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1. INTRODUCTION

The propagation of incoherent light has been studied ex-
tensively. Incoherent light with a short coherence time
is of interest for coherent spectroscopy! but also for many
other applications, such as tomography in random
media,? and for use in smoothing techniques for uniform
irradiation in plasma physics.? If propagation of incoher-
ent light in linear media is now rather well understood,
the evolution of the statistical properties of incoherent
pulses in nonlinear media has been insufficiently exam-
ined. Although the literature contains papers about
time-incoherent light in nonlinear media*® and time—
space-incoherent light in nonlinear media,®® none of
them deals with the regime that is obtained by use of
time—space-incoherent pulses in large-scale laser amplifi-
ers. Indeed, the results of Refs. 6—8 rely on the assump-
tion that the fourth-order correlation functions still obey
the rules of Gaussian processes. We shall see that this is
not an adequate hypothesis in the experimental condi-
tions that correspond to high-power laser chains and that
the main effect of nonlinearity is to break the Gaussian
property. The present study was stimulated by the ini-
tial observation of an anomalous intensity saturation ef-
fect in the amplification of intense incoherent pulses in a
large Nd:glass power chain.? In what follows, we develop
a statistical theory of propagation and amplification of in-
coherent pulses to predict the probable intensity satura-
tion that could occur on future high-power laser chains
designed for inertial confinement fusion. Indeed, a high
level of irradiation uniformity is required for both direct
and indirect drive.> This criterion can be reached by
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implementation of active smoothing methods, such as in-
duced spatial incoherence with echelons,'® smoothing by
spectral dispersion,!! and smoothing by multimode opti-
cal fibers.’? All these methods involve the illumination
on the target with an intensity that is a time-varying
speckle pattern, so the time-integrated intensity averages
toward a flat profile. This paper is a contribution to the
study of optical smoothing for application to inertial con-
finement fusion. Some of the optical smoothing tech-
niques involve intensity space—time modulations in the
amplifiers. Because the amplification is planned to pro-
duce high power, we cannot neglect the nonlinear effects.

We consider here that the space-time modulations of
the pulse can be divided into a slowly varying component,
which constitutes the envelope of the beam, and fast vary-
ing modulations, which we assume obey Gaussian statis-
tics. In particular, the instantaneous spatial intensity
distribution of such a pulse is called a speckle pattern.'3
These statistical characteristics are usual and correspond
to the pulses generated by the smoothing techniques that
we named above.'* We study the propagation of incoher-
ent pulses and take into account all the phenomena that
we believe are relevant: diffraction, self-phase modula-
tion, self-focusing, filamentation, group-velocity disper-
sion (GVD), gain narrowing, and gain saturation. We
shall see that the interplay among these effects gives rise
to nontrivial results. In Section 2 we study the propaga-
tion of an incoherent pulse in a medium without gain, in
order to review the different relevant mechanisms. Sec-
tion 3 is devoted to a study of the amplification of an in-
coherent beam when the energy depletion of the host me-
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dium can be considered negligible. Finally, in Section 4
we consider the effects of the decay of the inverted popu-
lation.

2. PROPAGATION IN NONLINEAR AND
NONAMPLIFYING MEDIA

A. Formulation

Propagation of light pulses in the presence of Kerr non-
linearity has been studied extensively since the recent de-
velopment of high-power laser chains. In particular, self-
focusing of incoherent laser pulses is of great current
importance because this phenomenon is a limiting factor
for the new lasers projected for inertial confinement fu-
sion. Indeed, they are planned to deliver pulses with en-
ergies of the order of 2 MJ and powers of the order of 1
PW focusing upon spherical targets consisting of
deuterium—tritium to initiate fusion reactions. The self-
focusing dynamics results from the competition between
the nonlinear effects on the one hand and transverse dif-
fraction and GVD of the wave on the other hand. With-
out dispersion, spatial self-focusing can develop if the
nonlinear effects prevail over the natural linear diffrac-
tion. This mechanism may involve the self-contraction of
the beam whose mean-square radius will tend to zero,
which means that it collapses into a point singularity.
This phenomenon is referred to in what follows as self-
focusing, to be distinguished from filamentation, which
consists in the growth of small but hot spots whose maxi-
mal intensities are many times larger than the mean in-
tensity. Such singular dynamics may be responsible for
damage to optical components. We shall see that fila-
mentation usually grows before self-focusing for intense
incoherent pulses that present small-scale intensity fluc-
tuations.

