, 24].
The first step consists in determining the characteristic scales of the problem at
hand: mean oscillation frequency of the harmonic oscillator, amplitude, coherence
time and duration of the random perturbations. We then study the asymptotic evo-
lution of the state vector in the asymptotic framework based on the separation of
these scales. Our main aim is to exhibit the asymptotic regime which corresponds
to the case where the amplitudes of the random fluctuations go to zero and the
duration of the external perturbation goes to infinity. We then describe explicitly
the effective random evolution of the state vector and the probability transitions.
The paper is organized as follows. In Section 2 we review the main features of the
harmonic oscillator and we formulate the problem at hand in Section 3. In Section
4 we establish a relation between the Lyapunov exponents of the energy of the
quantum harmonic oscillator and that of the classical harmonic oscillator, which
has already been studied. In Sections 5-6 we derive effective evolution equations
for the modal decomposition and for the state vector of the particle. By exploiting
a representation of the evolution of the energy of the particle in terms of a jump
process, we are able to give closed-form expressions for the transition probabilities
in Section 7. Finally we compare the theoretical results with numerical simulations
in Section 8.
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2. The harmonic oscillator

We consider the quantum oscillator, that is to say, a particle of mass M whose
state vector in the coordinate basis obeys the Schrédinger equation [21]:
Bw h? 9%y
8t 2M 022
where w is the oscillation frequency. In order to transform this equation into a
standard and dimensionless form, we multiply the spatial coordinate = by ry* :=
(Mw/h)'/? and the time ¢ by ;' := w, so that (1) now reads:
oy _ 0%

digs =zt 2. (2)

The spectrum of the harmonic oscillator is pure point with state energies (2p+1)/2
and corresponding eigenstates [21]:

+ M a1, (1)

1 i
(@) = T\/MHp(x)e 2, (3)
&@):(4W3£#f. (4)

The family (fp)pen is complete in the following sense [15, Prop. 1.5.7].

Proposition 2.1. 1. The (f,)pen are an orthonormal basis of L*(R, C).
2. (t,x) — e_i2p2+1tfp(a:) is a solution of (2) for any p € N.

We define the eigenstate decomposition as the map © : ¢ € L*(R,C) —
(¢p)pen, where ¢, are the coefficients of the expansion of 9 in the basis (f,):

z%z/h@m@m_ (5)
R

By Proposition 2.1, © is an isometry from L?(R,C) onto 2, the space of all the
sequences (cp)pen from N into C which are squared integrable. In view of the
fundamental postulates of the quantum mechanics, if 9 is the state vector of the
particle, then the measurement of the energy will yield the eigenvalue (2p + 1)/2
with probability |©(),[2.

3. Evolution driven by time-dependent forces

Suppose that the spring coefficient is shaken so that it fluctuates randomly with
respect to its mean value. The problem is to compute the manner in which this
randomness distributes th population from the initial (low) energy state into other
(high) ones. The perturbed equation which governs the evolution of the state vector
is then:
52
2i %—”f = _6—15 + 2%(1 4+ em(t))y. (6)
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We assume that the amplitudes of the fluctuations are of order ¢ <« 1. The real-
valued function m is assumed to be zero-mean, time-stationary and time-ergodic
process. More exactly the forthcoming results require that the random process t —
m(t) fulfills the technical mixing condition “m is ¢-mixing, with ¢ € LY/2(R*+)”
(see [20, Section 4-6-2]).

The initial state vector at time ¢ = 0 is vy, which corresponds to the decompo-
sition ¢(0) = ©(1o). Since O is an isometry, it is equivalent to study the evolution
of the expansion of ¢ in the family of eigenstates (fp)pen, i-e. the corresponding
normalized coefficients c:

j2p41,

((t, ))pe 5, (7)
Jem T (). (8)

cp(t) =0
"p(ta 'Z') = Z Cp’ (t
p'=0

Substituting the expression (8) into Eq. (6) and integrating with respect to f,(z)dz
we get the equation that governs the evolution of ¢:

dc i 9 ;
d_tp = ezm(t) (\/chp_ze %t 1 (2p+ ey + Fp+ch+262’t) , (9)

where the coefficient I',, is simply:

Ip=plp-1).

The coefficients E[|c,|?(t)] represent the probabilities that the particle driven by
the random process emz? be observed in the state f, at time ¢. Equivalently, one
can say that the measurement of the energy at time :

1 (|0
E(t)—i/R(%

will yield the eigenvalue p + 1/2 with probability E[|c, |?(¢)]. This implies that the
expected value of the energy can be expressed as:

+ $2|¢|2) (t, z)dz (10)

ELE()] = 5 + 3 pElle, (5] (1)

4. Lyapunov exponents of the energy

We mention in the introduction that there is a close relation between the classical
and quantum harmonic oscillators. In particular their energy growths may be
related by the following way. As pointed out in [18], a state vector ¢ can be
characterized by its Wigner transform:

Week) = [ dyi o+ p)ista - e,
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Although W is not necessarily positive, it possesses some properties of a local
density of state and in particular the following identities hold true:

W
ox

/ Wz, bk = ().

