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The collective oscillations of one-dimensional(1D) repulsive Bose gas with external harmonic confinement
in two different regimes are studied. The first regime is the mean-field regime when the density is high. The
second regime is the Tonks-Girardeau regime when the density is low. We investigate the resonances under
periodic modulations of the trap potential and the effective nonlinearity. Modulations of the effective nonlinear
coefficient result from modulations of the atomic scattering length by the Feshbach resonance method or
variations of the transverse trap frequency. In the mean-field regime we predict bistability in thenonlinear
oscillations of the condensate. In the Tonks-Girardeau regime the resonance has the character of alinear
parametricresonance. In the case of rapid strong modulations of the nonlinear coefficient we find analytical
expressions for the nonlinearity managed soliton width and the frequency of the slow secondary oscillations
near the fixed point. We confirm the analytical predictions by direct numerical simulations of the 1D Gross-
Pitaevskii equation and the effective nonlinear Schrödinger equation with quintic nonlinearity and trap
potential.
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I. INTRODUCTION

Low-dimensional Bose-Einstein condensates(BEC’s) in
highly asymmetric traps have recently been achieved, which
opens new possibilities in the investigation of clouds of
bosonic and fermionic gases[1–3]. Low-dimensional
bosonic systems have many remarkable properties which dis-
tinguish them from three-dimensional(3D) systems. One of
them is the growth of the interaction when the density is
decreased. As a result the system enters into the Tonks-
Girardeau(TG) regime. The properties of the Bose gas then
coincide with the gas of free fermions. This follows from the
exact solution to the problem of hard-core bosons with re-
pulsive interaction obtained by Lieb and Liniger[4,5]. The
opposite regime with weak interaction(high-density case) is
the mean-field(MF) regime[6].

The TG and MF regimes can be characterized by the pa-
rameterg which is equal to the ratio of the interaction energy
and the kinetic energy of the ground state of gas—i.e.,g
=mg1D / s"2n1Dd. Herem is the atomic mass,g1D is the one-
dimensional coupling constant, andn1D is the 1D density.
The caseg!1 corresponds to high densities, when the de-
scription by the mean-field theory is valid. The caseg@1
corresponds to the strong repulsive interaction—the Tonks-
Girardeau regime. Modern experiments with Bose gas in
highly elongated traps now are in the regiong,1 [7].

One of the important phenomena for experiments is col-
lective oscillations of the Bose gas in different regimes. It is
particularly interesting to investigate the dynamics of breath-
ing and dipole modes for MF and TG regimes, as well as the

crossover between them. The theoretical predictions for the
frequencies in harmonic longitudinal trapsVszd=mvz

2z2/2
are obtained in Refs.[8–12]. It is shown that the frequency
of oscillations in the mean-field regime isÎ3vz, while it is
2vz in the TG regime. The last value coincides with the one
observed for the thermal gas. For the 3D cigar the frequency
is Î5/2vz. These investigations involve the combination of
the exact solution by Lieb and Liniger, the local density ap-
proximation, the hydrodynamic equations, and the extended
nonlinear Schrödinger equation. Note that information for
oscillations in the high-dimensional regimes can be found in
the review in[13]. In this work we shall study resonances in
the oscillations of 1D Bose gas in both regimes. The periodic
and random modulations of the trap potential and the atomic
scattering length are subject to our analysis.

The MF regime is described by the 1D Gross-Pitaevskii
(GP) equation with two-body interaction

i"ct = −
"2

2m
czz+ Vsz,tdc + g1DGstducu2c. s1d

This equation is derived from the 3D GP equation in a
strongly anisotropic external potential. The dynamics in the
radial direction is then averaged out[6] and the longitudinal
profile of the wave function satisfies Eq.(1). The wave func-
tion is normalized so that the number of atoms in the BEC is
N=eucst ,xdu2dx. HereVsz,td is the longitudinal trapping po-
tential, which is assumed in this work to be harmonic,
Vsz,td=mvz

2z2Fstd /2. The functionFstd describes the varia-
tion in time of the trap. The effective nonlinear coupling
constant isg1D. In the case of a harmonic transverse trap
potentialmv'