We consider the propagation of a broadband pulse with
carrier frequency w, and wave number %, in a weakly
nonlinear dispersive medium. Within the paraxial ap-
proximation, the scalar field A satisfies the parabolic
equation!®

dA 1 PA  ky
i—-—AMA-0— - —|APA=0, @
oz 2kg at 2

where z is the wave-propagation axis and A, is the or-
thogonal Laplacian, §%/9x? + §%/dy?, which describes the
diffraction of the wave in the transverse plane. We de-
note by r the vector consisting of the transverse coordi-
nates (x, y) and by ¢ the local time in the moving-pulse
time frame. k&, = kynyg/n,, where ny is the unper-
turbed value of the index of refraction and nyy is the op-
tical Kerr coefficient that governs the response of the me-
dium to the wave amplitude. Note that the laser
intensity is proportional to the intensity of the scalar
field: Teer = ec|A|%/2, and that the usual n, is related to
nyy through the identity nyg|A|%/2 = nolje. Typical
values for laser glass are ny= 155 and ny = 2.7
X 1077 em?GW. The GVD coefficient o is related to the
dispersion factor §°k/dw?|,, through the formula o
= —k"(wg)/2. Following the dispersive properties of the
medium, the coefficient ¢ can be either positive in the
case of a so-called anomalous dispersive medium or nega-
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tive in the opposite case of a normally dispersive medium.
Here we consider mainly the latter case, because the
value of ¢ for Nd-doped glass at 1.05 um is ¢ = —3.5
X 107* ps?ecm™!. We study the propagation of an inco-
herent pulse whose statistical characteristics are locally
stationary. We consider an incident field A, whose tem-
poral and spatial slowly varying envelopes are determin-
istic, with spatial radius R (the beam radius) and tem-
poral duration T, (the pulse duration). These scales are
referred to in what follows as macroscopic scales. In the
experimental conditions that correspond to high-power la-
ser chains, R is of the order of 10-20 cm and Ty is of the
order of several nanoseconds. The incident pulse also
has fast-varying random fluctuations, with characteristic
scales p, (the correlation radius) in the spatial domain
and 7, (the coherence time) in the temporal domain.
These scales are referred to in what follows as the micro-
scopic scales. To fix the sizes of orders, we assume that
the value of p, is of the order of 2—20 mm and that 7, is of
the order of 1-5 ps. These random fluctuations are as-
sumed to obey Gaussian statistics. Their distributions
are then characterized in the plane z = 0 by the autocor-
relation function of the initial field Ay(r, ¢) := A(z
= 0, r, t), defined by

Corrip, 7) = (Ag(ry, t1)AG(ra, ta)), (2)

with R = (ry + r9)/2, T = (t1 + t9)/2, p = ry — 9, and
T=1%, — ty. We assume that the the autocorrelation
function has a locally Gaussian shape, so the expression
of Cy g r can be taken to be equal to

pl* 7?
Cogr,rlp, 7) = Io(R, Thexp—| — + —|. 3)
e T

I, :=1y(0,0) is the mean intensity of the scalar field at
the center of the beam, and R — I[((R,T) [T
— I4(R, T)] describes the spatial (temporal) shape of the
slowly varying envelope of the intensity. To simplify, we
assume that I,(R, T) is of the form

(4)

|R|P T
IO(R7 T) :IO exp— ’

_+_
Ry T%

where p and g are even integers. If p (or q) is equal to 2,
the slowly varying envelope of the intensity has a Gauss-
ian shape, and if p (or @) is larger than 2 the envelope has
a hyper-Gaussian shape.

On the one hand we focus in this paper on the evolution
of the autocorrelation function:

Cz,R,T(p’ T) = <A(25 ry, tl)A*(z’ ry, t2)>7 (5)

wherery = R + p/2, ro = R — p/2,¢t; = T + /2, and ¢,
= T — 7/2. This function is relevant because it provides
the beam radius and the pulse duration in particular and
also information about the statistical distribution of the
microscopic hot spots. On the other hand we are inter-
ested in the amplitude of the intensity fluctuations, which
can be measured by the contrast. In case of a pattern
whose random fluctuations are statistically globally sta-
tionary (i.e., with a flat mean profile), the contrast is de-
fined as the ratio of the standard deviation to the mean
value of the intensity. Here we have to take care of the
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slowly varying envelope. As a consequence we adopt a
more general definition of the contrast c¢(z), which is the
following:

c?(2)

_ IIA%z, r, )d%rdt — [[C2 g (0,0)d>RAT
B JICZ g 1(0,0)d*RAT '

In Eq. 6), [[[]|A|*(z, r, t)d%rdt]"? is the L? norm of the
intensity of the scalar field and [ [ fCiR,T(O, 0)d’RdT7V?
is the L2 norm of the slowly varying envelope of the in-
tensity of the scalar field. An equivalent expression for
the contrast, which we find by using the local spatial er-
godicity of the field, is

(6)

. TIJAIR, T) - (JA]»*(R, T)d*RdT
<) = TFTAPYR, T)PRAT

As expected, in the plane z = 0 the contrast is c(z = 0)
= 1.