The Wigner transform W(t,z,k) of the state vector ¢(¢) satisfies the transport
equation:

2

()| »

/ BW(z, k)dk = ‘

oW ow ow

hAANENES Sdad 1 hid

ot k % + z(1 + em(t)) 5%
which coincides with the classical Liouville equation. The solution can be expressed
as:

W(ta z, k) = W(O’ X(_ta z, k)a K(_ta z, k));

where (X, K) is the classical harmonic oscillator whose time-dependent Hamilton-
ian is H = £2 4 (14 em(t)) X2

X
5 = KO, X(0) ==, (12)
%_I: = —(L+em®)X(), K(0)= k. (13)

X(—t,z,k), K(—t,z,k) are the initial conditions that evolve into (z, k) at time ¢.
The energy of the quantum particle is therefore:

1
E(t) = 5 / dedk(z® + E*)W(t, z, k)
1 2 2
= 3 dzdk (X (t,z,k)” + K(t,2,k)*) W(0,z, k).
Introducing polar coordinates R(t,6p) and 6(¢,6p):

X(t,z, k) = a2+ k2R(t,60) cos(0(t,0o)),
K(t,z,k) = +z2+ k2R(t,60)sin(6(t,6y)),

6o = arctan(k/z),
the system (4) is equivalent to:
OR sin(26) .
E = —Rem(t) 2 5 R(OJGO) - 17
1 2
9B (1t em) %) 06 0) = 6o,
ot 2
The energy of the quantum particle then writes:
1 27
E(t) =5 R(t7 00)2p(00)d007

2 Jo
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where p(f) is the density with respect to the Lebesgue measure over [—m, 7] of
arctan(k/x) under W(0, z, k):

p(6) :/ W(0, r cos(8), r sin(f))rdr.
0
If the initial state is the fundamental eigenstate, then p(6p) = 1/(2w). Under

appropriate assumptions on the law of the process m, [4, Theorem 4] proves that
there exists an analytic function ¢ — g(g) such that:

1
i — q =
Jim TmE(R0) = g(0) (14)
Jim %ln R(t,0) = 4¢'(0) almost surely. (15)

Moreover the convergence is uniform over 8 € [—m, «]. In [4] this theorem is stated
for piecewise constant process m, various versions exist which yield the same con-
clusion for many different classes of processes m [12, 28, 6, 2]. Thus the energy of
the quantum particle satisfies:

.1

lim ~InE[E®)] = 9(2), (16)
Jim %ln E(t) = 24'(0) almost surely. (17)
—00

Nevertheless the Lyapunov exponent of the g-th moment (¢ > 1) requires a little
more information than (4). For instance the exponential growth rate of E[E(t)?]
requires the knowledge of the growth rate of E[R?(t,00)R?(t,0:)] for all pairs
(6o,61) € [—m,w]?. Although the expression of g(q) is very intricate, even for a
very simple random process m, it can be expanded as powers of £ [3]:

2
929 = T ey +0(), (18)
20/(0) = yoac’ + O, (19)

where as is the parameter:
o0
ay = / cos(2t)E[m(0)m(t)]dt.
0

The main feature is that the sample and mean Lyapunov exponents of the system
are different. More exactly that the mean Lyapunov energy is twice as large as
the sample Lyapunov energy. In the following sections we aim at describing more
precisely the energy distribution of the quantum particle. Indeed E(t) is the mean
energy, where the averaging is with respect to the quantum distribution. Neverthe-
less the second quantum theory postulate claims that an observation of the energy
can only give a value amongst the discrete set of eigenvalues 1/2+N. Consequently
a precise description of the energy distribution consists in the determination of the
probability transitions.
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5. Asymptotic behavior of the modal energy distribution

Let us define the process ¢ as the solution of the following infinite-dimensional
system of linear stochastic differential equations starting from ¢(0):

v
dep, = T2 (\/ Lpt2Cpra — v/ Fpépf2) ° thl
i/ i\/Q
+ (,/1“,,+2(-;p+2 n \/r,,ap_z) o dW? + 2—\/50(219 +1)c, o dW?,(20)

where W7, j = 1,...,3 are independent standard Brownian motions, o stands for
the Stratonovich stochastic integral, and «; is the real parameter given by:

o = /oo E[m(0)m(t)] cos(jt)dt, (21)
0

which is proportional to the power spectral density of the process m (nonnegative
by the Wiener-Khintchine theorem [22]).

