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Abstract

This paper demonstrates the interest of a time-reversal method for the identification of source in a randomly layered medium.
An active source located inside the medium emits a pulse that is recorded on a small time-reversal mirror. The wave is sent back
into the medium, either numerically in a computer with the knowledge of the medium, or physically into the real medium. Our
goal is to give a precise description of the refocusing of the pulse. We identify and analyze a regime where the pulse refocuses
on a ring at the depth of the source and at a critical time. Our objective is to find the location of the source and we show that
the time-reversal refocusing contains information which can be used to this effect and which cannot be obtained by a direct
arrival-time analysis. The time-reversal technique gives a robust procedure to locate and characterize the source also in the cas
with ambient noise created by other sources located at the surface.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In the regime of separation of scales a framework for analysis of acoustic waves propagating in randomly layered
media has been set forth jii]. The scale regime we consider corresponds to wavelengths that are large relative
to the correlation length of the medium, but short relative to the depth of the source, moreover, we allow the

* Corresponding author. Tel.: +33 144278693; fax: +33 144277650.

E-mail addresses:fouque@math.ncsu.edu (J.-P. Fouque), garnier@math.jussieu.fr (J. Garnier), nachbin@impa.br (A. Nachbin),
ksolna@math.uci.edu (K. Sgina)

0165-2125/$ — see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.wavemoti.2005.03.001



J.-P. Fouque et al. / Wave Motion 42 (2005) 238-260 239

random medium to have strong fluctuations. Here, we first generalize this framework to the case with a source
inside of the medium. We then use this approach to implement time-reversal and analyze the refocusing properties
of the wave field. Time-reversal refocusing for waves propagating in inhomogeneous media has been recently
observed and studied experimentally in various contexts, e.g. ultrasound, underwater acoustics, see for instance the
review[10]. Important potential applications have been proposed in various fields, for instance ifdagirijand
communicatiorf9]. A time-reversal mirror is, roughly speaking, a device which is capable of receiving a signal in
time, keeping it in memory and sending it back into the medium in the reversed direction of time. The main effect
is the refocusing of the scattered signal after time-reversal in a random medium. Surprisingly, the refocused pulse
shape only depends on the statistical properties of the random medium, and not on the particular realization of
the medium. The full mathematical understanding, meaning both modeling of the physical problem and derivation
of the time-reversal effect, is a complex problem. The study of the one-dimensional case is now well understood
[8,20,12]as well as the three-dimensional waves in the parabolic or paraxial r¢gj&6]

Our analysis shows how time-reversal techniques can be useful for source estimation in the context of randomly
layered media. We consider linear acoustic waves propagating in three spatial dimensions:
au > 10p -
po TVP=F T TV U=0 1)
wherep is the pressurd] is the velocity,p is the density of the medium, arkithe bulk modulus. The forcing
termF is due to the source. In order to simplify the analysis we consider the case with a constant density and a
randomly fluctuating bulk modulus whichzsdependent only in the slab,(0). Note that we choodeso large that
the termination of the slab does not affect the wave field at the surface over the time period that we consider

. iz Kio(l+v(;—2)>if—L<z<0, o
K 1 if ; > 0andz < —L,

-

Ko

wherev is a zero-mean mixing process apflis a small dimensionless parameter that characterizes the ratio
between the correlation length of the medium and the typical depth of the source. The average velocity is given by
co = +/Ko/po. A point source located ax{, zs), zs < 0, generates a forcing terfat timers given by:

r—ts

F(t,x,7) =f < > 8(X — Xg)8(z — zs). (3)
Note that the time duration of the source is short and scaledadyich is large compared to the correlation length
of the medium which i€(£2). In our time-reversal setup we locate a time-reversal mirror of spatial¥i@eat the
origin. Our setup is illustrated by the cartoon giverfig. 1

In Section2 we derive an integral representation for the time reversed wave field which is obtained by taking a
Fourier transform in the time and lateral space coordinates. This reduces the problem to a family of one- dimensional
problems that can be analyzed by decomposing the wave field into right and left going waves. In $eation
consider the particular case where the source is at the sugdaee(). We carry out a careful stationary phase
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Fig. 1. Emission from a point source.
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analysis combined with classic diffusion approximation results in the limit of smarhis gives a limit with

explicit formulas for the time reversed wave field which reveal a refocusing of the pulse at a critical time at the
surfacez = 0 and on a circle centered at the time-reversal mirror and passing through the source. If the time-reversal
mirror only has point support the refocusing is uniform on the circle, while a small spatial extent mirror enables
estimation of the angle to the source. In Secome consider the important case with an internal source, also in
this case we are able to carry out the asymptotic analysis that characterizes the limiting time reversed wave field.
Even though the formulas are not explicit in this case we can still deduce the refocusing of the wave field and that it
happens at a critical time, at the depth of the source and on a circle as in the previous case. 6 3ectmtuss

a possible application to the problem of the source location and identification. In Séatiempresent numerical
experiments which illustrate the results obtained in this paper.

2. The time reversed wave field
2.1. Emission from a point source

In the scaling that we consider the typical wavelength of the source is §¥glland we use the following
specific Fourier transform and its inverse with respect to time and the transverse direction:

. 1 .
o, K, z) = /p(t, X, 2) go/e)t—ex) gy dx, Pt X, 7) = W /f?(w K, 2) e i(@/e)t=kX) 4,2 o) e,
Te)° |

wherex = (x, y) stands for the transverse spatial variables. Taking the scaled Fourier transform gifres tai)"
and p satisfy the system:

v, o . 2 i ke

—pojwv + I%Kp = efx(w) €KX 5(z — 24, “)
0. 0D A /e

—poil + 2 = e () NNz — ) ©
£ 0z
1l iw o) ot

o s %0+ % 20 6

K(z)sp_HSK V+Bz , (6)

wheref = (fx, }‘Z)T is the ordinary unscaled Fourier transform of the source

?(u)) = /]?(t) gt dr, ?(t) = % /?(a)) e 19 gy,

We deduce thatu("p) satisfy the following closed system ferL < z < zgandzs <z <0

m o 1 |IC|2)A

T2 (s )p=0 7
0z 8( K(z) 00 p (7)
ap i .

G P =0 ®
Z &

with the jumps at = zs given by

o) o
[”'\{]Zs — gkpxo(w) el(a)/‘s‘)(ts—IoXS)7 [’i)]ZS — gfz(w) el(w/E)(tS_K‘XS). (9)
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We introduce the right and left propagating wave moalaadb which are defined by

VTo(K) . .
Mo, k,2) = ; ad (a(w, K, 7) €@/EE) _ p(g, g, 7) e (@/&)0k)z) (10)
1 , .
i(w, k,7) = eV (a(w, &, 7) 8/ by, 1, 7) e (@/)0(k)2y, (11)
wherex = |«|, ;gl(;c) is the average longitudinal velocity, aig{«) is the acoustic impedance
1- C%KZ 00

=y Io(k) = ——.

