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Abstract

This paper deals with the propagation of Schell-model sources. Two different and complementary approaches are
developed. The first one is standard and based on the study of the Wigner distribution function. The second one follows
from a generic statistical representation of the speckle pattern as the superposition of elementary and independent modes.
Precise results are obtained for the small- and large-scale characteristics of the beam: optical intensity profile, Rayleigh
distance, speckle radius and intensity profiles of the speckle spots. These results are finally applied to the determination of
the main characteristics of the focal spot generated by a Kinoform Phase Plate. We also give the complete expressions of the
above quantities when the conditions of paraxial approximation are not fulfilled. q 2000 Elsevier Science B.V. All rights
reserved.

PACS: 42.25.Kb; 42.60.Jf
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1. Introduction

Incoherent light has become a subject of great
interest for many applications such as coherent spec-

w x w xtroscopy 1 , tomography in random media 2 or
smoothing techniques for uniform irradiation in

w xplasma physics 3 . This paper has been triggered by
the development of optical smoothing techniques for

Ž .application to Inertial Confinement Fusion ICF ,

) Corresponding author. Tel.: q33-1-69-33-46-30; fax: q33-1-
69-33-30-11; e-mail: garnier@cmapx.polytechnique.fr

which requires a high level of irradiation uniformity
w xfor both direct and indirect drive 4 . Spatial beam

smoothing is essential in efficient coupling laser
energy to ICF targets. It is necessary to generate a
focal spot whose energy distribution is a speckled
profile that has a flat-top super-Gaussian envelope
Ž . w x8th power or higher 5 . Binary random phase
plates generate a speckled intensity profile with an

w xoverall envelope which is an Airy function 6 , whose
central spot contains only 84% of the total laser
energy. So continuous phase screens have been de-
veloped which produce a pattern with the same

0030-4018r00r$ - see front matter q 2000 Elsevier Science B.V. All rights reserved.
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( )J. Garnier et al.rOptics Communications 176 2000 281–297282

statistical properties for the fast-varying fluctuations
but inside an overall envelope which has super-

w x w xGaussian shape 7 . The French Laser MegaJoule 8
w xor the US National Ignition Facility 9 are designed

for the indirect drive scheme, whose principle is that
the produced laser energy is focused into a hohlraum
and irradiates the gold inner wall to be converted in
X-ray. The focal plane of the laser beam is located
close to the open hole of the hohlraum, and the beam
propagates in the hohlraum from the hole to the
inner wall. The typical propagation distance is of the
order of a few millimeters.

We aim in this paper at studying the propagation
of a beam with speckled intensity profile and at
exhibiting the main small- and large-scale features
relative to this propagation. Literature contains a lot
of work devoted to the propagation of partially co-

Ž w x .herent beams see 10 and references therein .
Amongst them the Schell model sources character-
ized by a complex degree of coherence between two
points r and r in the source plane that depends1 2

only on the difference r –r have attracted attention.1 2
Ž .In particular Gaussian Schell-model GSM sources

characterized by Gaussian distributions for both the
optical intensity and the complex degree of spatial

w xcoherence have been extensively studied 11,12 .
This analysis has occurred mainly because the GSM

w xsources can be constructed in the laboratory 13 and
are mathematically tractable to provide a relevant
insight into the phenomena at hand. Analytical re-

w xsults are restricted mainly to the GSM beams 11 ,
w x w xtwisted GSM beams 14 , J -correlated sources 150

and further incoherent superpositions of Gaussian
w xmodes 16 . These results can provide a qualitative

insight into the propagation of other kinds of par-
tially coherent beams, but they are not sufficient for
our purpose. That is why we shall first derive our
results in a very general framework, when the degree
of coherence and the overall envelope of the optical
intensity have arbitrary profiles and the conditions of

Ž .paraxial or Fresnel approximation are not fulfilled.
We shall then apply these results to ICF configura-
tions so as to discuss the two following points. First
the super-Gaussian shape will not be preserved along
the propagation of the beam, so one cannot expect to
have a flat-top envelope at both the open hole and
the inner wall. The exact shapes at both planes
Ž .which are not parallel are required for a suitable

design of the hohlraum. Second it is important to
have a precise characterization of the hot spots of the
beam all along the propagation, since numerical
simulations which aim at predicting the growths of

Žplasma instabilities Rayleigh–Taylor instabilities
w x.17 strongly depend on the shapes of the hot spots.

The paper is organized as follows. In Section 3
we present and discuss a generic modal representa-
tion of a Gaussian field. In Section 4 we study the
propagation of the field in the paraxial approxima-

Žtion for some specific models in particular Gaussian
.Schell-model sources . We generalize these results to

very general configurations in Section 5. Section 6
and Section 7 are specifically devoted to the focal

Ž .spot generated by a Kinoform Phase Plate KPP .

2. Formulation

We shall consider in this paper the propagation
along the z-axis of a beam with speckled profile and
with frequency v. The real electric field is EEs1r2
Ž yi v t .Ee qcc , and the equation which governs the
propagation of the complex field E is the Helmholtz
equation:

E 2E
2qD Eqk Es0, 1Ž .H 02E z

where D is the Laplacian with respect to theH
Ž .transverse coordinates rs x, y and k is the homo-0

geneous wavenumber. When the typical length scale
of characteristic spatial variations of the source is
much larger than the carrier wavelength, the paraxial
Ž .or Fresnel approximation holds true and the propa-
gation equation can be simplified into the paraxial

Žw x .wave equation 18 , p. 358 :

˜E E 1
˜i q D Es0, 2Ž .HE z 2k0

˜EsE exp ik z . 3Ž . Ž .0

As an initial condition we consider an electric field
E in the plane zs0 whose optical intensity profile0

has a deterministic slowly varying envelope, with
spatial radius r , the so-called beam radius. In the0

experimental conditions corresponding to high power
w xlaser chains such as the French Laser MegaJoule 8

w xor the US National Ignition Facility 9 , the beam
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radius r is of the order of 250 mm. The beam has0

also fast-varying random fluctuations, with character-
istic scale r , the so-called correlation radius. In a0

typical ICF configuration, r is of the order of 2–100

mm. Throughout the paper we consider the asymp-
totic framework r <r and the statistical analysis0 0

is based upon the separation of these scales. We shall
assume that the fast-varying modulations of the beam
obey Gaussian statistics. In particular the spatial

w xintensity distribution is a speckle pattern 19 , and
w xthe field is a Schell-model source 10 . These statisti-

cal characteristics are actually very usual, and corre-
spond to the pulses generated by the smoothing

w xtechniques that we quote here above 20 . The statis-
tical distribution is characterized in the plane zs0