B. Conserved Quantities

The nonlinear Schrodinger equation has been studied ex-
tensively for many years.' Equation (1) is a Lagrangian
system, which possesses conserved quantities. In par-
ticular, the square L2 norm of the field, i.e., the total en-
ergy of the beam defined by

E == JJ |A)%(z, r, t)d%rdt, (7)

is constant, and its value is imposed by the incident pulse:
o Lo (2 1

EO = 47TROT0 —_— F — F -1, (8)
pbg \p q

where I' is the gamma function defined by the Euler inte-
gral ['(u) = [55“ le7*ds. The Hamiltonian integral H,
defined by

2

H := 1V 2+ A
= ok, VAP + o

ks 432
pra i Z|A| d“rd¢, (9)

is another constant of motion for Eq. (1), and its value is
given by

2 20 kQIO

-+ - -
2 2 1
kOpc 7'2 22 tp tyqg

c

H, = E,. (10

The values of E and H are computed in the plane z = 0
and are valid in the approximation R, > p. and T,
> 7,. In the experimental conditions that we simulate
here, the mean intensity is so high that we usually have
H, < 0. We also introduce the evolution integral V, de-

fined by
£2
V(z) := ff (2k0|r|2 + —
g

This quantity is convenient for use in determining
whether a given initial wave will collapse into a point sin-
gularity within a finite propagation length, a point where
the amplitude blows up. V(z) is not preserved, but it sat-
isfies the virial identity’’

|A|2d2rdz. (11)
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P*V
? = 8H — kZJ |A|4d2rdt. (12)

Inasmuch as the Hamiltonian H is constant, the negativ-
ity of the Hamiltonian appears to be a sufficient condition
for collapse. Unfortunately these kinds of approaches
can provide us only with pieces of information about the
macroscopic shape of the beam but not on the rapid fluc-
tuations and the statistics of the microscopic hot spots.

C. Evolution of an Isolated Hot Spot

In this section we estimate the microscopic behavior of
the pulse by using a simple method. We actually carry
out a heuristic study of the propagation of a single hot
spot. This study is based on the following approxima-
tions: First, we consider that the hot spot does not inter-
act with its neighboring hot spots. Second, we assume
that the initial envelope of the hot spot is Gaussian. The
second approximation is partially justified when we deal
with a field with Gaussian statistics, with mean intensity
I, and correlation function exp(—|p/%/p? — 7%/7%). Indeed,
under such conditions the scalar envelope of the field of a
hot spot is roughly a Gaussian peak with spatial width
prwaMm = 2VIn(2)p, and  temporal width  TpwaM
= 2In(2)7,,'® where FWHM is the full width at half-
maximum. We therefore consider in this section an iso-
lated spot with maximum I;:

|2 ¢
A(z=0,r,t) = I%/Z exp—|— + — (13)
c TC

whose propagation is governed by the Schrodinger equa-

tion, Eq. (1). The solution is classically'® sought in the

following self-similar form, which is valid up to the col-

lapse point:

Bk £2
+

p(2)*>  7(2)*

X exp i[ ¢o(2) + ¢1(2)|r* + Bo(2)t7].
(14)
Injecting this ansatz into Eq. (1), we find that the maxi-

mal intensity and the spatial and temporal radii of the
field satisfy the following system of differential equations:

Az, r, t) = I(z)"? exp—

92p(2) 4 kol 17.p? (150)
= — , a

2% kip%(z)  2ko7(2)p%(2)

%7(z) 1602  okyli7.p?
- - , 15b
02* P 1(2)*p*(z) (o)
2
PeTe

I(z) = (15¢)

I, —.
' p¥2)m(2)
When o < 0, the temporal width of the spot always in-
creases during the propagation. The evolution of the
spatial transverse width results from the competition be-
tween linear diffraction and nonlinear self-focusing.
However, we deduce from the last term of Eq. (15a) that
the GVD interferes with self-focusing. In particular, the
cumulative effect of GVD and diffraction may counterbal-

ance self-focusing, whereas diffraction alone would not.
Actually the situation is rather complicated. We can
indeed see several kinds of behavior according to the
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value of the maximal power P, = I,7p2/2 of the hot spot
and the importance of the GVD:

1. If P, is low, less than P, = 47/(kyky), then dif-
fraction dominates self-focusing. The spot spreads out in
time and space.