So(x) - o(k) o)

Here we only consider propagating modes and ignore evanescent modes meaning tﬁét The system foa
andb can be written as

d [a e a 12
Pl (0, k,2) = 0%(w, K, 2) b (@, k, 2), (12)

£ ) = iwgo(k) ( z ) 1 _ e 2i(/e)to()z
Cloed= 2e(1— cBk?) "2 e2i(w/8)5o(k)z 1 .

Using the definition$10) and (11)pf a andb and the expressior8) for the jumps in."and p we deduce the jumps
atz = zs for the modes andb

(13)

la).,=¢ ei(w/g)(fs—'f'xs—fo('()zs)Sa(w’ K), [b]., = gei(w/s)(ts_K'XsJ’_CO(K)ZS)Sb(a)’ K) (14)

with the source contributions given by
JTo(k) 1 1
£0 V1o(x) Vo(x)

The system foa andb is associated with boundary conditionszat 0 andz = —L that are shown irFig. 2

We assume that no energy is coming frarao and—oo, so that we get the radiation conditiomgo, x, —L) = 0

and b(w, k, 0) = 0. The quantity of interest is the wave field at the surface which is completely characterized
by a(w, k, 0) sinceb(w, k, 0) = 0. We transform this boundary value problem into an initial value problem by
introducing the propagatdf(w, «, zo, z), —L < zo < z < 0, which is a family of complex X% 2 matrices solutions

of 9,Y = Q%w, «, 2)Y, starting fromY (w, «, zo, z = z0) = ldc2. By using the particular form of the matri2® in
(13)one can show thatif the column vectay §)T is solution of Eq(12)with the initial conditions(zo, z = zo) = 1,

B(z0, z = z0) = 0, then the column vectop()" is another solution linearly independent of the first solution, so

().

K- 1?x(w) -

Fo). &@@=V§0

Sa(w, k) = K- fx(a)) +

0=a(-L)| a(z;) a(z) 0= h(0)

-+

b(-1L) b(z; )i b(z)) a(0)

—_—

- L Z 0l z

Fig. 2. Boundary conditions at= —L andz = 0 corresponding to the emission from the point source located at dgpth
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Fig. 3. Reflection and transmission coefficients.

that the propagator matrixcan be written as:

Y(z0,2) = (; g) (zo, 2)-

The boundary conditions at= — L andz = 0 then imply

0 o) DY _ [a©
ek (b(—L)) - (b(z;)) 0 (b(z@) - (o ) | ()

The system determined l§{14) and (15)whose unknown arg(— L) anda(0) can be solved, and we get

a(w, k. 0) = & d@/ANis—oX) e iw/0lis T () &, 26) S, (. k) — @ISR (09, ke, 26) S, k)], (16)
(B/@)(@, x, L, 2)
) . 17
gl K 2) a(w, k, z,0)+ B(w, k, z, 0)(B/a)(w, k, =L, z)’ o
1
. . . 18
g(w7 “ Z) O((CO, K, Z, 0)+/3(va’ 2, O)(ﬂ/&)(w’ £, _L’Z) ( )

Observe the coefficient®y andTy are generalized versions of those usefd]Jras we explain now. The transmission
and reflection coefficients(w, k — L, z) andR(w, k, —L, z) for a slab [-L, z] (seeFig. 3) are given in terms aof

andg as

1
R(w,x,—L,7) = E(a), Kk, —L, 7), T(w,«, —L,7) = =(w, &k, —L, 7).
a o

We also introduc& and7 defined as the reflection and transmission coefficients for the experiment corresponding
to a right-going input wave incoming from the left (S€ig. 4). They are given in terms of andj by

- ~ 1
R(w, k,z,0) = —g(a), K, Z, 0), T(w, x,z,0)= g(w, K, 7, 0).

We can express the coefficiem®g and Ty in terms of the usual reflection and transmission coeffici®asd
T for which the asymptotic analysis of the moments has been carried i &nd will be used in subsequent

sections.

T(, k, 2, 0)R(w, k, —L,
Ry, . 2) = (EU K, 2, O)R(w, K 2) ’ (19)
1— R(w, «, z,0)R(w, k, —L, 7)
T(a), K, z,0)
Ty(w, &, 2) = < ) 20
glo. k. 2) 1— R(w, k, z, O)R(w, x, —L, 7) (20)
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Fig. 4. Adjoint reflection and transmission coefficients.

We denote the wave at the surface- 0 by (s, ps). We have in particular
1 / 1
(2re)® ) 2JIo(k)

These signals comprise a coherent front wave of duré@i@hcorresponding to the duration of the source, moreover,
a long noisy coda part that is caused by the multiple scattering by the layers. These coda waves are a part of, and
play a crucial role in, the time-reversal procedure that we describe next.

a(w, k, 0)e (@/a=X) )2 4o, di. (21)

us(t, X) =

2.2. Recording, time-reversal and reemission

The first step of the time-reversal procedure consists in recording the velocity signal @tat the mirror
M = {(x, z), x € D?, z = 0} during some time interval centeredrat 0. D° C R? is the shape of the mirror whose
center is located at poi® It turns out that as — 0 the interesting asymptotic regime arises when we record the
signal during a large time interval whose duration is of order 1 and is denotadaith 1 > 0. We consider here
the practical situation where the mirror is not very large, but of a size of the order of a few wavelengths (i.e. of order
€).
In the second step of the time-reversal procedure a piece of the recorded signal is clipped using a cut-off function
s = G1(s), where the support aff1 is included in [-1/2, t1/2]. We denote the recorded part of the waveliy
so that
. . X
lrer. X) = Us(t. )G1()G2 (=)

whereG3 is the spatial cut-off function introduced by the mirror of typical sizeith G2(x) = 1p(x) andD is the
normalized shape of the mirror. We then time reverse this piece of signal and send it back into the same medium
as illustrated irFig. 5. This means that we address a new problem defined by the acoustic eq(&tiatth the

source term

Frr(t. X, 2) = frr(. X)8(),  Frr(t X) = pocolired—1, X),

where TR stands for “time reversal” and the factgto has been added to restore the physical dimension of the
expression. Note that by linearity of the problem this factor plays no role in the analysis. In terms of right and
left-going wave modes, the system consists of the linear sy&2jfor —L < z < 0, with the boundary conditions
btr(w, k,0%) = 0, atr(w, K, —L) = 0, se€Fig. 6, and the jump condition at= 0 imposed by the sourderg

K A 1 -
[bTrR]0 = Kk - frrx(w, k) — WfTR,z(wa K).
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Mirror M
z

Fig. 5. Emission from the mirror.
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Fig. 6. Boundary conditions at= —L andz = 0 corresponding to the emission from the mirror located-at0.