Ž .by the Cross Autocorrelation Function CAF de-
fined by:

r r
U

g r, r :s E rq E ry , 4Ž . Ž .0 0 0¦ ;ž / ž /2 2

² :where . stands for an ensemble average. Ensemble
averages make sense in the framework r <r .0 0

Indeed, let us define the auxiliary CAF through the
spatial average:

g D r, r :Ž .˜ 0

1 r r
X X XU 2s E rq qr E ry qr d rH 0 0ž / ž /< <D 2 2D

5Ž .

over the disc D with center at 0 and radius r r .( 0 0

The dimension of this domain is small compared
with r , so that the statistics of the field is stationary0

over D, and large compared with r , so that spatial0

ergodicity holds true and makes the CAF defined
Ž .through the ensemble average 4 coincide with the

Ž .CAF defined through the spatial average 5 . The
Žw xCAF of a Schell-model source is of the form 10 , p.

.234 :

g r, rŽ .0

r r r r r
1r2 1r2sg q g y f ,ž / ž / ž /r 2 r r 2 r r0 0 0 0 0

6Ž .

Ž Ž . .where f is the degree of coherence f 0 s1 , and g
the overall envelope of the optical intensity profile.

We may think at a super-Gaussian shape:

n< <g r s I exp yr .Ž . Ž .0

I is then the mean intensity at the beam center and0

n is the power of the super-Gaussian shape. This
envelope is Gaussian if ns2 and strictly super-
Gaussian if ns4,6, . . . . We consider a particular
class of Schell-model sources, namely those for

Ž . Žwhich the envelope g .rr varies so slowly at0
.scale r with position that it is approximatively0

constant over distances across the source that are of
the order of the correlation radius r . In addition we0

also assume that r is much larger than the carrier0

wavelength l . Schell-model sources of this kind are0

known as quasi-homogeneous sources. Note that we
do not require that r be much larger than l . Since0 0

Ž .the envelope g .rr is assumed to vary slowly with0
Ž .position over the effective width r of f .rr , we0 0

Ž .may make on the right-hand side of Eq. 6 the usual
approximation:

r r r r r
1r2 1r2 1r2g q ,g y ,gž / ž / ž /r 2 r r 2 r r0 0 0 0 0

Ž .Using this approximation in Eq. 6 we see that the
CAF of a quasi-homogeneous source may be ex-

Žw x .pressed as 10 , p. 235 :

r r
g r, r sg f . 7Ž . Ž .0 ž / ž /r r0 0

We shall be interested in the following in the evolu-
tion along the propagation of the CAF g defined by:z

r r
U

g r,r [ E z ,rq E z ,ry . 8Ž . Ž .z ¦ ;ž / ž /2 2

This function contains much relevant information. In
particular it gives the global radius of the optical

Ž .intensity profile since r¨g r, 0 is precisely thez

overall envelope of the optical intensity profile. Fur-
thermore we shall determine the Three-Dimensional

Ž .Autocorrelation Function 3DAF :

g r, r ,zŽ .z

z r z r
U[ E zq ,rq E zy ,ry . 9Ž .¦ ;ž / ž /2 2 2 2

This function describes the typical three-dimensional
shapes of the speckle spots of the beam. Indeed
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Žwell-known results on Gaussian processes see Adler
w x.21 establish that the typical behavior of the field

Ž .around a local maximum located at situ Z, R is
Ž . Žprecisely given by the function r ,z ¨g R, r ,Z

.z :

< <g R, r ,zŽ .z
< < < <E Zqz ,Rqr , E Z,R . 10Ž . Ž . Ž .

< <g R ,0,0Ž .z

Ž .This result holds true for values of r, z small
enough so that the right-hand side is larger than I .( 0

3. Modal representation of a field with Gaussian
statistics

3.1. Speckle pattern with flat enÕelope

A field E with stationary Gaussian statistics can
be represented by a superposition of simple and
statistically independent modes. Indeed, by the cen-
tral limit theorem, the Gaussian statistics results from
the superposition of numerous elementary fields. In
some points, this superposition is destructive by
interference, and in other points, the so-called hot
spots or speckle spots, this superposition is construc-
tive. Within this viewpoint we are going to give a
universal representation of a field E with stationary
Gaussian statistics. At the expense of a straightfor-
ward rescaling, we may assume that E has zero-
mean. The field E is then characterized by the CAF:

ryrX

XU² :E r E r s I f ,Ž . Ž . 0 ž /r0

where f is a function whose modulus is bounded
Ž .above by 1 and which satisfies f 0 s1. The follow-

ing proposition is an elementary statement which
will play the role of a basis for the forthcoming
results.

Proposition 1: The field E can be represented by
Ž .the sum of the modes E , with N41 and:j js1, . . . , N

I a .r( 0 j
E r s exp i qf , 11Ž . Ž .j jž /' rN 0

where r.rX stands for the usual scalar product in R2,
the f ’s are random phases, statistically independentj 'w xand chosen uniformly over 0, 2p , and 1r N is
the weight of the jth mode in the superposition. The

a ’s are R2-valued random variables independentj

and identically distributed. They obey the distribu-
tion whose density with respect to the Lebesgue
measure over R2 is the inverse Fourier transform
Ž̂ .f a of the function f :

1
yi a .rf̂ a s e f r d r . 12Ž . Ž . Ž .H2 2R2pŽ .

Note that in view of the Wiener–Khintchine theorem
ˆw x22 , f is proportional to the power spectral density

of the stationary field E and is consequently nonneg-
ative.

Proof : Let us consider the sum:

NI a .r( 0 jNE r [ exp i qf . 13Ž . Ž .Ý jž /' rN 0js1

The modes are statistically independent, so the cen-
tral limit theorem can be applied which yields that
E N converges, as N™`, to a process with Gaussian
distribution, zero-mean and correlation function:

ryrX

XK r,r s I exp i a .Ž . 0 1¦ ;ž /r0

ryrX

2ˆs I exp i a. f a d aŽ .H0 ž /2 rR 0

This correlation function depends only on the differ-
ence ryrX, which proves that the limit field is
statistically stationary. Furthermore K is the direct

ˆFourier transform of f , that is to say the function f.
Since a field with Gaussian statistics is fully charac-
terized by its first and second moments, this com-
pletes the proof of the proposition.