2 sx2+y2d /2, Eq. (1) is valid under the assump-
tion v'@vz and we haveg1D=2"asv'. The functionGstd*FAX: (33)561556089. Electronic mail: garnier@cict.fr
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describes the variation in time of the effective nonlinearity. A
first method to vary the effective nonlinearity is to modulate
in time the transverse trap width or equivalently the trans-
verse frequencyv'. The modulations of the transverse fre-
quency impose variations of the BEC density in thesx,yd
plane, which in turn involve variations of the nonlinear in-
teraction[14]. Nonlinear resonances in 2D BEC’s for such
modulations have been studied in[15,16]. A second method
to vary the effective nonlinearity is to modulate the atomic
scattering length by the so-called Feshbach resonance tech-
nique [17].

Theoretical and experimental studies have demonstrated
that variation of thes-wave scattering length, including a
possibility to change its sign, can be achieved by using the
Feshbach resonance

astd = asF1 +
D

B0 − BstdG ,

whereas is the value of the scattering length far from reso-
nance,Bstd is the time-dependent external magnetic field,D
is the width of the resonance, andB0 is the resonant value of
the magnetic field. Feshbach resonances have been observed
in 23Na at 853 and 907 G[17], in 7Li at 725 G [18], and in
85Rb at 164 G withD=11 G [19]. In the case of resonance
dynamics whereas is slowly varying and keeps a constant
sign, atom losses are negligible. However, atom losses may
be important when crossing the resonance[17,20]. This is
the case of the23Na condensate where it is necessary to cross
the Feshbach resonance to change the sign of the atomic
scattering length. The approach developed in this paper
should then be modified to take into account this phenom-
enon. If we are not close to the resonance, losses are small
and in a first approximation they can be taken into account
by a time-varying number of atoms in the effective varia-
tional equation for the width. This should lead to damped
secondary oscillations with a time scale larger than the oscil-
lation time. However, atoms losses can be minimized down
to a negligible level by certain experimental controls that
have been implemented in particular in the85Rb case
[21–24]. Furthermore, in Ref.[18] it is demonstrated in the
case of7Li that a change of sign of the scattering length can
be obtained without crossing the resonance by the so-called
coupled-channel method. Our study of the nonlinear man-
agement is triggered by these experimental achievements.

According to Kolomeiskyet al. [25] the TG regime is
described by the nonlinear Schrödinger equation with quintic
nonlinearity and trap potential:

i"ft = −
"2

2m
fzz+ Vsz,tdf +

p2"2

2m
ufu4f. s2d

It is known that this model does not capture every aspect of
the dynamics of an atomic gas in the TG regime; in particu-
lar, it overestimates the coherence in interference patterns at
a small number of particles[26]. However, Eq.(2) has been
shown to reproduce the collective spectrum of a gas in the
TG regime within a local density approximation[11,27].
Furthermore, we shall show that it also gives the correct
frequency of oscillations as predicted theoretically and ob-

served experimentally[7]. As our attention is focused on
resonance phenomena, Eq.(2) seems to be a good model,
both physically relevant and mathematically tractable. Using
the time-dependent variational method or the hydrodynamic
approach we shall derive the equation for the TG gas width
and study resonances in oscillations under periodic and ran-
dom modulations of the trap potential.

The paper is organized as follows. In Secs. II–IV we ana-
lyze the nonlinear resonances in gas oscillations in the mean-
field regime using the 1D mean-field GP equation. We apply
a time-dependent variational approach and introduce action-
angle variables in Sec. II. Sections III and IV are devoted to
the resonances driven by periodic and random modulations
of the trap frequency and the nonlinearity, respectively. In
Sec. V we address the same problems for the 1D TG regime.