Usingbtr(07) = —[bTR]0 and substituting the integral representation of the recorded velocity fieldFiptowe
deduce the boundary conditionzat 0~

1 H, ny_ < — o'\ -
brr(w, K, 07) = / O(K’K)a(w’,x’,O)Gl LY Golwk + ')’ de dic, 22)
(2m)3e 2
where
, £0CO pocov/To()Io(’)
Ho(x, k') = - KK

Vo(k)lo(x") 05 ’

the quantitya(w, k, 0) is given by(16), and the Fourier transformed window functions are defined by

Gl(w) = /Gl(t) dot dr, Gz(k) = /Gz(x) e kX g

The configuration at hand can thus be reduced to the sydt2jior —L < z < 0 with the boundary conditions
(22)atz = 0 andatr(w, k, —L) = 0 atz = —L. The Fourier transformed pressure and velocity are now given by
(10) and (11wherea andb are replaced byrr andbrg.

2.3. The time reversed wave field

The new incoming signal propagates into the same medium and produces the time reversed wave field. Here
we derive an exact integral representation for this wave field which will be exploited to analyze the refocusing
properties of the time reversed field in the following sections. Using once again the propagator we get that the wave
for —L < z < Ois given by

btr(w, k, 07)[Ry(w, «, z) (@/e)to(k)z

(xn L / 1
TR A 2= (27e)® ) 2/To(k)

+ Tg(a), K, 2) e*i(w/e)io(lc)z] e i(@/e)t—kX) 2 4, di,
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and similar expressions hold fprr(z, X, z) andvtr(z, X, z). Substituting the expression bfr(w, k, 07) into this
equation yields the following representation of the longitudinal velocity

1 Ho(ke1, k2) =, (01— w2 ~ i(— . .
1,X,7) = G G e( (watst+w1t)+(wok-Xs+w1k1-X)) /e
utr(t, X, 2) )5 / aTol) . 2(w1k1 + w2k2)
4
x | > Pj| whws dwr diy dos dea, (23)
j=1

where we define th@;’s by

Py = —glmorolist sl Ry(wp, icp, z6) Ry(w1. k1. 2) Sp(@2. ke2),
Pp = el2ol2)stertol )V Ty (g, iep, 26) Re(1, 1. 2) Salw2. e2),
Py = el2ole2)ism b0l D Ty (g, iep, 26) Ty(w1. 1. 2) Salw2. e2),
Py = —g(mentolealis=ortole)d/e Ry (wp, iy, 26) Ty(w1, k1, 2)Sp(w2, ke2).

In the following sections we study the asymptotic behavior of the time reversed wavefield the limite — 0.
We first address the case of a homogeneous medium in Sé&ction

As we shall study the problem of the source location and contrast the homogeneous and random configurations.
In the case of a random medium the analysis is carried out in the particular case where the source is located on the
surface £s = 0) in Sectiord, and in the general case where the source is inside of the megiumQ) in Section
5.

3. Homogeneous medium

We first examine the deterministic case witk= O which corresponds to a homogeneous medium. The time
reversed wave field is then described (@8) with Ry = 0 and Ty = 1. In this case only thePs term inutr
corresponding to direct transmission paths contributes. Using the nofatidi, z), for smalle the leading order
part of the three-dimensional velocity field is

L [ L ooz [t—ts— (T =T
Us(t, r) — 2—_>S_>(r — rs) ! < S (l S|/CO)> ) (24)
Artpochell — Fsl® e

These expressions are derived fr@@i) and the Weyl representation of a spherical wpM& Section 3.2.4]but
they could also be derived directly from the fact that a point source emits a spherical wave that propagates at velocity
co in a homogeneous medium.

Let us next consider the time-reversed field. For the sake of simplicity we address the case with a spatial mirror
that has point support so thé‘b(k) is a constant denoted kpg."In this case we find

CITR(tv r) — 82 (r ) rS)r G (lrl _ I> FS . f’// <(|r| - |rS|)/C0 —t—= tS) ) (25)

- = > 1
(4m)2pocd ITsI3IT I3 co €

This is a spherical wave emerging from the mirror. Its support at a giventtisngne neighborhood of the sphere
with center at0 and radius|fs| + co( + 5). Observe thafitg is of order 1 only if the signal originating from
the original source has been recorded, meaning |ttt cots lies in the support of;. Finally, note that the

longitudinal velocityutr is vanishing at the surface= 0.
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4. The random case with an exterior point source

In this section we assume that the source is located on the suxfage £ 0). We also observe the time-reversed
wave at the surfacex(z = 0). Under such conditions the generalized transmission and reflection coeffifents
and Rq are evaluated at = 0 and from their definitiong19) and (20)it follows that the transmission coefficient
Ty is equal to 1, and the reflection coefficieRy corresponds to the reflections from the whole random medium
between-L and the surface, that is to s&/— L, 0). The deterministi®; term ofutg is associated with a product
of transmission coefficients, it corresponds to recording and reemission of the directly transmitted wave field from
the source to the mirror and then observation of the wave field that is directly transmitted back to the source point.
As shown in Sectior8 this component ofitr is vanishing at the surface. Th® and P4 terms are associated
with one transmission and one reflection coefficient, they correspond respectively to (i) the wave that is directly
transmitted to the mirror, then time reversed, re-emitted into the random medium and subsequently scattered bacl
from the random medium and onto the recorder at the source point, (ii) the wave component that is reflected from
the random medium onto the mirror then time reversed and transmitted directly back to the recorder at the source
point. The P, term, the one defined in terms of a product of reflection coefficients, corresponds to the wave which
has been scattered back twice by the random medium. From the point of view of refocusing of time reversed waves
in a random medium this last term turns out to be the most interesting one.

We consider theP; term of the expressio(23) of the longitudinal velocity. Due to the fact that the reflection
coefficient only depends on the moduli of the slowness vectors, we use polar coordinatg3 and (2, 62) for
k1 = 1€y, ander = pu26,. We also represent the observation poirdand the source positioxs by roey, and
rs€,, respectively, where we denote gythe unit column vector (co8), sin@))". We show inAppendix A.2that
the reflection coefficients at two frequencies and slowness vectors are correlated only if the frequencies and the
moduli of the slowness vectors are close to each other at erdéotivated by this remark we perform the change
of variableswy = w + ¢h /2, w1 = w — eh/2, u2 = u + ex/2, andus = u — €A /2. The representation of they
term of the longitudinal velocity field becomes