2. If P, is larger than the critical value P, then the
beam spatially self-contracts and spreads out in time.
This is of course the most exciting configuration to study.

a. If the GVD is weak, |o|kop? < 72, then the evo-
lution of the maximal intensity is imposed by self-
focusing and increases.

b. If the effects of GVD are more important,
|o|kop? > 72, then the evolution of the maximal intensity
is first imposed by time spreading and decreases. But
this picture can be reversed. Indeed, if 7(z) slowly in-
creases; then self-focusing, which tends to develop faster
and faster, finally prevails. The temporal width 7(z)
should grow quickly enough that the inflexion point 7.,
= 7,P,/P_ of Eq. (15a) is reached at the point z;,¢, which
lies before the point z;, where self-focusing makes the
wave form a point singularity. If z;, < z4,., then the
pulse will never collapse and will spread out in time and
space.

D. Statistical Approach

On the one hand the global analysis in Subsection 2.B
gives indications about the evolution of the macroscopic
radii of the pulse but fails to describe the deformation of
hot spots and the probability of filamentation. On the
other hand the local study of hot spots in Subsection 2.C
is not rigorous, as the hypothesis of noninteraction of the
hot spots is obviously rough. To get an accurate descrip-
tion of the evolution of the statistics of the hot spots we
study here the evolution of the autocorrelation function,
whose expression in the plane z = 0 is given by Eq. (3).
Unfortunately it is not possible to get a closed-form equa-
tion to govern the evolution of the autocorrelation func-
tion, because nonlinearity makes the nth-order correla-
tion depend on the (n + 2)nd-order correlation. The
authors of Refs. 6—8 neglected GVD and considered the
case when the characteristic distance over which the non-
linear interaction between the field and the fluctuations
of k4|A |%/2 takes place is much greater than the size of the
region of longitudinal field correlation z, = kqpZ, which is
determined by the length of diffraction spreading of a
characteristic inhomogeneity in the cross section of an in-
coherent beam. In such conditions the statistics are only
slightly affected by the nonlinear effect, so the fourth-
order moments can be deduced from the second-order mo-
ments according to the simple rules that are valid for
Gaussian processes'® and a closed-form equation for the
correlation function can be obtained. In the experimen-
tal conditions that correspond to high-power laser chains,
the approximation discussed in Refs. 6—8 is not valid.
On the one hand the intensity of the pulse is so high that
the expected nonlinear term k,(|A,|?)z/2 is important
and reaches values of the order of 1. On the other hand
the microscopic scales are large enough that kopf and
7%/|o| are larger than the propagation length z. If we
consider the most stringent conditions, p, = 2 mm and
7. = 1ps, then kop?=25m and 72/|c] = 30m. Be-
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cause the total glass thickness never exceeds a few
meters, we can deal with these terms by using a pertur-
bation theory. But the nonlinear terms cannot be ne-
glected, and they actually prevail during the propagation.
We shall see that nonlinearity destroys the Gaussian
property of the statistics of the field. At the lowest order
the wave acquires a nonlinear phase term ¢y,
= —ky|Ay|%2/2 by self-phase modulation, so the correla-
tion function at the lowest order can be computed:

CZ,R,T(p7 T)
B Cor,1(p, 7)
272 2|p|2 2’
1+Bg(z,R,T) l1-expl —5 - —5—
Te Pe

(16)

where By(z, R, T) = koly(R, T)z/2 is the mean cumula-
tive B integral. The L? norms of the derivatives of the
field can easily be deduced from the second derivatives of
the autocorrelation function:

JJ V,A|2d2%rdt = —“ A,C. .r(0,0)d®RdT,

(17a)

9A 9%C, g1

J f — —” —— (0, 0)d®RdT.
at aT
(17b)

From Eq. (16) we deduce that the evolution of the L2
norm of the transverse gradient and the time derivative
of the field are governed by

2
d2rde

4
f f IV, Al?d%rdt = [1 + 4(37%~14)Bf(2)] ?EO,

(18a)
0A ? 2 —2/p—1/ 2 2
— @rde =[1+ 437 )Bi(2)) ?cEO,
(18b)

where By(z) = By(z, 0,0) = kylyz/2 is the mean cumu-
lative B integral at the center of the beam. From the
conservation of the Hamiltonian integral [Eq. (9)], the L*
norm of the field can be computed, so we get that the con-
trast of the pulse defined by Eq. (6) is given by

V4 gz
2+ 2 ("
c c

c(z)? =1 + 16(2/3)#PT14B(2) . (19)

0P

We conclude that the phase distribution is affected when
B(z) reaches values of order 1 but that the intensity dis-
tribution is affected by filamentation or GVD or both
when the adimensional parameter 16B,(z) [z/(kopf)
+ oz/ Tf] reaches values of order 1. It is interesting to
note that from the expansion of the autocorrelation func-
tion at order 0 with respect to the small parameters
z/(ky pf) and oz/ rf we have gotten the expansion at order
1 of the contrast.
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3. NONLINEAR AMPLIFICATION