The modes we describe in Proposition 1 are noth-
ing else but a discrete set of plane waves with
random phases f and random transverse wavevec-j

tors k chosen according to the distribution withj
Ž̂ .density f k r . Let us cite two relevant examplesj 0

that will be encountered in the following sections:
2Ž . Ž < < .Ø If f r sexp yr , then a obeys a normal

distribution with density:

< < 21 a
f̂ a s expy .Ž .

4p 4

Ž . Ž < <. Ž < <.Ø If f r s2 J p r r p r , then a obeys the1
Ž .uniform distribution over the disc B 0,p with cen-
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ter at 0 and radius p. The density of this distribution
with respect to the Lebesgue measure over R2 is: 1

ˆ y3f a sp x a .Ž . Ž .BŽ0 ,p .

3.2. Generalization to a speckle pattern with a slowly
Õarying oÕerall enÕelope

Let us now consider that the field E is locally
stationary in the sense that it possesses an overall

Ž .envelope with radius r 4r , so that its CAF is 6 .0 0

Proposition 2. The field E can be represented by
Ž .the sum of the modes E , with N41 and:j js1, . . . , N

1 a .r rj 1r2E r s exp i qf g , 14Ž . Ž .j jž / ž /' r rN 0 0

where the f ’s and a ’s are as described in Proposi-j j

tion 1.
Proof : The arguments are the same as here above.

By the central limit theorem, the superposition con-
verges as N™` to a field with Gaussian statistics,

Ž .zero-mean and CAF 6 , which proves the desired
result.

4. Propagation in the paraxial approximation

A speckle pattern is a field with Gaussian statis-
tics, whose contrast 2 is therefore equal to 1. In this
section we assume that the conditions of paraxial
approximation are satisfied, that is to say k r 41.0 0

Diffraction is linear, so the Gaussian property of the
statistics is conserved along the propagation. As a

Ž .consequence, for any z, the field E z which results
from the propagation of E over a distance z is still0

a speckle pattern, with contrast 1, and its CAF
Ž .defined by 8 is solution of:

Eg 1z
i q = .= g s0, 15Ž .r r zE z k0

Ž . Ž .where rs x, y and rs r , r . The usual way tox y

solve this equation consists in introducing the Wigner

1 Throughout the paper we denote by x the characteristicA
Ž .function of the set A, that is to say x x s1 if xg A and 0A

otherwise.
2 The contrast is defined as the ratio of the variance of the

intensity over the mean intensity. It is a parameter which charac-
terizes the relative fluctuations of the intensity of a random field
with respect to its mean value.

distribution defined as the Fourier transform with
w xrespect to r of the CAF 23 :

W r,k s g r, r eik . rd2r . 16Ž . Ž . Ž .Hz z

One can recover the CAF by an inverse Fourier
Ž .transform. From Eq. 15 it is easy to establish the

equation which governs the evolution of the Wigner
distribution:

E Wz
k yk.= W s0. 17Ž .0 r zE z

We thus obtain the well-known property that the
Wigner distribution is transported along the rays
defined by the law of geometric optics, although it

w xcontains all the information of diffraction 24 . The
Ž .solution of the transport Eq. 17 simply writes:

z
W r,k sW rqk ,k . 18Ž . Ž .z 0 ž /k0

By an inverse Fourier transform we then get that the
CAF in the plane at distance z is given by:

1 z
yi k . r 2g r, r s W rqk ,k e d k.Ž . Hz 02 ž /k2pŽ . 0

19Ž .
The Wigner transform thus appears efficient to com-
pute the CAF, but it does not give an insight of the
3DAF. Although we could introduce a three-dimen-
sional Wigner function, we shall see that the modal
representation provides an easy way to compute the
3DAF.

4.1. Speckle pattern with flat enÕelope

We consider an input speckle pattern E whose0

statistics is spatially stationary over the whole plane
Ž .zs0, i.e. r s` with correlation radius r . The0 0

Ž .CAF of the input field E defined by 4 is in this0

configuration:

r
g r, r s I f . 20Ž . Ž .0 0 ž /r0

Ž .Whatever z, the field E z which results from the
propagation of E over a distance z is a speckle0

Ž .pattern and its CAF is solution of 15 , and is
consequently identically equal to g . As a conclu-0

sion, the statistical distribution of the field is the
same for any z.
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In order to compute the 3DAF we consider the
Ž .modal representation 11 . We can compute explic-

itly the propagation of every mode and find their
exact expressions for any z. The input field E can0

be represented by the superposition of the modes
Ž .E , with N41 and:j js1, . . . , N

I a .r( 0 j
E r s exp i qf , 21Ž . Ž .j jž /' rN 0

where the f ’s are random phases, statistically inde-j
w xpendent and chosen uniformly over 0, 2p , the a ’sj

are R2-valued random variables independent and
identically distributed according to the distribution

ˆwhose density f with respect to the Lebesgue mea-
2 Ž . Ž .sure over R is given by 12 . The fields E z

after propagation over a distance z is then given
by the superposition of the diffracted modes
Ž Ž ..E z , with:j js1, . . . , N

I a .r( 0 j
E z ,r s exp i qf z , 22Ž . Ž . Ž .j jž /' rN 0

Ž . Ž .where the phases f z are imposed by Eq. 2 :j

z
2< <f z sf qk zy a , 23Ž . Ž .j j 0 j4z0

2 Ž .with z sk r r2. Whatever z, the phases f z0 0 0 j

obey the same distributions as the initial phases f ,j
that is to say independent and uniform distributions

w xover 0, 2p . However, as soon as zGz , the phase0
Ž . Ž .X Xmismatches f z yf z are not equal to f yfj j j j

Ž .anymore, neither is E z equal to E . After a propa-0

gation distance zGz , the statistical distribution of0

the modes is unchanged, but the modes have changed.
One can say that we deal with a new realization of
the same distribution. The superposition of the modes
is governed by the same rules, but the points where
the superposition is destructive or constructive are

Ž .not the same anymore. Thus, the field E z has the
Žsame statistical distribution as the field E same0

.contrast, same type of hot spots , but it is a new
speckle pattern. As a conclusion, whatever z, the

Ž .field E z is a pattern with hot spots with radius r ,0

but the spots move every z sk r 2r2.0 0 0

We can study more precisely the modification of
the field along the z-axis by considering the 3DAF.