G1(—h)Ga(wp(es + €9))Sp(w, pney) e9@r00)/

1 Ho(u€y, ney) =
u%%(t,x:roego,O): / (1€, j1€y)

 (27)8e 4./To(w)
« g1/2)t(t—ts)+(ho+hu)[rs c0sfs—6")—ro cosbo—O)]) p (a) + %7 w4+ %’ —L, 0)

h A
X R <a) - % " — % L o> w* 12 dr dh do dp dO A0/,

where the rapid phase is
P(w, i1, 6,0) = w[—(ts + 1) + p(rscosPs — 6') + ro cosfo — 6))].

and we have neglected lower order terms (with respectiby assuming thaklp andG are smooth functions. As

¢ — 0the asymptotic behavior of this integral is governed by its fast phase and by the product of the two reflection
coefficients which contains the effect of randomness. We first applstétiomnary phase methaghd we will deal

with the random part of the integral in a second step. The variables of the rapid phase.are, andd’. We

find that there exist stationary points only if- ts = 0 andrp = rs. Then there exist two maps of stationary points
corresponding to

() ¢ =6sandd = 6g + 7, (1) 6 =65+ mandd = 6.
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We then consider an observation titngose to—zs. Similarly we consider an observation poitvhose modulus

is close tors. This is realized by the following parameterizatios: —ts + €7, X = rs€, + eRes. We deduce that

the P1 term of the longitudinal velocity field consists of the sum of two terms corresponding to the contributions of
the two maps of stationary points and we write

Dt x, 0) = u(TlR')(z x, 0) 4+l (2, x, 0),

Ho(— 11899, 11895) 7 5
%0 =~ [ [ LRSI Gy yGaton(es - en)Sio. new)

Y 0(“5
> ei(—wT—htS+rs(Aw+h/L)—quCOS(90—¢>))ﬁ <w+ % w+ 7)“ _L 0)
2’ 2’ ’

h A
x R (a)— %,p. — 82,—L,0) w3 dr dh do dp,

Ho(neg, —11€s) = <
%0 = — e [ [ PO G Gt - eu)Sio. —uew)

v O(M)
« el(— T his—rs(hothu) touR costo-9) <w N % u+ ?’\ vy 0)

X R (w — %, w— %, —L, 0) w?’ud)\dhda)du.
The effect of the randomness is contained in the product of the reflection coefficients. The asymptotic analysis of
the autocorrelation function summarizeddppendix A.2can then be exploited to deduce the refocusing properties

of the pulse and its self-averaging property. The deterministic component of the time reversed wave givet by the
term is a spherical wave that is explicitly known and described in Se8tigsing the decorrelation propert.5)
explained inAppendix A.2 one can deduce that the contributions of Baeand P4 terms vanish in the limig¢ — O,

so it remains only to study the; term. Our stationary phase analysis presented here above shows that, for fixed
observation timéand positiorx, with z 4 ts # 0 or|X| — rs # 0, there are no stationary points angk(z, x, 0) goes

to 0 ase — 0. On the other hand, f= —ts and|x| = rs, then there are maps of stationary points so a refocused
pulse with amplitude of order 1 will be observed insaneighborhood of{ 5, rs). These results are precisely stated

in the following theorem which gives the convergence of the refocused pulse to a deterministic shape concentrated
at—ts in time and on a ring with radius in space.

Theorem 4.1.

(a) Forany7p > 0,Ro > 0,8 > 0,and(r, ro) # (—ts, rs), we have

P ( sup lutr(, X)| > 8) =20

[t—to|<&To,|IX|—rol<eRo

(b) ForanyTp > 0,Rp > 0,8 > 0,we have

I+t X| — N
MTR(I,X)—UTR< + s’| | Vs)‘>8>e O0
& &

P sup
[t+s|<eTo, [IX|—rs|<eRo
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whereUTr is the deterministic pulse shape

_ 1 [z Moo 1 2ol dewr-7,2
Ur(T, R) = (271)3/K(w’ w) {Zpoegs fx(w) + 21o(0) fz(w)} MR % dw du,

with the kernelk given by

o(u) rs) Co(u) Ho(in€gy, —i1€05)

ch 21 2 2rs

A ~ r
K(w, u) = Go(op(es, — €))G1 <ts+ 2‘;> 01 (
All the random effects on the refocused pulse are contain€d igiven by Eq.(A.3). Q1 characterizes the limit of
the autocorrelation function of the reflection coefficient. Note thatlepends only on the integrated covariance of
the fluctuations of the mediumy = f0°° E[v(0)v(z)] dz. An explicit expression foHy is
cou?®
Ho(11€5, —1€95) = So(p)co + —— €y - 5. (26)
¢o(u)
Similarly, the asymptotic deterministic shapes of the refocused transverse velocity and pressure fields consist of
the sums of the deterministic components exhibited in Se@iand of new components of the same form as
Utr resulting from the refocusing of the incoherent waves recorded at the mirror. The proof of the theorem is a
generalization of the arguments giver{& and goes along the following main steps.

e \We first consider the expected valueué][%. Using a combination of stationary phase and the asymptotic behavior
(A.4) of the autocorrelation function of the reflection coefficient we find that this expectation converges to the
limiting value given inTheorem 4.1

e \We then consider the varianceu:{f%. We write the second moment as a multiple integral involving the product
of four reflection coefficients at four different frequencies agArb). Using the decorrelation property of the
reflection coefficient we deduce that the variance goes to zero.

Note that an integral over frequency (ensured by the time domain nature of time-reversal) is needed for the stabi-
lization or the self-averaging of the refocused pulse. Applications of this result to the problem of the location of the
source will be discussed in Sectién

5. The random case with an interior point source

In this section we assume that the source is below the surface ). The time-reversal strategy is the same as
in the previous section, we obtain analogous results but the computations are more complicated and do not lead t
fully explicit formulas such as the ones presentedlieorem 4.1

5.1. The stationary phase in the random case

We consider theP; term in the representation of the longitudinal velodi®g) with arbitrary zs (depth of the
source) and (depth of the observation point). The other terms can be treated in the same way and we will collect
and discuss all the contributions in Sect®8. Once again, the generalized reflection coefficients at two different
slowness vectors are correlated only if the frequencies and moduli of the slowness vectors are close to each other ¢
ordere. We accordingly perform the same change of variables as in Settamnthat the representation of titg
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term of the longitudinal velocity field becomes
1 / Ho(uey, ney) =

w3t x = roeg. 2) = — SO B G (—h)Galwp(es + ey))Sh(w. pey)

(2m)8e CaTolp)
o H@.10.0.0) e fi/2)B(t—t5)+ G+ )7 COSs—6")—ro cOb0—6)]—[co(0)-+och () -+29)
_ h A h A
x Rq <w n % w+ % zs) Rg(w — % " % Dot u?dhdh dodudode’, (27)

wheregg(n) = —u/¢o() and the rapid phase is
P(w, 11, 6,60') = w[—(ts + 1) + 11(rs C0S0s — 6') + ro cosbo — 6)) + Lo(u)(z — zs)].