II. MEAN-FIELD CASE

A. Variational approach

We first put Eq.(1) into dimensionless form by setting
t8=vzt, x=z/ lz, lz=Î" / smvzd, andu=Î2uasuv' /vzc. In the
following we omit primes, so the mean-field GP equation
reads

iut +
1

2
uxx −

1

2
F̃stdx2u − G̃stduuu2u = 0, s3d

where F̃std=Fst /vzd and G̃std=Gst /vzdsgnsasd. We apply a
variational approach using the Gaussian ansatz

ust,xd = A expS−
x2

2a2std
− i

bstdx2

2
− ifstdD . s4d

Note that the equation for the gas center of mass is decou-
pled from the equations for oscillations, so we did not take it
into consideration. The ansatz yields a closed-form evolution
equation for the width

att =
1

a3 − fstda +
gstd
a2 , s5d

where fstd=F̃std, gstd=PG̃std, and P=euuu2dx/Î2p
=s2uasuv'Nd / sÎ2pvzlzd. In the repulsive caseas.0 and in
the absence of modulationsF;1, G;1, we havef =1 and
g=P=N/N* with N* = sÎ2pvzlzd / s2asv'd. If the number of
atoms is large enoughN@N*, then P@1 so that we can
neglect 1/a3 in Eq. (5) and the fixed point is given by

ag = P1/3. s6d

In the dimensional variables we get

Lc = fsÎ2aslz
2v'Nd/sÎpvzdg1/3,

which agrees(up to a numerical multiplicative constant) with
the Thomas-Fermi value for the 1D BEC width.

B. Action-angle variables

We assume in this section thatgstd=g0+ g̃std where the
average nonlinear coefficientg0.0 which corresponds to
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the repulsive case, whileg̃ represents a zero-mean periodic

or random component. Similarly, we takefstd=1+ f̃std. The

unperturbed problem consists in takingg̃std= f̃std=0. Assume
thatg0 is large so that the kinetic term 1/a3 can be neglected
in Eq. (5). The energyE of the unperturbed BEC is given by

Estd =
1

2
at

2std + U„astd…, Usad =
1

2
a2 +

g0

a
. s7d

In the absence of fluctuations the energyE is an integral of
motion. The BEC width obeys a simple dynamics with
Hamiltonian structure

Hsp,qd =
1

2
p2 + Usqd, s8d

with q=a and p=at. The potentialU possesses a unique
minimum ag=g0

1/3 which is a stable fixed point with oscilla-
tion frequencyv=Î3. The corresponding ground state has
energyEg=Usagd=s3/2dg0

2/3.
If the initial conditions(as0d ,ats0d) correspond to an en-

ergy aboveEg, then the orbit of the motion is closed, corre-
sponding to periodic oscillations. In order to explicate the
periodic structure of the variablesa andat, we introduce the
action-angle variables. The orbits are determined by the en-
ergy imposed by the initial conditions

E =
1

2
at

2s0d + U„as0d….

For E.Eg, we introducea1sEd,a2sEd, the extremities of
the orbit of a for the energyE. They are the positive solu-
tions of the cubic equationUsad=E and they are given by
s j =1,2d

ajsEd = − 2S2E

3
D1/2

cosS j + s− 1d j2p

3
D ,

j = arccosFSEg

E
D3/2G .

The actionI is defined as a function of the energyE by

IsEd =
1

2p
R pdq=

1

p
E

a1sEd

a2sEd
Î2E − 2Usbddb. s9d

The motion described by Eq.(8) is periodic, with period

TsEd = R dq

p
= 2E

a1sEd

a2sEd db
Î2E − 2Usbd

, s10d

or elseTsEd=2psdI /dEdsEd. The anglef is defined as a
function of E anda by

fsE,ad = −Ea ]p

]I
dq= −

2p

TsEdE
a db
Î2E − 2Usbd

.

The transformationsE,ad→ sI ,fd can be inverted to give the
functions EsId and AsI ,fd. The BEC width oscillates be-
tween the minimum valuea1sEd and the maximum value
a2sEd. The energyE as well as the actionI are constant and

determined by the initial conditions, so the evolution of the
BEC width is governed by

astd = A„IsEd,fstd…,

fstd = fs0d −
2p

TsEd
t.