Using the modal representation, the 3DAF reads as a
X ² U:Xdouble sum over j and j of terms E E . Thej j

² U: X
Xcontributions of the crossed terms E E for j/ jj j

vanish due to the random phases f . It remains onlyj
² U:the diagonal terms E E which are equal, whichj j

establishes that:

g r, r ,zŽ .z

z r z r
UsN E zq ,rq E zy ,ry .1 1¦ ;ž / ž /2 2 2 2

It thus appears that it is sufficient to compute the
3DAF of a single mode to get the 3DAF of the total
field. The first quantity is of course much simpler to
compute in view of the simple form of the mode.
This method to compute the 3DAF will be applied to
more general configurations in the forthcoming sec-
tions. Here we find that the 3DAF does not depend
on r and z and can be expressed as:

g r, r ,zŽ .z

< < 2a. r a z
ˆs I exp i y f a da exp ik z .Ž . Ž .H0 0

2 ž /r 4zR 0 0

In case of a Gaussian degree of coherence, that is to
2Ž . < <say f r sexpy r , the 3DAF reads:

g r, r ,zŽ .z

I0
s

2(1qb zŽ .

=
< < 2r

exp y q ic z , r ,Ž .2 2ž /r 1qb zŽ .Ž .0

c z , rŽ .

< < 2r b zŽ .
sk zyarctan b z y ,Ž .Ž .0 2 2r 1qb zŽ .0

24aŽ .

z k r 2
0 0

b z s , z s , 24bŽ . Ž .0
z 20

which confirms that for z)z , the fields in two0

planes separated by z are uncorrelated, that is to say
different, although they obey the same statistical
distribution.
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4.2. Gaussian Schell-model source

Let us consider a speckle pattern E with correla-0

tion radius r whose overall envelope has radius r0 0
Ž .with r <r . The statistics are then only locally0 0

stationary, so the above derived results will hold true
only locally. The CAF of the input field E is0

assumed to correspond to a Gaussian Schell model
source so it reads:

< < 2 < < 2r r
g r, r s I exp y y . 25Ž . Ž .0 0 2 2ž /r r0 0

We still assume in this section that k r 41 so that0 0

the paraxial approximation holds true and the propa-
Ž .gation is governed by paraxial wave Eq. 2 .

4.2.1. Cross autocorrelation function
Ž .We denote by E z the field which results from

the paraxial propagation of E over a distance z,0

which is a speckle pattern with contrast 1, whose
Ž .CAF is solution of Eq. 15 and is consequently

given by:

g r, rŽ .z

I0
s

w zŽ .

=
< < 2 < < 2r r

exp y y q ic r, r ,Ž .z2 2ž /r w z r w zŽ . Ž .0 0

4 z r. r
c r, r s ,Ž .z z w z r rŽ .0 0 0

4 z 2

w z s1q , z sk r r . 26Ž . Ž .0 0 0 02z0

This expression is well-known and was derived pre-
w xviously in 11 . It thus appears that the propagation

distance for which evolutions of the shapes of the
global envelope and of the speckle spots are notice-
able is of the order of k r r r2. Note that this0 0 0

distance is equal to the geometric average of the
natural Rayleigh distance k r 2r2 corresponding to0 0

Ža coherent beam with radius r the scale of the0
.fast-varying fluctuations and of the natural Rayleigh

distance k r 2r2 corresponding to a coherent beam0 0
Ž .with radius r the scale of the overall envelope .0

4.2.2. Modal approach
The input field E can be represented by the0

Ž .superposition of the modes E given byj js1, . . . , N
Ž .21 with an overall envelope with Gaussian shape:

2< <I a .r r( 0 j
E r s exp i qf expy . 27Ž . Ž .j j 2ž /' r 2 rN 0 0

Ž .After propagation over a distance z, the field E z is
given by the superposition of the modes
Ž Ž ..E z whose expressions can be computedj js1, . . . , N

explicitly:

I( 0
E z ,r sŽ .j (Nx zŽ .

=
< < 2a .r rj

exp i qf z yŽ .j 2ž r x z 2 r x zŽ . Ž .0 0

2 < < 2z a .r z aj j
q y ,2 /z r x z 2 x zzŽ . Ž .0 0 0

< < 2z a j
f z sf qk zyŽ .j j 0 4z x zŽ .0

< < 2z r z
q yarctan ,2 2 2ž /2k r x z r k rŽ .0 0 0 0 0

28Ž .

Ž . 2 Ž 2 4.where x z s1qz r k r . By neglecting the0 0
Ž 2 .terms of order zr k r , this expression simplifies:0 0

2< <I a .r r( 0 j
E z ,r s exp i qf z yŽ . Ž .j j 2' ž r 2 rN 0 0

z a .r z 2
j 2< <q y a , 29Ž .j2 /z r 2 z0 0 0

Ž . < < 2 Ž .with f z sf qk zy a zr 4z . We thus putj j 0 j 0

into evidence that the influence of the envelope
Ž Ž ..consists in two terms the two last terms of Eq. 29

which affect the amplitudes of the modes after a
propagation distance of the order of z sk r r .0 0 0 0

After this distance, the modes obey a different distri-
bution, the superposition does not obey the same
rules which modifies the total field E.
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ŽFig. 1. Normalized contour plot maximum set to 1, and lines
.scaled by 0.1 of the intensity of the field around a local maxi-

mum located close to the plane Zs0. The z-scale is a multiple of
z , while the x-scale is a multiple of r .0 0

4.2.3. Three-dimensional autocorrelation function
We can fully characterize the evolution of the

field by studying the 3DAF. By the arguments devel-
oped in Section 4 the 3DAF of the field E is equal
to the 3DAF of the mode E . Some algebra based on1

integrals of Gaussian functions then establishes that:

I0
g r, r ,z sŽ .z 2 2(w z qb zŽ . Ž .