As in Sectiond we first apply the stationary phase method and we will deal with the random part of the integral (the
product of the two generalized reflection coefficients) in a second step. The variables of the rapid phage@re
ande’. We assume that # 0, that is the case where the mirror is not directly above the source. There are several
remarkable configurations.

(1) If ¢3(r + )2 # (rs — r0)? + (z — z5)?, then there is no stationary map.

(2) If c3(t + t5)? = (rs — r0)? + (z — zs5)? @ndz # zs, then there exists one map of stationary points which is three-
dimensional (i.e. the map is concentrated around critical valuésf andu with no restriction onw). The
stationary phase method gives an effective value for the intégjfalvhich is of orders%2 and consequently
contributes to a term of ordet/2 to u’Y.

(3) Ifr+1s=0,rg = rs, andz = zs, then there exist two maps of stationary points corresponding6)ds and
0 =060+, (Il) 9 = 6s+ 7 andd = Gy with no restriction onw andu.. Because of the additional degeneracy
in u, these two stationary maps are two-dimensional and the stationary phase method gives an effective value
for the integral which is of order and consequently only this configuration contributes to a term of order 1 to
u(TlF){ In other words, this component of the time reversed wave is only observed at the right#jna the
right depthzs, and on the ring with radius;. We accordingly consider an observation titrebose to—zs, and
an observation point( z) which is such that is close tozs and the modulus of is close tors. We do so by
writing 1 = —ts+ €7, X = rs€g, + eR€y, andz = zs + ¢Z. We get that, to leading order i) the P, term of
the longitudinal velocity field consists of the sum of two terms corresponding to the contributions of the two
maps of stationary points (I and I1)

uTR(t X,z) = uTR)(t X, z)+u(1” (t, X, 2),

1 / Ho(— 1€y, 11€9;) =,
2771’5}’3 /\/IO( )

« @(—0T-ouR cosfo—¢)+wio(u) Z—htstrs(a-thu)—[ho()+wig(1)A]zs)

W%, 2) = — G1(—h)Ga(wp(es, — €30))Sh(w, 1es,)

— h A h A
X Rg (a)—i— %,p,+ 82,zs> Rg (w— %,,u,— Sz,zs—i—82> a)3udkdhda)du,

" Ho(14€09, —1485,) S,
ufR (6%, 2) = 27ﬂ5r / ey Gk Ga(on e, — e))Sho, —ue,)

« @(—0T+ouR cosbo—¢)+wio() Z—hts—rs(ro+hp)—[hio(u)+wiy(u)r]zs)

— h A h A
X Rg (a)+ %,M'l' 82,Z5> Rg <a)— %,u— 82,254—82) wsudkdhdwdu.
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This integral representation of the signal shows that the autocorrelation function of the generalized reflection
coefficient defined byl17) plays a key role.

5.2. Asymptotics of the first momen'u&g

The computation of the expectation of tie term of the integral representation m@e is reduced to the
computation of the quantity

e - eh er eh gL
UQZE Rg L{)—i-?,,bb-i-?,Zs Rg a)—?,ﬂ—?,Zs—FSZ .

Using the representatioi9) of the generalized coefficieiy in terms of the usual reflection and transmission
coefficients, we obtain that

oo
= 3" E[RL gt R T R" T,

n,m=0

whereR"*1 is evaluated atd + sh/2, u + ei/2, —L, zs), R" 1 is evaluated atf — ¢h/2, i — er/2, —L, zs +

¢2), R"T is evaluated atd + eh/2, ju + €1 /2, zs, 0), andR ' T is evaluated atg — eh/2, o — er/2, zs + £ Z, 0).

Ase — 0the propagators betweerl andzs and betweens and0 become independent. By continuity with respect

to z of the limits of the moments of the reflection and transmission coefficients Aluees not play any role in the

limit of U§. Accordingly we shall obtain the limit af/§ ase — 0 by looking at the limits oft [R"+* R™*1] and

E[R" T R" T]. By using the expressions of the limit values for moments of reflection and transmission coefficients,
we obtain

s £—>O Ze2|[h{o(u)+kw{0(u) /W 11(t, 0, 1) eer d‘L’/W (z, , 1) eer dr,
n=0

whereH = cgwpi — h(1 — c3u?), W, andW, are described it\ppendix A.2 Substituting the limit o in the

(1 1)

integral representations ofrl /) anduyk ' we find that

Ho(— /1655, 1€5;) ~
257'[3”360 JTo(w)

« @@l=T—1R cosbo—¢)+to(1)Z] G1 <fs _ rs> We (-rs + (M/fO(lL))Zs> w2 du do,

IE[u(1 ) (@ x, 2)] ey

Ga(wp(ess — €5))Sp(@, pes,)

2 2
Cokt Kco

@ e—0  —1 / Ho (1894, —1€0) ~ -
Ll (1, x, 2)] =2 G — &) Sp(w, —
[utg " (1, X, 2)] Precd NG O] 2(wp(€gy — €9))Sh(w. —pes)

x dol=T+nR cosbo—¢)+00) 2] G, ( ¢ + Is We s+ rs+ (/%()zs w? dp do,
) " e
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wheret = —ts+ €7, X = rs€y, + R€s, 2 = zs+ €2, and

o
Wg’_;’_(f, w, ,bL) = Z[Wn+1(, w, U, _L1 ZS) * Wn(v w, |, Zs, O)](t)
n=0

Itis clear from the transport equatiof®.1) and (A.6)that W, andW,, vanish fort < 0 (see als¢l]), so thatW, 1

also vanishes for < 0. As a consequence the IimitEtu(TlF’f)(t, X, z)] is zero, and only the second map contributes

to the expected value @frl%.
5.3. Other components to the first momeniff

We have just addressed ti?g term of the integral representati¢®3) of utr. We now consider the three other
terms Py, P3, andP4. The terms:(Tz,% andu(ﬁ% associated withP, and P, have no stationary point becausand
zs appear with the same signs in their fast phases. Consequently these two terms do not contribute to the limit
value ofutr ase — 0. We now address the temﬁl associated withP; given by Eq.(23). In this case, the
generalized transmission coefficients at two different slowness vectors are always correlated. Consequently the
domain of integration contributing to the value of the inted28) is not restricted to am-neighborhood of the
diagonalu’ ~ . We thus split the domain of integration into two parts. The first part corresponds to a sub-domain
which is ane-neighborhood of the diagonal. It can be treated as in the previous section where we dealt With the
term. The second part contains the non-diagonal contribution to the integral which captures the coherent propagating
front as described below.