For E close to the ground-state energyEg, we have

ajsEd = ag + s− 1d jÎ2

3
sE − Egd, j = 1,2, s11d

TsEd =
2p

Î3
, IsEd =

E − Eg

Î3
, AsI,fd = ag + Î2I cossfd.

s12d

For large energiesE@Eg, we have

a1sEd = ag
2Eg

3E
, a2sEd = agÎ3E

Eg
, s13d

TsEd = p, IsEd =
E

2
, AsI,fd = Î2IÎ1 + cossfd.

s14d

III. RESONANCES IN THE MEAN-FIELD CASE DRIVEN
BY A TIME-VARYING NONLINEARITY

In this section we address the role of a time-varying non-

linearity and assume that the trap is stationaryf̃std=0. We
shall mainly focus our attention on the periodic management
Gstd=G0+G1 sinsVgtd, but we shall also consider random
fluctuations of the effective nonlinearity in the 1D GP equa-
tion.

A. High-frequency nonlinear management

We shall first address the case where the oscillation fre-
quency of the nonlinear management is much higher than the
trapping frequency—i.e.,Vg@vz. We must also assumeVg
!v' to prevent from exciting the transverse modes. In such
a case the influence of the nonlinear management is negli-
gible unless the nonlinear management amplitude is large.
The problem of nonlinearity management for BEC’s, the so-
called Feshbach resonance(FR) management, has already
been considered for 1D BEC’s in Refs.[24,28] and for 2D
BEC’s in Refs.[29,30]. In Ref.[24] the authors were the first
ones to propose a technique of FR management, based on a
time-periodic change of the magnitude and sign of the scat-
tering length by a resonantly tuned ac magnetic field. The FR
management resembles the so-called dispersion-management
(DM) technique in fiber optics, which is based on a periodic
concatenation of fibers with opposite signs of the group-
velocity dispersion. The DM technique has been shown to
support robust breathing pulses, the so-called DM solitons
celebrated in optics[31]. The FR technique is shown in Refs.
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[24,28] to drive stable localized structures, named FR-
managed matter-wave solitons. Here, in distinction from
[24,28], we give analytical expressions for the fixed point
(corresponding to the FR managed soliton) and the fre-
quency of slow secondary oscillations. More precisely, we
introduce the small parameterd=vz/Vg and we assume that
the nonlinear management amplitude is large compared to
the average value. We write accordingly

gstd = g0 +
g1

d
sinS t

d
D

and perform an asymptotic analysisd→0 following the
Kapitsa averaging theorem. We expandastd=a0std
+da1st ,t /dd+¯. We substitute this form into Eq.(5) and get
a compatibility condition which reads

a0tt
=

1

a0
3 − a0 +

g0

a0
2 +

g1
2

a0
5 , s15d

while the first-order corrective term can be expressed as

a1st,td =
g1

a0
2std

sinstd.

Note that the initial conditions for the slowly varying enve-
lope are

a0s0d = as0d, a08s0d = a8s0d −
g1

as0d2 ,

whereas0d anda8s0d are the initial values of the width and
its time derivative. The ground state can then be analytically
studied. Let us first deal with the caseg0=0. We introduce
the critical valuegc=Î44/27.0.62. It is found out that, if
ug1uøgc, then Eq.(15) admits a unique fixed point describ-
ing the width of the ground state:

ag
2 =

2
Î3

cosF1

3
arccosSg1

2

gc
2DG .

If ug1u.gc, then

ag
2 = Sg1

2

2
D1/3FS1 +Î1 −

gc
4

g1
4D1/3

+ S1 −Î1 −
gc

4

g1
4D1/3G ,

and ag increases withg1 and goes from the value 1 forg1
=0 to the asymptotic behaviorag,g1

2/3 for large g1. The
linear stability analysis of the effective equation(15) shows
that the fixed point is stable. If the initial condition is close to
this point, then the widtha oscillates around the valueag

with the oscillation frequencyv=Î6−2/ag
4 which increases

from 2 for g1=0 to its limit valueÎ6. In the general case
g0Þ0, g1Þ0, there exists a unique fixed point which is the
unique positive zero of the equationa2−a6+g0a

3+g1
2=0. It

is plotted in Fig. 1(a), and the corresponding oscillation fre-
quency is plotted in Fig. 1(b).