A. Formulation

We consider in this section the propagation of a spatially
and temporally broadband incoherent pulse (carrier wave
number k) in an amplifier. We assume that the ampli-
fying medium corresponds to a homogeneously broadened
two-level system embedded in a host medium. This host
is characterized by a Kerr constant n,, whereas the two-
level system is characterized by a dephasing time T'5 and
an excited-state lifetime that we assume to be infinite be-
cause it is much longer than the pulse duration. We take
a pulse tuned to maximum amplification wavelength;
electric field A and polarization P of the host material sat-
isfy the coupled equations®®

dA 1 92A  ky P
i—-—AA-o0—5 - —|APA= =, (202
oz 2k at 2 2
JP

T, — + P = iyA,
2~ ivA,  (20b)

where 7y is the inverted population expressed in gain per
length unit. In this section we remain with the case in
which depletion of the stored energy can be neglected, so
vis kept constant. The effects of the gain saturation are
studied in Section 4. We study the propagation of an in-
coherent beam whose macroscopic and microscopic de-
scriptions were given in Subsection 2.A. We also study
the evolution of the autocorrelation function, the contrast,
and also the amplification of the energy of the pulse, de-
fined as the square L2 norm of the field [Eq. (7)].

B. Self-Phase Modulation That Is Due to Kerr
Nonlinearity

Self-phase modulation gives rise to spectral broadening,
as can be shown in the case when both diffraction and
GVD are neglected. This phenomenon was considered in
Ref. 5; as a consequence we merely state the main fea-
tures. Assuming that the gain spectrum is flat (7'
= 0), we have P = iyA. The pulse is then amplified
with the intensity small-signal gain yz and acquires a
nonlinear phase term: ¢y, = —ky|Ao|2(e” — 1)/(2y),
giving rise to spectral broadening. We find a closed-form
expression for the autocorrelation function:

Cz,R,T(p, 7

e”Cor r(p, 7)

2

272 2|p|2)
2
7 Pe

il + B%(z, R, T) [1 - exp( —_— =

)
(21)

which we recall is the Fourier transform of the spectrum,
where B (z, R, T) = B (2)Iy(R, T)/I; and

k210 eVZ -1

B,(z) = (22)

2 Y

is identified as the mean cumulative B integral at the cen-
ter of the beam.
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C. Interplay Between Amplification and Filamentation
From now on we take into account diffraction, time dis-
persion, and Kerr nonlinearity. We assume here a flat
gain spectrum 7'y = 0, so scalar field A satisfies Eq. (20a)
with P = iyA. The total energy of the beam is therefore
amplified with small-signal gain yz:

E(z) = Ege 7% (23)

To study the contrast we use the same approach as in
Subsection 2.D. The expansion of the autocorrelation
function with respect to the small parameters z/(kqp?)
and oz/72 at the lowest order is given by Eq. (21). From
Egs. (21) and (17) we deduce that the L2 norms of the de-
rivatives of the field are given by

4
f f IV, Al2d%rdt = [1 + 4(37 % V0)B2(2)] —; Ege??,

pre
(24a)
dA|* 2 ~2/p—1/q\ R2 2
ff | drd = [1+ 4(37% 1) BY(z)] ?CEOeV .
(24b)

The Hamiltonian integral H defined by Eq. (9) is no
longer a conserved quantity but satisfies the evolution
equation

JH ’)/k2
— = — ff |A|*d%rdt + yH.
dz 4

It then appears that the L* norm to the power 4 of the
field, which is expected to be amplified according to the
rate e27?, does not obey this ideal law. This dynamics is
revealed by the expression of the contrast, which exhibits
a corrective term that can be rewritten as a function of
the mean cumulative B integral for high gain, e” > 1:

c(z)?

1+ 27:(2), (25)

1 o
m(z) = 16(2/3)2’“”‘1&(2)(—2 + —2) (26)
Ykop, YT

This expansion is valid when the corrective term is
smaller than 1. The competition between filamentation
and GVD is responsible for the perturbed term in Eq. (25).
GVD in the case of a normal medium (i.e., ¢ < 0) coun-
terbalances the filamentation of the beam if ko|o|p?
= Tf. Under such conditions time spreading is faster
than transverse spatial collapse, so the intensity at the
top of the spots tends to decrease. As a numerical appli-
cation, we may think of a broadband pulse with band-
width (FWHM) 1.0 nm that corresponds to a coherence
time 7, = 1.5 ps, which also presents microscopic spatial
modulations of size p, = 5—10 mm. Let us assume that
this pulse propagates in an amplifier laser chain with
gain y = 20 cm ™! and that it gives rise to a cumulative B
integral of 1-4. It can then be verified that the corrective
term 7;(z) of Eq. (25) is negligible. However, with
smaller speckle spots, larger cumulative B integrals, or
both, filamentation and growth of the intensity fluctua-
tions could become sizable.
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D. Amplification with Gain-Narrowing Effects