5.3.1. Diagonal contribution
diag)

The integral representation of the diagonal contriburjgg is similar to Eq.(27), but involves the product
of two generalized transmission coefficients and appropriate phases. The random component can be expanded in
terms of the usual transmission and reflection coefficients as

00 —_— —_—
TyTy= Y R'R"R'TR"T.

n,m=0

Following the same strategy as in the previous sections and using the asymptotic analysis for the expectation of
the moments of transmission-reflection coefficients presentégpendix A.2 we get that the only configuration

leading to an expected value of order onezf‘f‘ﬁd'ag) is obtained when the observation coordinatesand|x| are
in ane-neighborhood of-t5 andrs, andzs, respectively. More precisely, taking= —fs + €7, X = rs€, + eR€y,

andz = zs + ¢Z, we get that

(3.diag) >0 —1 Ho(1€s, —11€05)
Elu t, X, —
Loz 0 X 2)] 257r3rscg VTo(w)

x gol=T-nR cosbo—9)—to(1)2] (ts + ?) W <r5+(u/§o(u))z5> o2 di doo,

Ga(wp (s — €55))Sa(®, —pes,)

chit ne

where

[o/0]
We (v, 0, 1) = Z[Wn(-, w, by =L, 2 = 5) % Wy (-, 0, i, z — 5, 0)](7).
n=0
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5.3.2. Off-diagonal contribution

The off-diagonal contribution%"ﬁ) corresponds to the time reversal of the coherent front. It has been analyzed
in detail in[12] in the case of time-reversal in transmission, so by a simple generalization using the moment analysis
presented iMppendix A.1, one can deduce that the coherent time-reversed front wave propagates like a spherical
wave around? + |x|? = c(t — t.)? andt. = —ts — \/z2 + rZ/co. This analysis can be viewed as a straightforward
extension of the O’Doherty—Anstey (ODA) theory (s&ependix A.3. More precisely, if the mirror is pointwise

SO thatéz(k) = g2, thenu(TséOﬁ) converges in distribution as— 0 to

2 2 2 2
V2 IXP =+ P tt1s
“'Crcl)?h(t’ X, z) = Gl(_tc)""rl]%n(,z * KODAx.2 ( \/ S - )

coe &
whereuQ%m is the front shape in homogeneous medium computed in Segtion

“'T'?Qm (t) _ §2 (X - Xs+ ZZS)Z
X,z T 3 3
(47)%p0cy \/rZ + 220\ /X2 + 2

Koba x,; is the convolution of two standard ODA kernels. Its Fourier transform is

Roonx() = exp (L )b — v/l ] 4 Lo LDEL V12 ) 29)

= [Xs - fx (1) + zs £ (D). (28)

with w1 = (1/co)(IXI//IXI% + z2), n2 = (1/co)(rs/+/r2 + z5), Bis a Brownian motion, ang is given by(A.2).

The shape of the front is deterministic and results from a first spreading due to the propagation from the source
to the mirror cumulated with a second spreading due to the propagation from the mirror to the observation point.
The random medium also imposes a random shift which cancels out if the observation point is taken on the ring
z =zsand|X| =rs.

5.4. Summary

We sum up the previous results in the next theorem. We assume a point mirror sAbz(hht: g2. We also
assume the generic case where the mirror is not exactly above the source, that isstec €ayWe consider the
time reversed wave and observe it insaneighborhood of an arbitrary observation point o, zo). Three types
of configurations can be distinguished. The first case (a) corresponds to an observation point outside of the suppor
of the spherical front wave. The observed field has a vanishing amplitude. The second case (b) corresponds to a
observation point on the support of the spherical front wave but outside the refocusing ring. The observed field is
the coherent wave front described in terms of the ODA kernel. The third case (c) corresponds to an observation
point on the refocusing ring. The observed velocity field consists in the superposition of the coherent wave front
and of the refocusing of the recorded incoherent coda waves.

Theorem 5.1. Let us denote. = —ts — /r2 + z2/co.

(@) If c3(to — 1.)? # rg + z3, then for anyTo > 0, Rg > 0, Zo > 0,ands > 0, we have

—0
P sup lutr(to + €7, (ro + £R)eyy. 20 + £2)| > 8 | == 0.
[T1<70,|RI<R0,60€[0,27),| Z|< 2o
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(b) If c3(to — 1:)?> = r3 + 25 and 19 # —ts, then for anyTo > 0, Ro > 0, and Zo > 0, we have the following
convergence in distribution

(utr(to + €7, (ro + €R)€sy, 20 + £2))|71<To.|R|<Ro.60€[0.27).| < Zo (30)
-0 roR + 202
=5 Ga(—1) [l roesg 20 ¥ KODA oy 20l | — == —T]| (31)

co\/rcz,—kz%

whereuhom is the front shape in homogeneous medium givef2Byand Kopa is the random kernel given by
(29).

(C) If c3(to — 1.)? = r& + 23, to = —ts, and zg = zs (SOrg = rg), then for anyTo > 0, Rg > 0, Zo, ands > 0, we
have

—0
P( sup lutr(t0 + €T, (ro + eR)€yy, 20 + € 2) — UTr(T, R, 2)| > 5) =0,
|T1<T0.IR|<R0.60€[0,27),| Z|<Zo

whereUTr is the deterministic pulse shape

2

rsR + zs2
TR 2 = o 22 )
coN/rs + 2§

+ 2n) /k+( H)[ €95 f;(a))—i— lei )fz( )} g oR=T+80U12) 2 doy dps

1 A — ., i
+W/K( ){ &s X(w)+21()f()}e'(”RTZ(“)Z)wzdde

Ko(w) = G1(~1.) exp <_V0‘"2(r§"‘z~§)> ’

2C%|Zs|

- r
K*(w. 1) = G1 ls+TS
cHi

) w <r5+(u/§o(u))zS> Ho(185,. —11655)
&* .

MC% ZC%rs

Note that the kernel&o and K* depend only on the integrated covariance of the fluctuations of the megium

An explicit expression foHy is given by(26). The picture is qualitatively the same for the time-reversed transverse
velocity and pressure fields and we do write the complete expressions which are rather long. The proof of the
theorem follows the same line as the oneTbeorem 4.11n Sectionss.2-5.3we have derived the asymptotics

of the expected value of the refocused pulse on the ring. To get the deterministic nature of the limit, it remains to
compute the variance of the refocused field. It involves the computation of the forth moments of the generalized
reflection and transmission coefficients. This is done again by dgipgndix A.2

6. Source identification

In this section we indicate briefly how the results derived above are useful in solving the inverse source problem.
We assume that we are in the configuration showhRign 1 The sources emits a short pulse from an unknown
location (s, zg) at an unknown times. Our objective is to identify these unknowns and the shape of the pulse