Proposition 5.1. 1. There exists a unique solution ¢ of Equation (20).
2. The processes c(./e%) converge in distribution as continuous functions from
[0,00) into I? to the diffusion Markov process ¢ solution of (20) as € — 0.

Proof. Apply formally the (unique!) theorem of Ref. [24]. Take care to separate the
real and imaginary parts of the process c(./e?): Denoting X2, := Rec, and x2p41 :=
Imc,, the process x*(t) := x(t/e?) satisfies the linear differential equation:

dxs(t) 1 t _ ot
T _Em(?>F(X’52>’

where
Fop(x,h) = Cosfh) (\/IEXZHE) - \/I‘_px2p73)
+Sinfh) (VTpr2xapsa + v/Tpxap—s) = 2p: Lot
Fapoh) = (T it VT

in(2h 2 1
+smEl )(_\/Fp+2x2p+5+\/ITpX2p73)+ p;— X2p-

Note that we deal with an infinite-dimensional system while only finite-dimensional
systems are addressed in Ref. [24]. Nevertheless c(./e%) can be approximated by
finite-dimensional processes. The technical developments are proposed in Ref. [13]
in the case of a perturbation of the form 2zm(t) and are very similar in the
present case z2m(t). This technique based on a martingale approach to some limit
theorems in the diffusion-approximation regime is now well-known and extensively
reviewed in literature [19, 20]. The processes (c,(./€%)) _. converge in distribution

peEN



8 J. Garnier

in 12 to the diffusion process (X2, (-) + iX2p+1 (1)) pen Where x is the diffusion process
with infinitesimal generator L:
oo oo
0? 0
L= aij(X) g=Fa= + bj(X) 75—

The diffusion and drift coefficients are:

w0 = | T ElmO)m®)] (Fi(% By (%, h + ), dt,

* o\ OF
[ Emmomo) (i ngEen) d

b; (%)

2

where (.), stands for an averaging over a period in h. The application of It6’s
formula to system (20) then yields that the distribution of ¢ is the same as

(X2p () + iX2p+1()) penv: O

There exist also technical conditions on the initial condition ¢(0) so that the
above proposition holds true. These conditions require that the initial sequence
(c(0),)pen decays fast enough and they are fulfilled in particular if the initial state
is a pure eigenstate, i.e. ¢(0), = &p,p, for some po. Thus, in order to avoid unneces-
sary intricate technical developments, we shall assume throughout the paper that
the initial state is a pure eigenstate. If the initial state is fp,, the coefficients

Cpop(t) = Elc, |*(¢)] (22)

represent the probabilities that the particle driven by the random process emxz?

be observed in the state f, at time t/e2 in the asymptotic framework ¢ — 0.
Proposition 5.1 is very useful since it allows us to compute efficiently these relevant
quantities:

Proposition 5.2. The family (Cp, p(t))pen satisfies a closed-form set of ordinary
differential equations:

dC , (67} (6%)]

% = ?Fp+2 (Cpo,p+2 — Cpo,p) + ?FP(CPO,P*Z — Cpo,p); (23)
starting from Cp, p(0) = dp p, -
Proof. This results from a direct application of It6’s formula. O

The system (23) is one of the most important results of the paper. It shows
that the probabilities Cyp, , can be computed theoretically from the coupling co-
efficients I'p, and that their evolutions are self-consistent in the sense that no
other relevant quantities come into. In particular the relative phases between the
coeflicients (¢,) of the expansion of the state vector ¢ in the basis (fp) have no im-
portance in the asymptotic evolution of the probability distribution (Cl, ). This
statement is not at all obvious, since it is not satisfied by the original equations

(6).
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6. Asymptotic behavior of the state vector

We denote by ¢* (z, t) the state vector at the regularly spaced instants 27[t/(2me?)]

defined by:
P () = (2n 505 ).

where [7] stands for the integral part of a real number 7. The process ¢ possesses
nice convergence properties in the space of the cad-lag functions D equipped with
the Skorohod topology The following result is a straightforward corollary of Propo-
sition 5.1 since © is an isometry from L? into /2.