In this subsection we take into account gain-narrowing ef-
fects, so the electric field and the polarization satisfy
coupled equations (20a) and (20b), but we assume that
the spectrum of the initial incoherent light is much nar-
rower than the gain spectrum, which also reads as Ty
< 7,. Within this approximation, all the wavelengths
contained in the spectrum of the incident pulse are ex-
pected to be amplified according to the optimal small-
signal gain yz. In fact such is not always the case be-
cause of spectral broadening, as we find by an asymptotic
analysis with respect to the small parameter 75/7,. We
find that the total field energy E at position z for impor-
tant gain (i.e., e?? > 1) is given by

E(z) = Eoe”{l — 2(T2/7-C)2yz
— 4(1/3)2P V(T /7,)2B%(2)[1 + na(2)1},

(27a)

72 1760

J— + P

3koyp?  3y7l

m9(2) = (4/3)*P V9B (2)

(27b)

The second term in braces in Eq. (27a) is the usual gain-
narrowing effect; the third term in braces is the new cor-
rective term that is specific to the mutual action of self-
phase modulation and finite dephasing time. The
explanation of this intensity loss saturation is the follow-
ing: New wavelengths created by the self-phase-
modulation mechanisms are scattered in the tails of the
gain profile and therefore are less amplified than ex-
pected. This also implies that intensity saturation origi-
nates essentially from spectral broadening, the relevant
parameter being the B-integral value given by Eq. (22).
These statements were confirmed both theoretically and
experimentally in Ref. 5, where the spatial fluctuations of
the beam and the associated phenomena (diffraction, self-
focusing, filamentation) were neglected. It was then
found that the amplification was governed by Eq. (27a)
with 7,(z) = 0. When we take into account all phenom-
ena, we find that correction 7,(z) has the form of Eq.
(27b). This correction is obtained by modifications of the
microscopic statistical characteristics of the field in the
transverse plane and over the time axis as a result of am-
plification. As Fig. 1 shows, the hot spots spatially col-
lapse and temporally spread out, and this behavior affects
the intensity fluctuations.

We can go deeper into the analysis. The striking ob-
servation is that the third coupled term in braces in Eq.
(27a) is due to a nonlinear phenomenon and depends on
the amplified intensity. As a consequence the hot spots
are affected more by the corresponding phenomenon and
consequently less amplified, as we show by studying the
contrast of the amplified pulse:

c(2)? = 1+ 29(2) — 32(1/2)*P*VIB2(2)(Ty/7.)%.
(28)

It then appears that the mechanism behind the third
term in braces in Eq. (27a) also gives rise to a reduction of
the contrast. This nonlinear intensity saturation in-
volves beam smoothing, which competes with filamenta-
tion.
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Relative intensity saturation

B integral

Fig. 1. Ratio of the output energy E(z) (computed by inclusion
of the gain-narrowing effects) over the expected optimal output
Ee?? as a function of the value of the B integral. The numeri-
cal values could correspond to the final section of a high-power
Nd-doped glass laser. We have taken y = 20 ecm ™}, yz = 4, \,
= 1.05 um, and Ty = 100 fs. The incident beam has a flat
macroscopic profile (i.e., p = ¢ = ©), with coherence time 7,
= 1.6 ps, which corresponds to a spectrum of full bandwidth ex-
tent (FWHM) 1.2 nm. We considered spatial modulations with
radii of 1 cm, 5 mm, and 2 mm.

4. AMPLIFICATION WITH GAIN
SATURATION

A. Main Equation

In this section we study the influence of the gain satura-
tion that is due to the decay of the population inversion
and the interplay with temporal and spatial incoherence.
The gain medium is assumed to be homogeneously broad-
ened. We choose to express the population inversion in
gain per unit length, so it is governed by the equation

vy vy i
— 4+ — = — (A*P — AP*), (29)
ot T, 2f;

where f; is the saturation fluence, which depends on the
gain medium and is proportional to the line-center fre-
quency. T, is the decay time of the upper energy level,
which is of the order of several hundred microseconds; it
is therefore many orders of magnitude larger than the
pulse duration, and the corresponding term /T, in Eq.
(29) can be neglected. Assuming also for the sake of sim-
plicity that the gain spectrum is flat, Ty = 0, we can sim-
plify Eq. (29), and its solution admits of a closed-form ex-
pression:

1
7(2, r, t) = Yo €Xp — -~ (30)

t
7 f |A|%(z, r, s)ds|.