254 J.-P. Fouque et al. / Wave Motion 42 (2005) 238-260

assuming that we observe the signal that emerges at the surface at a receiver with a small spatial extent. Such
problem can be encountered in various contexts, such as geopfygjios oceanographjd 7]. The small aperture

of the receiver in our configuration makes the identification of the source location challenging by standard methods.
The known position of the receiver is chosen as the origin. We assume that the medium is randomly layered on a
fine scale and that we know the particular realization “seen” by the wave. Our strategy is to perform a synthetic
time-reversal experiment meaning that we numerically solve the wave equation and compute the time reversec
wave field described in the paper. In the regime of our asymptotic analysis the time reversed wave will exhibit a
propagating spherical front wave and, at a precise time, an additional ring located at the depth of the source anc
passing through the source point. This is precisely statdth@orem 5.1Note that the re-propagated front wave

can be computed by simply observing the first arrival at the receiver but it does not contain any information on
the source location and time of emission. In contrast the use of the incoherent coda of the wave and time-reversa
techniques lead to an information about the depth of the source, its lateral distance from the mirror, and its emission
time. The shape of the source pulse can then be reconstructed precisely by using the shape of the first arrival an
a deconvolution process through the ODA kerf#el7) described ilAppendix A.3 Furthermore this identification

can also be performed with the presence of additional noisy sources emitting at the surface. By the results of Sectior
5.4 the additional sources only produce refocused fields at the surface. The refocused ring is therefore producec
only by the source inside the domain.

If only the statistical properties of the medium are known, but not the particular realization, the strategy would
be to estimate the kernel from the measure of the wave emerging at the receiver and the computation of the loca
autocorrelation function of the signfl]. This is a difficult problem which is a topic of future research. In other
contexts such as underwater acoudtl& the medium is not known but time-reversal can be performed physically.
The refocusing properties proved in this paper in an ideal layered setting can be used for telecommunication
purposes.

7. Numerical illustration

In this section we present a two-dimensional numerical illustration of the theory developed in this paper. Time-
reversal refocusing is a phenomenon that takes place in different wave applications. Hence to illustrate its range of
applicability we perform numerical experiments using a shallow water model. The linear two-dimensional shallow
water equationf21] are given as

Ui =—gne + fr, Vi= _gny"‘fy’ 771+(hU)x+(hV)y =0, (32)

whereU(x, y, t) and V(x, y, t) are verticallyz-averaged velocities. The free surface wave elevation is denoted
by n(x, y, t). This term represents the excess pressure about the undisturbed free susf@cdhe randomly
layered medium is represented by the disordered bottom topography thi¢ugh. By using the flux vector
¥ =", y')T = (hU, hV)T the correspondence between the shallow water and the acoustic model is more easily
establishedy, — ghVyy =0, n; + V - ¥ = 0. The simulations refer to modé2). Details of the Lagrangian nu-
merical scheme are provided[B]. We have adapted the code in order to have the data imposed through the velocity
forcing terms. The setup for the numerical experiments is givéfign7(a).

The random medium slab is locatedxat- 0. The source location is atd, ys) = (10, 0) and we place two
time-reversal (point) mirrors atfs1, ym1) = (0, 4) and &m2, ym2) = (0, —4) corresponding to the surface location
of the acoustic slab, here given by= 0. The velocity sources are such that bgttand f, have a Gaussiayi(r) =
exp(—(t — 15)2/0.02) profile of duration approximately equal to 1/3 time units. The randomly layered topography
has a correlation length of 0.1 with 40% fluctuations about the undisturbed depth. A nearly circular, pulse shaped,
wave front propagates over the random medium and time histories (for the velocity fields) are recorded at mirror
M1 and mirror M2, as displayed iRig. 8. We observe the wave front arriving, at approximatety 10.8 followed
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20

(a) (b) —

Fig. 7. (a) Schematic setup for the randomly layered topography. The sourceSgsiat (xs, ys) = (10, 0) corresponding to nodes (1600,

1000). The shaded area represents the randomly layered medium. (b) Schematic graph for the wave fronts (centered at the mirrors M1 and M2)
together with the refocusing rings (dashed curves). Each ring is at the base of a three-dimensional cone defined by the corresponding triplet (M,
M*, S). The shaded area highlights tteircle/ring intersecting thgy plane.

by a fluctuating coda. We time reverse the signals recorded within the time interval [10.8, 18.8]. In the time-reversal
experiment these are the correspondipgofiles, now at two Dirac source locations, each corresponding to a point
mirror. We repeat the numerical solution procedure and two pulse shaped fronts propagate towards the source
location.

In all numerical experiments we use a 200Q000 spatial grid withAx = Ay = 0.01. The time stepping
parameter isAt = 0.0005. These were chosen due to accuracy and not for stability reggoMde have used
reflecting boundary conditions. However the waves reflected from the side walls stay away from our region of
interest during the time interval of our study.

As mentioned before the time reversed signals, indicatédgn8, are back-propagated from the two mirrors.

The theory predicts two refocusing rings since we have two mirrors. A schematic picture for the rings’ configuration

x 10-4

2 T T r T T T r T

MIRROR 1 -

L J . . . , . -
10 11 12 13 14 15 16 17 18
x 104
1k / MIRROR 2 _
0
b VR . . . . . -
1 ih| 12 13 14 15 16 17 18
_3
5)(10

10 11 12 13 14 15 16 17 18 19 20
RECORDING TIME

Fig. 8. (Top and middle) Recorded signals at the two mirrors: dashed line reprelsehtte the solid line represents (Bottom) time history
for the wave elevation at the source location (solid line), at the image point‘Nidashed line) and M2(dotted line).
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Fig. 9. Node numbers indicated accordindrtg. 7. (a) Homogeneous medium. (b) Random medium. Snapshoi{a18.25) before the critical
time z.. (c) Refocusing observed at three bright spots: source point (spot at the middle) and two image points. Snapsht8.80. (d)
Snapshot at = 1895 > ¢,.

is given inFig. 7(b). In our particular example both rings will have the same radius since the mirrors are positioned
symmetrically with respect to the source. By no means this is a special configuration. As indicated by a grey disk in
Fig. 7(b), in a two-dimensional problem each refocusing ring will be identified by two points, namely the intersection
of the ring with thexy plane. The rings, corresponding to each mirror, will coincide (and add up) at the source point
but will also defindmage pointsorresponding to the other point of each ring’s cross-section withytpane. We

will label these image points as MAhnd M2 in connection with the notation of the corresponding point mirror.

In Fig. 7they are indicated by two grey squares near the source point. At the bottom grajgh 8fve have the

time history at the source location and also at the image pointsavid M2‘. As expected the front is the second
derivative of a Gaussian (namely 6t)). For better visualization of refocusing, along the front's largest (absolute)
value, from now on we will graph minus the value of the wave elevation. In high contrast the bright spots will
indicate regions where the absolute value of the wave amplitude is more intense.