Proposition 6.1. ¢° converges in distribution in D([0,00), L?) to ¢ which is the
unique solution of:

dp = \/;1_2(1+2$63>1/~10th1 (24)
2
e A G L

starting from ¥(0,2) = fpo ().
Very fortunately the solution of Equation (24) can be written explicitly as:

P(t,z) = /at)e PO f, (a(t)z)e (DO,

where the coefficients a, b, and ¢ obey the following system of stochastic differential
equations:

da = '2(12

! + Jazab o AW? + 2v/2\/agab o AW}, (25)

db = \/azb o dW} — Vz‘z (1+ at — 4b%) o dW2 + 2—"\(/1;(1 — at + 4b%) 0 dWE, (26)

V2 v Qo
dé = 2 a®odW}? + ﬁﬂ? o dW}, (27)
starting from a(0) = 1, b(0) = 0, ¢(0) = 0. In particular the spatial distribution
of the quantum particle is |¢(¢,z)|? = a(t)|fp, (a(t)x)|?, which is the initial profile
rescaled by the factor a(t). Furthermore, the state vector ¢5 in the intermediate
planes § + 27[t/(2me?)] defined by:

ey = (520 5] ).

converges in distribution in D(]0, 00), L?) to ¥s:

z) = i ép(t)e_i(p+1/2)6fp(z')-
=0
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The asymptotic state vector 15 can be derived from 1) through the following equa-
tion, in which ¢ is frozen:
. 6@5 27 62¢~6 i ~

The general solution ¥;(¢, z) is found to be:

Ds(t, ) = /a5, 8)e~PO0 £, (a8, t)z)ei2PoHDI0OD)

where
3 a(t)
O = D T DO m@) T aTm0F
b(£) cos(26) + (4b(D)2 + a(f)* — 1)¥2(20)
(cos(8) + 2b(t) sin(6))2? + a(t) sin(6)?
5

GO = (0 -5,

We can give simple representations of the distributions of the variables a(4,t) and
b(d,t) in terms of two auxiliary Brownian motions.

b(s,t) =

Proposition 6.2. 1. The processes (a(d,.),b(d,.)) obey the same distribution as

(a(.),b(.))-
2. For any § and t, the variables (a®(3,t),b(d,t)) obey the distributions of:
a*(t) = exp (\/a_ng — %t) , (28)
s t
b(t) = % exp (\/CYQW;l - %t) / exp (—\/agWﬁ + %t') dwg,  (29)
0

where W* and W?° are independent standard Brownian motions.

Proof. The proof consists in applying Itd’s formula for the system (25-26) on the
one hand and for the processes defined by Egs. (28-29) on the other hand. One
can then check that both formulations are identical. O

We can deduce relevant features from the representations (28-29). Let us
discuss one of them, which concerns the fundamental difference between the long-
range mean behavior and long-range typical behavior of a(t). For large ¢ it is well
known that the typical value of W is of the order of v/2, so that the typical value of
the random variable a?(t) is of the order of exp (—%2t + /ast). In this exponential
the first term prevails for large ¢, so that a®(t) is exponentially small. Nevertheless,
the mean value E[a® (t)] = 1, whatever t. This means that the mean value does not
correspond at all to a typical value that can be reached by the random variable
a®(t). The mean value is actually imposed by very few events which represent
large deviations of the Brownian motion. These exceptional events are enhanced
by the exponential, which gives E[exp /azW;'] = exp(%2t). These observations
are of course closely related with the fact that the sample and mean Lyapunov
exponents of the system at hand are different, as exhibited in Section 4.
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Proposition 6.3. Let us consider the energy E(t) defined by (10). The quantity
E(./€%) converges as a continuous function from [0,00) into R to the process E

gwen by:
BE(t) = Bo (a 2(t) ;1 ;rafzt)(t)) : (30)

where Eqy is the energy of the particle in the initial state fp,: Eo = po + 1/2. The
moments of the energy satisfy:

EE®#)] = FEoe, (31)
EE(t)?] = E; (§e3a2t+%), (32)
Jim %E[E(t)q] - q22+qa2. (33)

Proof. The first moment of E can be computed directly since we get from the
expression (11) that it satisfies a closed-form differential equation % = a:F[E].
The expression of E in terms of a, b can be obtained from the expression (30). By
Ito’s formula we get:
dE[a™b] N (n(n —2) L +q(g—1)
a7 8 2

so that we can compute E[E (t)?] for any q. O

) ]E[aan] + ay Q(qg_ 1) ]E[aan—2]’

The energy has a very large variance, much larger than the square of its
mean, which shows that it has very large fluctuations with respect to its mean
value. This can be also put into evidence by comparing the typical value of the
energy with its mean value. As pointed out here above, a®(t) decays as exp(—92t)
for t > 1, since W' ~ v/t < t with very high probability. Furthermore b(t) obeys
a normal distribution with mean 0 and variance 1/2 for ¢ > 1. By substituting
these approximations into Eq. (30), we get that the typical behavior of the energy
E is for large t:

1 _
S E(t) = % for t > 1. (34)

The typical exponential behavior (34) is different from the exponential behavior of
the mean energy (6.3), and the departure originates from large deviations of the
Brownian motion W*.