We have carried out numerical simulations of the ordinary
differential equation(ODE) model (5) and the partial differ-
ential equation(PDE) model(3) to check the theoretical pre-
dictions of the asymptotic analysisd→0 (see Fig. 2). Note
that stable BEC’s can be achieved with a negative(i.e., at-
tractive) or positive(i.e., repulsive) average nonlinear coef-
ficient g0.

Let us estimate the parameters for a realistic experiment.
For the 85Rb condensate withas=−0.5 nm, v'=2p
3360 Hz, vz=2p314.4 Hz, N=104, lz=100mm, Vg
=10vz, G0=1, andG1=2, we find that the condensate width
is ag<0.7lz and the frequency of the secondary oscillations
is v<2.6vz.

B. Resonant nonlinear management

In this section we address the case where the periodic
nonlinear management is resonant or close to resonant. We
shall focus our attention to the particularly interesting case
where the number of atomsN is large, which in turn implies
that the dimensionless parameterg0 is large(say, at least 5).
We shall see that a periodic modulation of the nonlinear co-
efficient

gstd = g0 + g1 sinsVtd

may dramatically modify the dynamics, and this phenom-
enon will be noticeable when the dimensionless parameterg1
is of order 1. Ifg0ù5, then Eq.(5) can be simplified into

FIG. 1. BEC width(a) and oscillation frequency(b) as predicted by the theoretical model(in dimensionless units). For g0@1 the BEC
width is g0

1/3 and the oscillation frequency isÎ3.
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att = − a +
gstd
a2 . s16d

In the absence of periodic modulationg1=0, the ground state
is ag=Î3g0 and the oscillation frequency of the BEC is

v=Î3 in dimensionless units. We now consider a periodic
modulation of the nonlinear coefficient with an amplitudeg1
smaller thang0 and with frequencyV of the same order as
v. We expanda=ag+ ã whereã satisfies

ãtt + v2ã + dã2 + lã3 = e sinsVtd + e2 sinsVtdã,

with d=−3g0
−1/3, l=4g0

−2/3, e=−g1g0
−2/3, and e2=−2g1g0

−1.
This is the equation for a nonlinear oscillator with external
and parametric drives. The analysis of this problem can be
carried out by applying the standard method described in
Ref. [32]. We consider the harmonic expansion ofã:

ã = ã1 cossnd + ã0 + ã2 coss2nd,

wherenstd=Vt+ustd. We substitute this ansatz into Eq.(16)
and we collect the terms with the same harmonic. This yields
a system of differential equations that give the zeroth and
second harmonics in terms of the first one and a compatibil-
ity condition which reads as a system of two differential
equations for the first harmonicã1 and the slow phaseu:

]tã1 = F−
e

2V
S1 +

e2
2 cos2sud

9v4 D +
e2d

v2V
S7ã1

2

24
+

e cossudã1

18v2 D
−

7e2
2ã1

24v2V
cossudGsinsud, s17d

]tu =
v2 − V2

2V
−

de2e

6v4V
cos2sud −

5e2
2

24v2V
cos2sud

−
e

2V
S1 −

e2
2 cos2sud

9v4 Dcossud
ã1

+ S−
d2e

9v4V
+

5de2

8v2V
Dcossudã1 + S 3l

8V
−

5d2

12v2V
Dã1

2.

s18d

The first harmonic is dominant so that the BEC width evo-

lution can be described at first order asastd=ag

+ ã1stdcosfVt+ustdg. The stability analysis shows very inter-
esting features. It appears that the strongest resonance occurs
when the nonlinear management has frequency

Vc = vÎ1 +
1

2
Sg1

g0
D2/3

, s19d

which is above the oscillation frequency of the BEC. Reso-
nance is still noticeable for a modulation frequencyV in a
vicinity of Vc with bandwidth of ordervsg1/g0d2/3. More
precisely, ifV,Vc, then there exists a unique fixed point to
the system(17) and (18). The value ofã1 corresponding to
this fixed point is

aosc=
1

3
f27g1 + 3Î24g0

2sv2 − V2d3 + 81g1
2g1/3

−
2g0

2/3sv2 − V2d

f27g1 + 3Î24g0
2sv2 − V2d3 + 81g1

2g1/3
.