=
< < 2 2r w z qb zŽ . Ž .

exp y 2 2 2ž r w z qb zŽ . Ž .0

< < 2r w zŽ .
y 2 2 2 /r w z qb zŽ . Ž .0

=
(2r. r b z w z y1Ž . Ž .

exp 2 2ž /r r w z qb zŽ . Ž .0 0

=expic r, r ,z ,Ž .z

b zŽ .
c r, r ,z sk zyarctanŽ .z 0 ž /w zŽ .

(2r. r w z w z y1Ž . Ž .
q 2 2r r w z qb zŽ . Ž .0 0

b zŽ .
y 2 2w z qb zŽ . Ž .

=
< < 2 < < 2r r

w z y1 yŽ .Ž . 2 2ž /r r0 0

Fig. 2. The same as in Fig. 1 for a local maximum located close to
Ž .the point Zs z , Rs 0,0 .0

Ž . Ž . Ž . Ž .where b z and w z are defined by 24b and 26
respectively. This closed-form expression provides
an accurate insight into the shapes of the speckle

Ž .spots according to Adler’s theorem 10 . Figs. 1–3
are contour plots of the functions:

< < 2g z R, x ,0 , zŽ .Ž .
x , z ¨Ž . 2< <g z R,0,0Ž .

Ž .in different points R, Z . They give the shapes of
the intensity profiles of the speckle spots located at
distance Z from the source plane and at situ R from
the beam center. When Z becomes of order z , the0

Ž .hot spots become larger Fig. 2 , and the spots which
are located at the edges of the overall envelope are
no more directed along the z-axis, but along the

Fig. 3. The same as in Fig. 1 for a local maximum located close to
Ž .the point Zs z , Rs r , 0 . The vector along which the speckle0 0 'Ž Ž . . ŽŽ . . .spot is directed is e R,Z ,z s 3 r4 r ,0,z .s 0 0 0
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Ž Ž . . 3direction imposed by the vector e R, Z , z of Rs 0

where e is the field of vectors of R2 defined by:s

(w Z y1 RŽ .
e R,Z sr .Ž .s 0 w Z rŽ . 0

Fig. 3 is an example of this feature, which can be
also put into evidence by setting

rqb z e r , zŽ . Ž .s
rs˜

2 y2(1qb z w zŽ . Ž .

in the expression of the 3DAF, so that its square
modulus reads:

I 2
02< <g r, r ,z sŽ .z 2 2w z qb zŽ . Ž .

=
< < 2 < < 22 r 2 r̃

exp y y .2 2ž /r w z r w zŽ . Ž .0 0

The speckle spots seem to follow the curvature of
the overall envelope. The schematic view of Fig. 13
describes the arrangements of the speckle spots in a
partially coherent beam.

Note that we have just dealt with the propagation
in the paraxial approximation of a speckle pattern

Ž .with flat envelope on the one hand Section 4.1 and
Ž .of a Gaussian Schell-model source Section 4.2 . The

propagation in the paraxial approximation of a gen-
eral Schell-model source will be addressed in Sec-
tion 5.3 as an application of the general results that
will be derived in the next Section.

5. Propagation governed by the Helmholtz equa-
tion

Ž .We consider in this section the general form 7
for the CAF of the input beam. The inverse Fourier

ˆ Ž .transform f defined by 12 of the degree of coher-
ence f will play a crucial role. We shall moreover
use the inverse Fourier transform of the overall
envelope:

1
yi r .u 2g u s g r e d r. 30Ž . Ž . Ž .ˆ H2 24p R

The problem at hand is the study of the small- and
large-scale properties of the beam along free propa-

gation. We shall consider a more general propagation
Ž .equation than the paraxial wave Eq. 2 which is

derived under the paraxial approximation. Indeed
this approximation is valid when r 4l . In this0 0

section we only assume that r Gl . The general0 0

equation which governs the propagation of the field
Ž .is then the Helmholtz Eq. 1 .

5.1. Speckle pattern with flat enÕelope

We first restrict ourselves to the case of stationary
fields with flat envelopes. In other words we assume
that the pattern in the plane zs0 has stationary
Gaussian statistics with degree of coherence f , whose

ˆFourier transform is f. The field in the plane zs0
can then be represented by the superposition of
modes

I a .r( 0 j
E r s exp i qf ,Ž .j jž /' rN 0

where the f are independent random variables withj
w xuniform distribution over 0, 2p , and the a ’s arej

independent random variables whose distributions
ˆhave the density f with respect to the Lebesgue

measure over R2. The expressions of the modes out
Ž .of the initial plane zs0 are imposed by Eq. 1 :

I a .r( 0 j
E r, z s exp i qf z , 31aŽ . Ž . Ž .j jž /' rN 0

2< <a j2f z sz k y . 31bŽ . Ž .)j 0 2r0

< < 2For those j whose a is larger than k r , the rootj 0 0
Ž .in 31b should be taken with a positive imaginary

part. The corresponding eigenmode is then evanes-
cent. By the arguments developed in Section 4 the
3DAF of the field E is equal to the 3DAF of the
mode E . Consequently the 3DAF of the total field1

E is stationary and given by:

2< <u. r u
2g r ,z s I exp i qz k yŽ . H )0 0 2r rŽ . � 0B 0, P 0 0

= ˆ 2f u d u,Ž .
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where Psk r . To study the longitudinal form of0 0
Ž .the 3DAF z¨g rs0, z , let us consider a spe-

Ž . Ž < <.cific example and assume that f r s2 J p r r1
y3ˆŽ < <. Ž . Ž .p r so that f u sp x u . Denoting PsBŽ0,p .

Prp and z sk r 2r2, we get:0 0 0

p 2z
2 2< <g rs0,z s I F ,Ž . 0 P ž /2z0

y2 y2 y3 y4F z s4z 2yP y8z P sin a z aŽ .Ž . Ž .P P P

y6 y2 2q8 P cos a z z P yaŽ . Ž .P P

y4 y3q8 P z 1ycos a z 32Ž .Ž .Ž .P

2 y2'Ž .where a sP 1y 1yP . In the paraxial ap-P

proximation P41 we have in this configuration:

pz
2 2 2< < <g rs0,z s I sinc , 33Ž . Ž .parax 0 ž /8z0

Ž . Ž . Ž .where sinc s s sin p s r p s . Comparing the
curves plotted in Fig. 4 it appears that the paraxial
approximation tends to enhance the true longitudinal
length of the speckle spots.