In Fig. 9(a) we consider time-reversal in a homogeneous medium. The time reversed data has been emitted from
the two point mirrors and the two fronts have reached the source location. Obviously there are no image points,
since we are in a homogeneous medium. The central bright spot is simply due to the superposition of the two fronts.
Note that it is impossible to locate the source. The bright spot propagates (unchanged) aleagishe

In Fig. 9b) we have the wavefront right before refocusing takes place. We can observe a noticeable middle bright
point. InFig. 9c), at the critical time, we now observe a larger bright spot at the original source (refocusing) point
and also two smaller bright spots, also along the leading front. In particular the numerical refocusing was better



J.-P. Fouque et al. / Wave Motion 42 (2005) 238-260 257

at (1600, 200) giving a brighter image point. These are the image points mentioned above, and represent the other
points where the refocusing rings intersectxigg@lane. To further highlight this phenomenon we now observe the
wavefront at a (slightly) later time iRig. 9(d). We see that the middle spot is slightly weaker while the image points
have disappeared. This clearly indicates refocusing in time and space: beyond the critical time the refocusing ring
does not exist anymore. Hence the presence of the image points indicate the precise time where the central bright
spot is over the source. This illustrates the fact that the source can be located in the presence of randomness, due t«
the image points, in contrast to the homogeneous case.
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Appendix A. Statistical properties of the reflection and transmission coefficients
A.1. Moments at different slownesses

The values of the moments of the transmission coefficient at different slowness vectors is required in Section
5.3 Letus consideto < z1, 23, a central frequenay, n + n” small relative frequency shifts, ..., h,, hy, ... k),
andn + n’ different slowness vector moduli # - - - # «, # «j # - - - # «,,,. The computation of the limits of the
following moments

/

n n
lim E [[7@+ehj. k. 20.22) [[ T + £h';. &} 20, 25)
j=1 =1

has been carried out [B]. It is found that the limits are

n n'
E | ] Tett(@. k. 20, 22) | | Tett (@, €, 20, 20) |
j=1 j=1

Ten(o.20,2) = exp (iv/olan k1B — )=

whereB is a Brownian motion ang is given by(A.2). The same computation carried out with the reflection
coefficient leads to the limit

n/

n
lim E [ R@ +hj. xj. 20.22) [ [ Rl + £l';. . 20.2) | = 0.
j=1 j=1

A.2. Moments at two nearby slownesses and frequencies

Taking the expectation of the integral representation of the time reversed signal shows that the autocorrelation
function of the reflection coefficient at two nearby frequencies and slownesses plays a crucial role. As shown in
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[1,4] we have, forzg < z,

h A — h A
E[R" (a)—gz,/c—gz,z(),z> R" <a)+82,/c+82,zo,z>}

=0 [ [ Walt, 0,k 20, 2) €165 dr if i =,
0 otherwise

where the quantity,, is obtained through the system of transport equations

ow, 4 on ow,

. o = y(w, K)nZ(Wn+1 + W,_1 — 2W,), (A1)

starting fromW,,(z, w, &, zo, z = zo) = lo(n)d(t). The coefficienty are defined by

Yow?

y(@, k) = W,

yo = /0 E[(O)(2)] dz. (A2)

The case with a large slaby(— —oo) leads to explicit formulas. Applying results frdi] we get that the function
W, converges asy — —oo:

20—>—00 chro) \ cholk) J Yo, Ku \"
Wa(t, w,k,20,2) " —> Qn < 9 2 T) 0 2 On(u) = 874 [(]A—]/(co,lc)u) 1[0,00)(”)] - (A3)

Accordingly, the limit value of the expectation of the autocorrelation function of the reflection coefficient is

ch gl - ch el
ERlow——,k——,2002 | R|o+ —,k+ —,20,2

2 2 2 2
2 2
29 /oo 01 (COCS(K) ‘L’) COCS(K) eir[wkcglcfhcg{o(lc)z] dr. (A.4)
0

DenotingU$ = R(w; — €h/2, nj— &k j/2, O)R(w; + ehj/2, uj + ex;/2, 0), itis shown ir{4] that for two distinct
frequenciesv; # w» or for distinctuy # w2 one has
er78 £ e1) €0
[E[UU3] — E[USIE[US]| — O. (A5)
This decorrelation property is used in this paper to deduce the self-averaging property of the refocused pulse. We
also use the fact that the reflection coefficients at distinct frequencies decorretate 8sand that their means
average to zero to show that ti®e and P4 terms of the velocity field are vanishing as-> 0.

Cross-moments of transmission and reflection coefficients are required in Sedirtending once again the
results contained ifiL], we get that

" ch eA S eh eA
E |R'T a)—?,K—?,ZO,Z R™T a)+?,K+E,ZO,Z

. 2 2.2 .
-0 J Wa(r, 0, &, 2o, z)e't[‘o‘“")‘fh(lfco’( Ndz if m = n,
0 otherwise
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where the quantity¥,, is obtained through the system of transport equations
aw, aw,
n + 2]1 n
0z ot

= Y@, (7 + 1P Ws1 + n* W1 — (0? + (n + 1)) W) (A.6)
starting fromW,, (z, w, «, 20, z = zo) = 1o(n)8().
A.3. The coherent pulse front in the random case

In this section we compute the expression of the coherent front pulse that can be recorded at the surface. The
source is assumed to be inside the mediumzi.e: 0, so the front pulse emitted by the source propagates through
the random medium and its propagation is actually governed by the well-known O’'Doherty—Anstey (ODA) theory
[7,14]. In Section3 we computed this front pulse (E(4)) as well as the time-reversal of this front pulse (E&5))
in homogeneous medium. We now revisit these results in presence of randomness. In this case the front pulse is
modified in two ways. First its shape spreads out in a deterministic way due to multiple scattering. This spreading can
be described in terms of the convolution ODA kerkejpa [12]. Second the wave itself is not anymore deterministic
but a random time shift can be observed and described in terms of a Brownian BatMore precisely, the pulse
front that can be recorded at the surface is

1 1 ; A
us(t, X, z = 0) = e / N e—I(w/s)(t—fs—K-(X—Xs)Ho(K)Zs)KODA(Q)’ ) Sa(, ,C)wZ do d,

whereKopa(w, k) = exp(ivy (o, K)B;, + (o, k)zs/2). A stationary phase argument shows that the leading order
contribution is associated with the stationary slowness vesgter (x — Xs)/1/z2 + |X — Xs|2. If we denote the lon-
gitudinal velocity in homogeneous medium m@?m (see Eq(24)), then in presence of randomness the longitudinal
velocity field can be written as the unperturbed front convoluted with a deterministic Gaussian kernel and randomly
shifted

us(t, X,z =0) = [ugom(., = (x,0)) % Ny] (t RVAZ] BZS) ,

«/ico
N 2.2 2 2
co cot VX = Xs|¢ + 2§
N(t) = ——=exp| — L =3, A7
<) A Yxlzslm ( VX|ZS|> X |zs| A1
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