—®

This solution is substituted into the evolution equation of
the field, so we get

dA 1 9%A 9
i—+ —AA+o—5 + —|APPA
oz 2k ot 2

. 17t
= lzﬂA exp — —[f |A|%(z, r, s)ds}. (31)

S
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B. Enhancement of Gain Saturation by Incoherence

We denote by E, = 7R % f, the saturation energy of a cy-
lindrical amplifier of radius R, per unit length. In the
following paragraphs we compare gain saturation corre-
sponding to pulses with different microscopic time—space
modulations. All pulses have the same macroscopic tem-
poral envelopes, which are uniform over the pulse dura-
tion T, and the same macroscopic spatial envelopes,
which are assumed to be circular disks with radius R, .
The input energy is therefore E, = wR (2]TOI o for all the
following configurations, where I, is the mean intensity
inside the time—space envelope. In this simplified ap-
proach we neglect the Kerr nonlinearity so we can write
simple closed-form expressions for the output energy.
We study the correct nonlinear problem in Subsection
4.C.

1. Uniform Intensity Profile

Let us consider first a beam with duration 7', whose spa-
tial profile is a circular disk with radius R,. The inten-
sity profile is assumed to be uniform inside this envelope
and to be equal to I,. Solving Eq. (31), we find that the
output energy is2’

E if(z) = E; In{1 + [exp(E(/E) — 1]exp(yo2)},
(32)

which is plotted in Fig. 2. Gain saturation becomes no-
ticeable when the ratio of the maximal energy output
E exp(yy2) over E, becomes of the order of 1. When this
ratio is smaller than 1, Eq. (32) can be expanded as

E exp(yz)

2E . (33)

E yif(2) = EOeW[l -

S

2. Speckle Pattern

We consider here the case of a pulse that comprises n sta-
tistically independent speckle patterns with mean inten-
sity I, that follow one another during pulse duration T'y.
n =1 (n > 1) corresponds to a steady state in a time

= 10f
5 1
&
3
g I
g2 5|
= L
8 .
----- c=0.71 1
------ =033 | |
s v b e bea e b by v b g boaw o bww g Lyv gy
100 300 500 700 900

Input energy (J)

Fig. 2. Output energy as function of input energy for four input
intensity profiles. The solid curve corresponds to a flat profile
with contrast ¢ as shown, and the dotted curve to a static speckle
pattern. The two other curves represent the amplification of
time-varying speckle patterns consisting of two independent
speckle patterns (dashed curve) and ten independent speckle
patterns (dotted—dashed curve). The small-signal gain is taken
to be equal to yz = 4, and the saturation energy to E|
= 5000 J.
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Fig. 3. Energy loss owing to the small-scale intensity fluctua-
tions in the regime that correspond to high depletion as a func-
tion of the contrast of the time-integrated pattern. When the in-
tensity profile is flat, the contrast is zero and the energy output is
taken as a reference.

(time-incoherent) speckle pattern. The contrast of the
time-integrated pattern is ¢ = 1/Jn; the output energy
can be computed from Eq. (31):

E(z)

:Esf In
0
n,n-1

where p,(u) = n"u exp(—u/n)/(n — 1)! is the probabil-
ity density of the normalized intensity of the time-
integrated pattern. E(z) is plotted in Fig. 2 and can be
expanded for small gain saturation as

1+

exp( 702)]pn(u)du,
(34)

(uEO)
exp| g -1

s

E exp(yz)

1-(1+¢?
( c®) oF.

E(z) = E exp(yoz)

(35)

It then appears that energy loss first grows 1 + ¢2 =1
+ 1/n times faster than in the case of a spatially uniform
beam. In the regime that corresponds to high depletion,
i.e., when the ratio E exp(yy2)/E, is larger than 1, the dif-
ference between the output energy for a the time-
integrated speckle pattern and that of a clean beam [ex-
pression (33)] with similar energy is roughly (C + Inn
- E]'«’;lljfl)Es, where C = 0.577 is Euler’s constant. In
the case of a static speckle pattern (n = 1) this difference
isreduced to CE,. Ifthe time-integrated contrast is 33%
(n = 10), then the asymptotic energy loss with respect to
a clean beam is ~0.051 E| (see Fig. 3).