5.2. Speckle pattern with enÕelope

The field in the plane zs0 is the superposition
of the modes:

1 a .r rj 1r2E r s exp i qf g .Ž .j jž / ž /' r rN 0 0

The propagation of the mode E is governed by thej
Ž .Helmholtz Eq. 1 . In order to establish the expres-

sion of the mode E for propagation distances of thej
Ž .order zr k r r , we shall follow a standard method0 0 0

which is based on high-frequency expansions of the
solutions of partial differential equations. We intro-
duce the small parameter dsr rr and we seek the0 0

solution in the form:

a .rj
E z ,r sU z ,r exp i qk z ,Ž . Ž .j j jž /r0

where k is a real to be determined, U can bej j

expanded as:
` z r

nU z ,r s d u d ,d , 34Ž . Ž .Ýj j ,n ž /z r0 0ns0

Fig. 4. Normalized longitudinal shape of the intensity profile of a
speckle spot. The paraxial configuration is plotted in solid line; it

Ž .corresponds to the limit case P™` and is given by formula 33 .
Different non-paraxial configurations are plotted in dashed and

Ž .dotted lines; they are given by formula 32 .

Ž .the u z, r are smooth functions of their entriesj, n
2Ž .z, r , and r and z sk r r2 are the ‘natural’0 0 0 0

transverse and longitudinal scales. Substituting this
Ž .ansatz into Eq. 1 and collecting the terms of similar

orders in d , we get:
Terms of order d 0:

< < 2a j 2 2y yk qk s0,j 02r0

2y2 < <which imposes k sk 1yP a .(j 0 j

Terms of order d 1:

< < 2a k aj j j2 22 i .= q E u q k y yk u s0r z j ,0 0 j j ,12 2ž / ž /zr r00 0

Terms in u vanish by the definition of k . Itj,1 j

remains a transport equation whose solution can be
Ž 2 .written explicitly remember z sk r r2 :0 0 0

2k0
u r, z su ry a z ,0Ž .j ,0 j ,0 jž /k j

The equations obtained by collecting terms with
powers d n, nG2, establish the expression of the
corrective term u in the form of a transportj, nq1

equation for u with a source depending only onj, nq1

u . One can then recursively identify all coeffi-j, n
Ž .cients of the series expansion 34 . Thus we have
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established that the mode E after a propagationj
Ždistance z has the form up to terms of order ds

.r rr :0 0

1 a .r rj 1r2E z ,r s exp i qf z g ,Ž . Ž .j j j , z r z0ž / ž /' r rN 0 0

Ž . Ž .where z sk r r and f z is given by 31b . The0 0 0 0 j

functions g are given by:j, z

g r sg rya z ,Ž . ˘Ž .j , z j

where a is a rescaled version of a :˘ j j

a j
a s ,˘ j 2y2 < <1yP a( j

and P is the dimensionless parameter Psk r .0 0

Remember that a is normalized so that it is of orderj

1, so in the paraxial approximation P41 we get
a sa .˘ j j

The total field E is the superposition of the
modes E . By the arguments developed in Section 4j

the 3DAF of the field E is equal to the 3DAF of the
mode E . The 3DAF of the field E can then be1

easily computed:

g r, r ,zŽ .z

r u z
ˆs g y f uŽ .H

2ž /y2r z( < <0 01yP u

=
u. r

2y2 2( < <exp i qk z 1yP u d u.0ž /r0

As a straightforward application of this formula we
can identity the global envelope of the optical inten-

² < < 2Ž .: Ž .sity E z,r sg r, 0, 0 . The shape of the globalz

envelope after propagation over a distance z is the
convolution of the initial envelope by a density that

ˆis a rescaled version of f :

2 ˆ² < < :E z ,r sg ) f rrr ,Ž . Ž .z r z , P 00

2z r
ˆ ˆf r s f ,Ž .z , P 2 22 2 y2ž /2 y2 ( < << < z qP rz qP rŽ .

where ) stands for the convolution operator.

5.3. The paraxial approximation reÕisited

We now revisit the above derived results in the
framework P41 which corresponds to the paraxial
approximation. The 3DAF of the field E then reads:

r z
ˆg r, r ,z sexp ik z g yu f uŽ . Ž . Ž .Hz 0 ž /r z0 0

=
< < 2u. r u

2exp i y d u,ž /r 4z0 0

Ž .that is the limit of Eq. 35 as P™`. The overall
envelope of the intensity distribution of the beam is
the convolution of the initial envelope g by a rescaled

ˆversion of the density f :

2 ˆ² < < :E z ,r sg ) f rrr , 35aŽ . Ž . Ž .z r z 00

1 r
ˆ ˆf r s f . 35bŽ . Ž .z 2 ž /zz

ˆIf zs0, then f is the Dirac function at rs0. Wez

shall see in Section 6 a practical application of this
formula to the case of super-Gaussian shaped enve-
lope.

The speckle spots also spread out along the propa-
gation and this deformation is governed at the beam
center by a convolution of the initial form f by a
rescaled version of the function g:ˆ

g rs0, r sg ) f r rr , 36aŽ . Ž . Ž .ˆz z r z 0 00

1 r
g r s g . 36bŽ . Ž .ˆ ˆz 2 ž /zz

One can detect a symmetry in the above expressions
in the sense that propagation involves a convolution
of the inverse Fourier transform of f by g, and
reciprocally. That is why the expressions are so
simple in the case of Gaussian Schell-model sources,
since all functions are Gaussian and are consequently
self-similar by convolutions.

6. Application to the focal spot generated by a
kinoform phase plate

We shall study in this section a practically rele-
vant configuration, which originally triggered this
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work. We shall then be able to quantify very pre-
cisely the physically relevant features, and in particu-
lar the three-dimensional shape of the focal spot
generated by a KPP. In this section we do not
assume that the conditions of paraxial approximation
are satisfied. We shall revisit and discuss the results
when these conditions are satisfied in the next sec-
tion.