7. Interpretation of the limit system in terms of a jump process

We shall show that the transition probabilities Cp, ,(t) can be regarded as the
statistical distribution of a jump process. Let N; be the Markov process with state
space N and infinitesimal generator K:

K= % (Cn42V2 + TNV ), (35)
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where Vi g(N) = g(N +p') — g(N). (N¢)s>0 is a time-homogeneous jump process
defined on a probability space (2, F,P). The operator V, corresponds to a jump
from n to n + p'. The complete construction of the process Ny is standard [11,
Section 7, Theorem 33]. There exists a sequence of integer-valued random variables
(&;)jen and positive real-valued variables (7;);en such that:

n—1 n
Ny=&if Y 1 <t<> 7
j=0 j=0
The sequence (§;);en is a Markov chain with stationary transition matrix Q:

P =p+p'/6n=p) = Qpp+p's
where Qp p+p =0 if p' # {—2,2} and:

nr Tp+Tpa 2 20 +p+1)
Dpt2 1 2p+1
Ly = =—+ )
Opo-2 Tp+Tp2 2 2(p°+p+1)

Given (¢;);en, the random variables (7;)jen are conditionally independent and
exponentially distributed, with parameters (¢(&;));en :

(8] o
q(p) = gz(l“p +py2) = f(pz’ +p+1).

We denote by Py, ,, the distribution of the paths (N;)¢>¢, starting at time ¢,
with the initial condition Ny, = py. The Markov process has stationary transition
probabilities:

Py(po,p) = Py po (Nyry¢ = p) independent of ¢/,

and it is reversible since the infinitesimal generator K is self-adjoint. Further-
more P; is the unique probabilistic solution (i.e. 3°, Pi(p,p + p') = 1) of the
Kolmogorov’s forward equation [10, Section X-3]:

on 0,p1) = —q(p1) Pe(po, p1) + D 4(P)@p.pr Pe(po, p)-

ot
P

In view of the choices of the kernel ) and parameters g(.), we get that the
Kolmogorov’s forward equation is equivalent to (23), which implies the relation
Cpo,p(t) = Po p, (N = p). This interpretation of the transition probabilities is very
powerful to solve problems and study the system (23) since it allows us to apply
existing results on Markov jump processes which can be found in the literature.

Note that we have only showed that (NV;) gives the correct statistical distri-
bution of the measurement of the energy of the particle at a given time ¢. In terms
of probability theory, we have only proved that the one-dimensional distributions
of (N¢) and the ones of the energy distribution coincide. We shall see that (Ny)
gives the correct statistical distribution of any sequence of measurements. For that
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purpose we revisit the postulates of quantum mechanics in terms of the jump pro-
cess Ni.

Postulate 1. “The state vector ¥ obeys the Schrédinger equation (6).” The time
evolution of the process N; is governed by the Markovian dynamics described by
the infinitesimal generator (35).

Postulate 2. “The measurement of the energy at (normalized) time ¢ will yield one
of the eigenvalues (2p+1)/2 with probability Cp, ,(¢).” The jump process 1/2+ Ny
takes values only in the set 1/2+ N. At time ¢ one will find the value 1/2 + p with
probability P ,,(N¢ = p) which is equal to Cp, ().

Postulate 3. “If a measure at time ¢ of the energy gives the result 1/2+ p, then the
state of the system will change from () to f, as a result of the measurement.”
Let us assume that we start from state f,, at time 0. If we observe the energy of
the particle at times ¢; and t9, then the probability for measuring first the energy
1/2+ p; and then 1/2 4+ p, is equal to the probability for observing 1/2 + p; at t;
starting from fp, multiplied by the probability for observing 1/2+p, at ¢, starting
from f,, at t;, because the system is in state f,, just after the measurement at
t1. This product of probabilities also reads as Pg o (Ny, = p1) X Py p, (Ng, = p2).
From the Markov property of the process N, this product is exactly equal to
Popo (N, = p1, Ny, = p2). Of course this statement can be generalized to any
sequence of measurements so that we conclude that if we observe the energies of
the particle at times t1,..., and t,, then the probability to measure the sequence of
energies: 1/2+4 pa,..., 1/2+p,, is exactly Po o (Nt, = p1, ..., Ni,, = ppn). This means
that the dynamics of the observations is Markovian and exactly described by the
jump process Ny (Markovian means that the future is independent from the past
conditionally to the present). More remarkable, this property is essentially equiv-
alent to the Postulate 3 of quantum mechanics. Indeed, if instead of Postulate 3
we assume that the dynamics of the observations is Markovian, then just after a
measurement, the system depends only on the result of the measurement, which
means that just after measuring the energy 1/2+ p;, the system must be in a state
with energy 1/2 + p; with probability 1. Since there exists a unique eigenstate
fp, with energy 1/2 + p1, this means that the system must be in state fp, with
probability 1 (here the non-degeneracy of the system plays a primary role). As a
conclusion, the Postulate 3 is exactly the right condition under which we can ex-
tent the statement “(NNV;) describes the statistical distribution of the measurement
of the energy at some given time” to the statement “(N;) describes the statistical
distribution of any sequence of measurements of the energy”.