C. Amplification in Kerr Media with Gain Saturation
We now consider the amplification of a time—space inco-
herent pulse that satisfies Eq. (31). To show clearly the
role of time incoherence, we do not assume in this subsec-
tion that the coherence time 7, is much shorter than the
duration T, of the pulse. More exactly, we assume that
the incident pulse consists of the succession of N indepen-
dent speckle patterns of elementary duration 7,, with
N7, =T,. The following results hold true for any inte-
ger N: Each speckle pattern obeys Gaussian statistics
with the field correlation
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IRIP |p|?
(Ao(R — p/2)A§(R + p/2)) = Iy exp| —— — — -
R? P
0
(36)

c
We consider in what follows the case in which the gain
saturation is not expected to be large, i.e., Ey exp(yyz)
< E;. Neglecting GVD, we can then perform an
asymptotic expansion with respect to the ratio
E, exp(yy2)/E, and find that the output energy is given by

E(z) = E exp(yo2)

g Boexevo)f e
SF, To[ n3(2)]; |,
(37a)
32(2/3)*"B,, (2)
73(z) = ———————. (37b)

ko?’opf

Regarding Eq. (37a), it appears that spatial incoher-
ence enhances the effects of gain saturation by a factor of
2 in the case of a time-independent speckle pattern (7,
= T,) or by even more than 2 if filamentation increases
the contrast and the factor z3. However, as is shown
also by expression (35), time incoherence can cancel this
enhancement. In the limit 7, < T, we simply find that
the energy saturation is the same as for a uniform beam.
Furthermore, the interplay among incoherence, gain
saturation, and filamentation gives rise to a modification
of the statistical distribution of the intensity fluctuations.
We can expand the expression of the contrast of the am-
plified pulse with respect to the small parameter
E, exp(yy2)/E; and find that

E exp(yoz)

c(z)2 =1+ ns(z) — (2/3)%r oF

X 1 (9/8)% ylz) + 1;—0[4 T 6(9/8)% ny(2)]!,
0

(38)

where 73(2z) is defined by Eq. (37b). This equation shows
that gain saturation competes with filamentation and can

1000
s L
g’b /./-',-‘
g 52 7
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Fig. 4. Output energy and contrast as functions of input energy
for several input pulses. The incident pulses consist of the suc-
cession of N independent speckle patterns. We assume that the
spatial macroscopic envelope is uniform (i.e., p = «) and that
n3(z) = 0.2 for E, = 25J. The small-signal gain is taken to be
equal to yz = 4, and the saturation energy to E, = 5000 J.
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succeed in reducing the contrast and smoothing the beam.
Indeed, gain saturation is more important in the places
where the amplifier corresponds to the hot spots of the
beam. These hot spots are then less amplified. How-
ever, time incoherence can average the filling of the am-
plifier to a flat profile and partially cancel this effect (see
Fig. 4).

5. CONCLUSION

We have reviewed most of the problems related to propa-
gation and amplification of nonlinear and incoherent
pulses. The general feature that appears throughout
this paper is that the competition between nonlinearity
and incoherence gives rise to an enhancement of the dif-
ferent saturation phenomena. This result is essentially
due to the basic relation (I?) = 2(I)2, which holds true
for pulses with Gaussian statistics. We then showed
that many nonlinear mechanisms can involve an anoma-
lous amplification reduction. Although the interplay and
feedback effects are complicated, they exhibit general and
common characteristics.

The nonlinear phenomena that are responsible for am-
plification saturation all involve a decrease of the contrast
by reduction of the maximal intensities of the hot spots.
As a consequence the microscopic fluctuations and the
saturation associated with spatial incoherence decrease,
whereas the induced nonlinear beam smoothing competes
with filamentation.

Furthermore, the effects of space and time incoherence
may accumulate or else cancel. We have seen that spa-
tial incoherence enhances the intensity saturation in-
volved by the interplay between spectral broadening that
is due to self-phase modulation and gain-narrowing ef-
fects. However, we have also shown that time incoher-
ence tends to lower and cancel the gain saturation that
results from the spatial fluctuations. In this complicated
picture the cumulative B integral seems to remain a key
parameter. Indeed, the interplay among incoherence,
nonlinearity, and gain narrowing effects, which appears
to be one of the most limiting phenomena, actually holds
when the cumulative B integral reaches values of the or-
der of 1.

As a concluding remark, we underline that the maxi-
mal value of the intensity of the pulse and the role of the
corresponding hot spot do not appear in the statistical ap-
proach. This is not surprising because the hottest spot
actually carries a negligible part of the total energy.
However, the maximal value of the intensity is worth con-
sidering because the hottest spot can involve damage to
the optical components or can give rise to the growth of
some laser-plasma instabilities. When a study of this ef-
fect is carried out and associated with the results deduced
from the statistical study, it will provide an accurate de-
scription of relevant phenomena.
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