6.1. The field in the focal plane

First we have to compute the field in the focal
plane. The experimental configuration is as described
in Fig. 5. A monochromatic plane wave source illu-

Ž .minates a random phase plate RPP , which consists
of square elements imposing randomly a phase shift
of 0 or p. These elements are labeled by two integer

Ž . 2 2 2indices j, l which are such that j q l FN r4,
where NsDrh, D is the near field beam aperture,
and h is the length of the side of a square element of

2 w 2 xthe RPP. Thus c s pN r4 is the number ofN

elements of the RPP. We also denote by F the lens
focal length. The beamlets generated by the elements
focus onto the target; they interfere and form a
speckle pattern. The field in the focal plane can be
computed by considering the geometric framework

Ž .depicted in Fig. 6. The distance d R, r can be
obtained from the theorem of Pythagoras:

2 2 2< <Fqd R,r s Ryr qF ,Ž .Ž .
which leads to the solution:

22( < <d R,r s F q Ryr yF .Ž .
The lens is assumed to be perfect in the sense that a
plane wave is changed into a spherical wave con-

Fig. 6. Geometric configuration showing the lens plane passing
through O and the focal plane passing through OX.

verging on the focal point OX at distance F from the
lens. Thus the action of the lens is to add the phase

Ž .yk d R, 0 to the wave passing through the lens at0

point M. Accordingly, in the focal plane, the phase
X X Ž Žmismatch between the points O and M is k d R,0

. Ž ..r yd R, 0 :

k R.r0
f R,r yf R,0 sy .Ž . Ž .m m 22( < <F q R

Each element of a RPP is squared so that the patterns
generated by the beamlets all have the profile of the
diffraction function of a square aperture, that is to
say an Airy function with radius:

l F0
r s . 37Ž .0 h

Ž .Accordingly the field E in a point rs x, y of0

the focal plane zs0 is the overlap of c2 elementaryN

fields whose phases are the sums of the phase mis-

Fig. 5. Schematic view of the generation of a focal spot by a binary Random Phase Plate.
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Ž . .matches f jh, lh , r and of the random phasesm

f imposed by the RPP:j, l

1r2g rrrŽ .0
E r s expy i k d r yf ,Ž . Ž .Ž .Ý0 0 j , l j , lcN j, l

38aŽ .
2 2g r s I sinc x sinc y , 38bŽ . Ž . Ž . Ž .0

where

jxq ly hŽ .
d r sŽ .j , l 2 2 2 2(F q j q l hŽ .
If N 2 is large, the field E is a Gaussian process by0

the central limit theorem. The field can be expressed
into the standard modal representation if one chooses
a of the form:

k r0 0
a s jh ,lh ,Ž .j , l 2 2 2 2(F q j q l hŽ .

Ž .where the j, l ’s are uniformly distributed over the
Ž .disc B 0, Nr2 . Denoting by r the correlation0

radius:

l F0
r s , 39Ž .0 D
this also writes as:

v
as , 40Ž .

2y2( < <1qP v

where Psk r and v is uniformly distributed over0 0
Ž .B 0, p . Thus, after the change of variable us

2y2( < <vr 1qP v :
y22y3 y2ˆ < < y2 2f u sp 1yP u x u .Ž . Ž .Ž . .'BŽ0,pr 1qP p

The degree of coherence is obtained by an inverse
Fourier transform:

p

22 sŽ .'1q prP
< <f r s J s r ds.Ž . Ž .H 02 2y2 2p 0 1yP sŽ .

41Ž .
Ž .In the paraxial case P41 :

< <2 J p rŽ .1
<f r s . 42Ž . Ž .parax

< <p r

Note that in terms of the so-called F-number F [
a

2 FrD, the parameter P writes: PspF . Compar-
a

Fig. 7. Normalized cross shape of the intensity profile of a speckle
spot in the RPP configuration. The paraxial configuration is
plotted in solid line; it corresponds to the limit case P™` and is

Ž .given by formula 42 . Different non-paraxial configurations are
plotted in dashed and dotted lines.

ing the curves plotted in Fig. 7 it appears that the
paraxial approximation tends to reduce the true cross
radius of the speckle spots.

In case of a RPP, the elements of the phase plate
are squared so that the overall envelope is an Airy
function with radius r sl Frh. In case of a KPP,0 0

the result is the same but the overall envelope is no
more an Airy but a super-Gaussian function. From
now on we shall consider that the envelope of the
focal spot in the focal plane has super-Gaussian
shape with power n and radius r . The CAF of the0

field in the focal plane zs0 is then given by:

< < nr r
g r, r s I exp y = f . 43Ž . Ž .0 0 n ž /ž /r r0 0

6.2. Propagation beyond the focal plane

ˆŽ . Ž .The 3DAF is given by Eq. 35 with f u given
nŽ . Ž . < <by 40 and g r s I expy r . This expression0

permits to compute closed-form expressions for the
longitudinal shape of the speckle spots and for the
shape of the global envelope out of the focal plane.

The longitudinal shape of the speckle spots is
imposed by the form of the 3DAF in the z-direction.

< < 2g r,0,zŽ .zs0

24 2 24P I P z ds10
s exp i s .H4 31 ž /2zp s0

2Ž .'1q prP
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Fig. 8. Normalized longitudinal shape of the intensity profile of a
speckle spot in the RPP configuration. The paraxial configuration
is plotted in solid line; it corresponds to the limit case P™` and

Ž .is given by formula 33 . Different configurations are plotted in
dashed and dotted lines.

Remember that within the paraxial approximation
Ž .this function is given by 33 . Comparing the curves

plotted in Fig. 8 it appears that the paraxial approxi-
mation tends to reduce the true longitudinal length of
the speckle spots. This is not in contradiction with
the conclusion derived in Section 5.2, since the main
nonparaxial effect in the KPP configuration is to
modify the cross shapes of the speckle spots, which
were given as initial data in Section 5.2.

The evolution of the shape of the global envelope
is governed by the convolution described in Section
5.2:

2 ˆ² < < :E z ,r sg ) f rrr ,Ž . Ž .z r z , P 00

2z r
ˆ ˆf r s f .Ž .z , P 2 22 2 y2ž /2 y2 ( < << < z qP rz qP rŽ .

ˆŽ .Substituting the expression 40 of f , we finally get
that:

y3 y2f̂ r sp z x r .Ž . Ž .z , P BŽ0 ,p z .