By studying the generating function of the jump process (N;) the system
(23) can be solved in the sense that closed-form expressions can be derived for the
probabilities Cyp, ,(t). We sketch out the method we use to derive these expressions.
We first establish the equation that governs the evolution of the generating function
u(t, z) :== E[2z™t] of the jump process:

ou  az

il (1 —zz)ﬁ (1=2*).
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We then express v(t,z) := (1 — 22)u(t,z) as the expectation of a functional of a
diffusion process Z:

u(t,z) = E[ZP(t)(1 - Z*(1))] ,

where the infinitesimal generator of the Markov process Z starting from z is:
L;=—(1-2%_".

We introduce the auxiliary process Y; = argth(Z;) whose infinitesimal generator
is:
(D) 62 a9 (9
Ly =22 + 2 tanh(Y)——.
¥ =gayr T g gy
We can then apply a generalized version [1, Prop.1] of Bougerol’s identity which
states that, for any ¢, sinh(Y;) has the same distribution as Xj:

B Va2 Qo z Va2 ¢ V&2 o1 (%) 2
Xt_exp<TBt+Zt m+ 5 0exp —73 Bs—zs dB; |,

where B! and B? are two independent Brownian motions. We then get the ex-
pression:

oft,2) =E[XP° (14+x7)7 7] (36)

We finally note that for z = 0, u(t,0) = v(¢,0) = Pg p, (IV; = 0). Furthermore, still
for z = 0, the distribution of X; can be represented as:

t
X, = —‘/20‘2 / exp (—"20‘23; + %s) dB?. (37)
0

Substituting into Eq. (36) yields in particular that:
Coo(t) =Poo(Ny =0) =E [(1 + th)_l] )

with X; as defined by Eq. (37). Corollary 2.3.3 [5] gives the probability density
of X, (after a straightforward application of Girsanov’s formula). Some further

calculations then establishes:
2

Coo(t) = % exp <_O%t) /OOO ducosh (z\;M) -

This proves in particular that the decay of the probability Cyo(t) for long ¢ is
V2 (aat)~'/? exp(—axt/8). The transition probabilities Cy ,(t) in the particular
case when the initial state is the fundamental can then be computed by repeated
derivations from Eq. (23):

Co.2p(t) = i exp (_%275) / dueﬂf Foop(aat, uy/ast/2) ’ (38)
VT 0 cosh (U\/QQt/2)
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where the functions Fj 2, are:

FO,O(E: ﬁ) = 1, (39)
_ 1 U

Fo(f,@) = 5 — 2tanh (3) % (40)
o 3 242 (2u Tu 4w

F0,4(t,u) = (g — gt?) +tanh(u) (g? — g?) +tanh2(u)§§, (41)
_ 4 [(WOFp,_ 8Fp.2p—

Foaglf,) = 5 <; D2 4 g 2) (42)

P

1 4 u Ty
+ (]. — — — ——tanh (ﬂ)) Fo,zp_z + ;p 2 (Fo,zp_z — Fo’gp_4) .

2p

We now examine the general case where the initial state is fsp,. The jump
process is reversible, so0 Pg 25, (Nt = 2p) = P 2p(Ny = 2pg) which reads:

C2po,2p(t) = C2p,2po (t)

In particular Cap,,0(t) = Co,2p,(t) has been derived here above, and repeated
derivations finally establish the expression of Cyp, 2p(t):

_ 2 Otgt > _u? ngo,Qp(OQt,U\/OLQt/2)
Copo,2p(t) = —=exp | ——— due : (43)
8 0 cosh (u\/azt/Q)

VT
where the functions Fyp, op are:
4 (E_ OFpo2p-2 25F2po,2p—2)

Fopg2p(t,u) =

Ty \t  Oa ot
1 4 q
1—— — — —tanh () | F _
+ ( F2p 1-\21) t arn (u)> 2po,2p—2
Ty
+ ff; 2 (Fapo,2p—2 — Popo 2p-1) , (44)
P
F2P070 (E’ ﬂ) = FO,Zpo ({a ﬂ). (45)

As an application the functions Fj 5, which govern the probabilities that a particle
initially in state f, be observed in state fs, at normalized time ¢ are:

_ 1 T
Foo(t,1) = 5 — 2tanh (@) =, (46)
_ 1 w2 _ a i N
Fs5(t,u) = (Z - 4t_2) + tanh(a) ( i 2?) + 8tanh (u)f—2, 47)
_ 3 a®  _@? 20a® @ a  23a
i) = — 4+ 4= — 5= hia) | == —4= + 5= — ——
Peatw) (16 T 5t2) + tanh(a) ( 5P B TOR 1 t)
, a®  _u? N
+ tanh? (@) <1Ot_2 - 8t_3> 8tanh3(u){—3 (48)
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Coo(t)| 1 Ca0(t)|
Coa(t) Ca2(t)
””” Coal(t) ;

Cop(t)

FIGURE 1. Theoretical histograms of the probability distributions
(Cpo,p(t))pen of the energy of the particle under time-dependent
perturbations with ap = 1. In the left picture (resp. right picture)
the particle is assumed to be at ¢t = 0 in the state fo (resp. f2).
Only even states have positive probabilities.

8. Numerical simulations

The results in the previous sections are theoretically valid in the limit case € —
0, where the amplitude (resp. duration) of the perturbations goes to zero (resp.
infinity). In this section we aim at showing that the asymptotic behaviors of the
state vector can be easily observed in numerical simulations in the case where
the perturbation is small, so that its effect appears after a long time. We use a
split-step method to simulate the one-dimensional perturbed linear Schrodinger
equations (6). We adopt in this section the following model for the perturbation:

m(t) = uy if lt. <t < (+ i,

where (u1);_o . a1 is @ sequence of M independent and identically distributed
variables, which take the value —1/2 or 1/2 with probability 1/2. t. is the so-called
coherence time of the random process m. The power spectral density is:
_ 11— cos(jt.)
YT P

and a9 = t./8 The quantity Mt, which is equal to the time duration of the
perturbation will be chosen so large that we can observe the effect of the small
perturbation em(t)z2. We measure the L2-norm and the energy (10) of the particle
that we can compare with the corresponding data of the initial state vector. We
present results corresponding to simulations where the initial state at z = 0 is
the fundamental Gaussian mode fo(x) or the second mode fo(x). We have first
simulated the homogeneous Schrédinger equation (with m = 0) which admits as
an exact solution fo(x)e~ %/ and fo(x)e >%*/2 respectively. We can therefore check
the accuracy of the numerical method, since we can see that the modulus of the
computed solution maintains a very close resemblance to the initial profile (data
not shown), while the L?2-norm and the energy are almost constant.
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100

FiGUrRE 2. Evolution of the modal distribution of the particle
computed by simulation of the perturbed Schrodinger equation
(6) and averaged over 2000 realizations and comparison with the
theoretical formulas given by (39-41) and (46-48). In the left pic-
ture (resp. right picture) the initial state vector is the fundamen-
tal state fo (resp. the state fa). The values of the parameters are
te = 0.4 (ap ~ 0.0474) and 4, = 100 (M = 250).

The other simulations are carried out with different realizations of the ran-
dom process m with e = 1. In Figure 8 we plot the modal distributions of the
particle averaged over 2000 realizations and compare them with the theoretical
distributions derived in Section 7. It thus appears that the numerical simulations
are in very good agreement with the theoretical results. All these observations
confirm that our formulas describe with accuracy the evolution of the harmonic
oscillator under small perturbations and long times.

9. Conclusion

We have analyzed in this paper the effects of random perturbations of the spring
coefficient on the evolution of a quantum particle in a quadratic potential. The
precise results we have obtained are a consequence of the particular form of the
stable system at hand (quantum harmonic oscillator) and of the considered per-
turbation. Eigenvalues and eigenstates of this system are explicit and tabulated
formulas are available, so that we are able to perform exact calculations and com-
pute closed-form expressions for the eigenstates probabilities. Nevertheless the
results demonstrated in this paper can be generalized to a large class of systems.
In [14] we study the energy distribution of the quantum harmonic oscillator under
a very general class of random time-dependent perturbations which satisfy some
spatial growth conditions. Nevertheless the quadratic perturbation we address in
this paper did not fulfill these conditions, so a specific approach was required.
Second we can also expect generalizations to systems that are different from the
harmonic oscillator. Indeed the basic assumption which requires the existence of a
complete set of normal eigenstates for the unperturbed Hamiltonian holds true for
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many systems. The remainder of the study then consists in technical developments
to exhibit and analyze the coupling mechanisms between the eigenstates.

References

[1] L. Alili, D. Dufresne, and M. Yor, Sur l’identité de Bougerol pour les fonctionnelles
du mouvement Brownien avec shift, in Exponential functionals and principal values
related to Brownian Motion, Edited by M. Yor (Revista Matemadtica, Iberoamericana,
1997).