A linear stability analysis shows that this fixed point is
stable. IfV.Vc, then there are three fixed points. A bista-
bility in the condensate oscillations occurs. The intermediate
fixed point is always unstable. The upper fixed point is the
continuation of the fixed point exhibited in the caseV,Vc.
It can be observed by increasing slowly and carefully the
modulation frequency from a frequency belowVc to a fre-
quency aboveVc. The lower fixed point is the one that is
observed when imposing without any particular precaution a
modulation with frequencyV.Vc or when perturbing the
metastable upper fixed point. The value of the stable fixed
point is

aosc= 2Î2

3
g0

2/3sV2 − v2d cosS josc

3
D ,

josc= arccos1 ug1u

F2

3
g0

2/3sV2 − v2dG3/22 .

Thus the system encounters a jump in the oscillation ampli-
tude when the modulation frequency crosses the valueVc.

FIG. 2. BEC width in the presence of high-frequency periodic modulation of the nonlinear coefficient. Heregstd=g0+2 sins10td with
g0=1 (a) and g0=−1 (b). The solid and dashed lines stand for full numerical simulations of the PDE system with two different initial
conditions(dashed lines: theoretical ground states), while the dotted lines represent the theoretical predictions.
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Evaluating the two expressions ofaosc just above and just
below the critical frequencyVc, we get that the amplitude of
the jump isaoscsVc

−d−aoscsVc
+d= ug1u1/3.

In Fig. 3 we plot the values of the oscillation amplitude as
a function of the frequency of the nonlinear management in
the caseg0=10 andg1=1. The theoretical prediction is that
the modulation frequency driving the most resonant response
is Vc.1.823 which is above the eigenfrequencyv=Î3
.1.732. We have carried out numerical experiments with the
ODE model(5) and the full PDE model(3) to check this
prediction. The results for the frequencyV=1.5 are plotted
in Fig. 4. For each frequency we can detect the amplitude of
the oscillations and report on Fig. 3 to compare with the
theoretical predictions. We have numerically determined that
the frequency driving the most important resonance is.1.84
which is indeed above the eigenfrequencyÎ3 and very close
to the theoretical predictionVc. The numerical simulations
confirm the jump in the oscillation amplitude when crossing
the critical frequency.

Let us estimate parameters for a realistic experiment. The
magnetic trap can be taken with parametersv'=2p
3103 Hz, vz=2p310 Hz, and the number of atoms of85Rb
N=53104. For the external fieldB=159 G,as=0.8 nm(re-
pulsive gas). Then, for V=18.25 Hz, we should observe
large oscillations withaosc,2.1lz, while at V=15 Hz we

should observe much smaller oscillations withaosc,0.3lz.
Practically, if we start from the fixed pointag given by Eq.
(6), we should observe oscillations of the BEC width with
the maximumag+2aosc.

C. Random fluctuations of the nonlinear coefficient

We assume here that the scattering length or the trans-
verse frequencyv' is randomly varying, inducing random
fluctuations of the nonlinear coefficient of the GP equation

gstd = g0 + g1hstd,

wherehstd is a normalized random noise with standard de-
viation of order 1 andg1.0 represents the amplitude of the
random fluctuations. This model also presents an interest for
the study of nonlinear management schemes in spatial opti-
cal solitons if the widths of the nonlinear layers in arrays of
waveguides are randomly distributed[34]. We use the angle-
action formalism introduced in Sec. II B. In the presence of
perturbations, the motion ofa is not purely oscillatory, be-
cause the energy and action are slowly varying in time. We
adopt the action-angle formalism, because it allows us to
separate the fast scale of the locally periodic motion and the
slow scale of the evolution of the action. We assume thatg1
is smaller thang0 and introduce the dimensionless parameter
d=g1/g0. Thus, after rescalingt=d2t, the action-angle vari-
ables satisfy the differential equations

dI

dt
=

1

d
hS t

d2DhfsI,fd,

df

dt
= −

1

d2vsId −
1

d
hS t

d2DhIsI,fd,

where hsI ,fd=−g0/AsI ,fd and vsId=2p /T(EsId) are
smooth functions andh is periodic with respect tof with
period 2p. Applying a standard diffusion-approximation
theorem[35] establishes that, for smalld, (Istd)tù0 has the
statistical distribution of a diffusion Markov process charac-
terized by the self-adjoint infinitesimal generator

FIG. 3. Oscillation amplitude as predicted by the theoretical
model (solid lines). Here g0=10 and g1=1. Comparisons with
simulations with the ODE model(crosses) and with the PDE model
(circles).