We then come to the surprising conclusion that the
parameter P does not come into this expression, that
is to say the result that is obtained by applying the
paraxial approximation is correct even if the condi-
tions of paraxial approximation are not fulfilled. In
conclusion, the paraxial approximation makes the

Ž .cross resp. longitudinal shapes of the speckle spots
Ž .narrower resp. larger than they are actually. Never-

theless the shape of the global envelope predicted by
the paraxial approximation is correct.

7. The KPP case: discussion

Throughout this section we shall assume that the
paraxial approximation holds true in the sense that
r 4l or equivalently D<F. We shall revisit0 0

some of the results derived in Section 6 and discuss
their implications for ICF. As pointed out in Section
6 the results concerning the overall envelope are
valid even if the condition D<F of paraxial ap-
proximation is not fulfilled.

7.1. Rayleigh distance

The so-called Rayleigh distance is defined as the
length z which corresponds to a decay by a factor 2
of the optical intensity at the beam center. The
optical intensity at rs0 can be deduced from Eq.
Ž .35a :

² < < 2 :E z ,0 s I M zrz , 44Ž . Ž . Ž .0 n 0
2 2y2 y2 p z n r2Ž .where M z sp z H expyu du and z sn 0 0

k r r . The function M is plotted in Fig. 9 for0 0 0 n

different powers n. The Rayleigh distance is found
Ž .to be equal to: z n sa z , with in particularR n 0

a , 0.401, a , 0.420, a , 0.427 and a2 4 6 `'s 2 rp,0.450. It thus appears that this distance
is only very slightly dependent on the power n.
Indeed, as shown by Fig. 9, the larger n, the more

Fig. 9. Normalized mean intensity at the beam center versus the
Žpropagation distance for different values of the power n zs

.zr z .0
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stable the mean intensity at the beam center is for
propagation distances smaller than z rp. However,0

beyond this distance and whatever the power n, the
mean intensity at the beam center decays at a very
similar rate. When n™`, that is to say in case of a
flat-top envelope, the function M is of the form`

y2 y2Ž . Ž .M z smin 1, p z .`

7.2. OÕerall enÕelope

The Rayleigh distance, and more generally speak-
ing the behavior of the optical intensity at the beam
center, is not as relevant as one can expect, in that it
does not contain the whole information about the
evolution of the global envelope, which may evolve
very differently according to the value of the power
n. Let us now examine the deformation of the cross
shape of the envelope along the propagation. By

Ž .applying the formula 35a we get that the overall
envelope is convoluted by a density that is a rescaled
version of the inverse Fourier transform of f :

2 n ˆ² < < : < <E z ,r s I exp y . ) f . rrr ,Ž . Ž . Ž . Ž .ž /0 z r z 00

45aŽ .

y3 y2f̂ r sp z x r . 45bŽ . Ž . Ž .z BŽ0 ,p z .

By considering Fig. 10 and Fig. 11, which plot the
intensity profiles of the global envelope after differ-

Ž .Fig. 10. Normalized global envelope of the beam I s1 at0

different propagation distances 0.1 mz , ms0, . . . ,7 – Case of an0

initially Gaussian envelope ns2.

Ž .Fig. 11. Normalized global envelope of the beam I s1 at0

different propagation distances 0.1 mz , ms0, . . . ,7 – Case of an0

initially super-Gaussian envelope with power ns6.

ent propagation distances, one can observe that the
edges of the focal spot, which used to be sharp in the
focal plane zs0 in the super-Gaussian case, drasti-
cally collapse. This phenomenon is much more no-
ticeable than the decay of the intensity at the beam
center, which actually occurs after the collapse of the
edges.

7.3. Speckle radius

Let us now focus our attention to the evolution of
the fast-varying fluctuations of the speckled field
along the propagation. The CAF can be computed by

Ž .Fig. 12. Normalized speckle radius i.e. divided by r of the0

beam along the z-axis for different values of the power n.
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Fig. 13. Main characteristic distances relative to the propagation
of a partially coherent beam.

Ž .setting zs0 in Eq. 35 . At the beam center the
CAF writes:

n
I zu u. r0

g rs0,r s exp y q i .Ž . Hz ž /p z rŽ .B 0,p3 0 0

Let us now consider the behavior of g as a function
of r , which gives the intensity profiles of the hot

Ž Ž ..spots according to Adler’s results see Eq. 10 . An
efficient way to characterize this behavior is to map
out the evolution of the speckle radius of the beam
along the propagation. The speckle radius at the
beam center can be defined as the length r forc

Ž . Ž . Ž .which the CAF satisfies g 0, r e s 1r2 g 0, 0 ,ˆz c z

where e is any unitary vector. By plotting the evolu-ˆ
Ž .tion of the so-defined speckle radius Fig. 12 , one

can put into evidence the following features. The
speckle radius looks stable while z-z rp, and this0

is all the more true as the initial overall envelop is
super-Gaussian. Once the critical distance z rp is0

reached, the speckle radius rapidly increases, which
means that the hot spots spread out as the envelope

Ž .does. In the limit case n™`, the function z¨r zc
Ž . Ž .is simply: r z sb r max 1, p zrz , where b ,c c 0 0 c

Ž .0.705 is such that f b s1r2.c

8. Conclusion

The propagation of a speckle pattern with beam
radius r and correlation radius r <r can be0 0 0

characterized by two distances z sk r 2r2 and0 0 0

z sk r r :0 0 0 0

z is the length of the speckle spots in the0

z-direction. The statistical properties of the fast-vary-

Žing fluctuations of the field and in particular the
.sizes of the speckle spots and the global shape of

Ž .the beam and in particular the global radius are not
modified for propagation distances of the order of
z .0

The statistical properties of the fast-varying fluc-
tuations and the global shape of the beam evolve at
the scale z . The overall envelope is given by the0

convolution of the input envelope by a rescaled
version of the inverse Fourier transform of the input
degree of coherence. Similarly the shape of the
speckle spots is given the convolution of the input
degree of coherence by a rescaled version of the
inverse Fourier transform of the overall envelope.

Our conclusions and formulas can be applied to
the KPP configuration, and more generally they hold
true as soon as the two following conditions are
fulfilled: First the field obeys Gaussian statistics.
Second the global radius r is large compared with0

the wavelength l and with the correlation radius0

r .0
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