[2] L. Arnold, A formula connecting sample and moment stability of linear stochastic
systems, STAM J. Appl. Math., 44 (1984), 793-802.

[3] L. Arnold, G. Papanicolaou, and V. Wihstutz, Asymptotic analysis of the Lyapunov
exponent and rotation number of the random oscillator and applications, STAM J.
Appl. Math., 46 (1986), 427-450.

[4] P. H. Baxendale and R. Z. Khaminskii, Stability indez for products of random trans-
formations, Adv. Appl. Prob., 30 (1998), 968-988.

[6] P. Bougerol, Ezemples de théorémes locauz sur les groupes résolubles, Ann. Inst. H.
Poincaré, 19 (1983), 369-391.

[6] P. Bougerol and J. Lacroix, Products of random matrices with applications to
Schrddinger operators, Birkhauser, Boston, 1985.

[7] L. Bunimovich, H. R. Jauslin, J. L. Lebowitz, A. Pellegrinotti, and P. Nielaba, Dif-
fusive energy growth in classical and quantum driven oscillators, J. Stat. Phys., 62
(1991), 793-817.

[8] M. Combescure, The quantum stability problem for time-periodic perturbations of the
harmonic oscillator, Ann. Inst. H. Poincaré A, 47 (1987), 63-83.

[9] V. Enss and K. Veseli¢, Bound states and propagating states for time-dependent
Hamiltonians, Ann. Inst. H. Poincaré A, 39 (1983), 159-191.

[10] W. Feller, Introduction to probability theory and its applications, Wiley, New York,
1971.

[11] D. Freedman, Markov processes, Holden-Day, San Francisco, 1971.

[12] H. Furstenberg, Noncommuting random products, Trans. Amer. Math. Soc., 108
(1963), 377-428.

[13] J. Garnier, Asymptotic behavior of the quantum harmonic oscillator driven by a
random time-dependent electric field, J. Stat. Phys., 93 (1998), 211-241.

[14] J. Garnier, Energy distribution of the quantum harmonic oscillator under random
time-dependent perturbations, Phys. Rev. E, 60 (1999), 3676-3687.

[15] J. Glimm and A. Jaffe, Quantum physics, a functional integral point of view, Springer,
New York, 1981.

[16] G. A. Hagedorn, M. Loss, and J. Slawny, Non-stochasticity of time-dependent qua-
dratic Hamiltonians and the spectra of canonical transformations, J. Phys. A, 19
(1986), 521-531.

[17] R. M. Hervé and M. Hervé, A mathematical treatment for a perturbation of the
one-dimensional harmonic oscillator, J. Math. Phys., 32 (1991), 956-958.



Instability of a quantum particle ... 19

[18] M. Hillery, R. F. O’Connel, M. O. Scully, and E. P. Wigner, Distribution Functions
in Physics: Fundamentals, Phys. Rep., 106 (1984), 121-167.

[19] W. Kohler and G. Papanicolaou, Power statistics for wave propagation in one di-
mension and comparison with transport theory, J. Math. Phys., 14 (1973), 1733-1745;
15 (1974), 2186-2197.

[20] H. J. Kushner, Approzimation and weak convergence methods for random processes,
MIT Press, Cambridge, 1984.

[21] A. Messiah, Quantum Mechanics, North Holland, Amsterdam, 1962.

[22] D. Middleton, Introduction to statistical communication theory, Mc Graw Hill, New
York, 1960.

[23] M. G. Nerurkar and H. R. Jauslin, Stability of oscillators driven by ergodic processes,
J. Math. Phys., 35 (1994), 628-645.

[24] G. Papanicolaou and W. Kohler, Asymptotic theory of mizing stochastic ordinary
differential equations, Comm. Pure Appl. Math., 27 (1974), 641-668.

[25] C. A. Pillet, Some results on the quantum dynamics of a particle in a Markovian
potential, Commun. Math. Phys., 102 (1985), 237-254.

[26] C. A. Pillet, Asymptotic completeness for a quantum particle in a Markovian short
range potential, Commun. Math. Phys., 105 (1986), 259-280.

[27] L. I. Schiff, Quantumn Mechanics, Mac Graw Hill, New York, 1968.

[28] V. N. Tutubalin, On limit theorems for products of random matrices, Theory Prob.
Appl., 10 (1965), 15-27.

Centre de Mathématiques Appliquées,

Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7641,
Ecole Polytechnique, 91128 Palaiseau Cedex, France,

Tel. (33) 1 69 33 46 30,

Fax. (33) 1 69 33 30 11.

E-mail address: garnier@cmapx.polytechnique. fr