FIG. 4. BEC width versus time for a nonlinear management with frequencyV=1.5. We compare the theoretical envelope of the
oscillation with numerical simulations of the ODE model(a) and the PDE model(b). Hereg0=10 andg1=1. For the simulation of the PDE
model the initial state is the Gaussian ansatz withag=2.15, which corresponds to the theoretical fixed point in the absence of nonlinear
management. The solid lines represent the theoretical slowly varying envelopeāstd=ag+2aoscusinsvosct /2du.
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L =
1

2

]

]I
AsId

]

]I
,

where

AsId =
1

p
E
0

2p

E
0

`

hfsI,fdhf„I,f − vsIdt…khs0dhstdldtdf

and the brackets stand for a statistical averaging with respect
to the distribution of the noiseh. This means in particular
that the probability density function ofI satisfies the Fokker-
Planck equation]tp=Lp, pst=0,Id=dsI − I0d, whereI0 is the
initial value of the action at time 0. As long as the energy
remains close to the the one of the ground state, we can use
the asymptotic expansions(12) to expand the effective dif-
fusion coefficientAsId. In the original time scale we then
establish that the growth of the action is

Istd = SÎI0 +
Îacg1

vg0
2/3 WtD2

,

where v=Î3, Wt is a standard Brownian motion(i.e., a
Gaussian process with zero-mean and standard deviationÎt),
and

ac =E
0

`

khs0dhstdlcossvtddt. s20d

If the BEC is in the ground state at time 0, then the BEC
width a oscillates with eigenfrequencyv=Î3 between the
valuesa− anda+ which evolve slowly as

a±std = g0
1/3 ±

Î2acg1

vg0
2/3 uWtu.

As a result, taking into account the periodic modulations, the
rms BEC width is frms2sadstdg=acg1

2t / sv2g0
4/3d where the

root mean square(rms) is defined by frmssadg=ksa
−kald2l1/2.

In the white noise casekhs0dhstdl=2s2dstd, there exists a
direct way to compute the growth of the rms amplitude. It
consists in writing a closed-form system for the second-order
moments of the BEC width and its derivative. We expand

a=ag+ ã and denoteb̃=at. By considering the column vector

Xstd=skã2l ,kãb̃l ,kb̃2ld, we get by applying Itô’s calculus that
X satisfies the closed-form system

dX

dt
= M0X + M1X + V0, s21d

where

M0 = 1 0 2 0

− v2 0 1

0 − 2v2 0
2, M1 = 1 0 0 0

0 0 0

8acg1
2g0

−2 0 0
2 ,

V0 = 1 0

0

2acg1
2g0

−4/32 ,

v=Î3, ac=s2, V0 is the source term, andM1 is a stochastic
resonance term. It is negligible during the first steps of the
dynamics and becomes important only when the rms ampli-
tude becomes of the order ofag=g0

1/3. However, in that case,
the linearization procedure is not valid anymore. Integrating
Eq. (21) by neglectingM1 we get

frms2sadstdg =
acg1

2

g0
4/3v2St −

sins2vtd
2v

D . s22d

In Fig. 5 we compare the statistical predictions with a set of
numerical simulations of the PDE model. We have taken
g0=g1=10. We have adopted a stepwise constant model for
hstd. Hereh is constant over elementary intervals with du-
ration tc and takes random values uniformly distributed be-
tween −1 and 1. Withtc=0.03 we haveac=0.005. The initial
BEC width isag=g0

1/3.2.15. The diffusive growth in agree-
ment with Eq.(22) is noticeable.

IV. RESONANCES IN THE MEAN-FIELD CASE DRIVEN
BY A TIME-VARYING POTENTIAL TRAP

We first focus our attention on the periodic management
fstd=1+f1 sinsVtd, and second we address random fluctua-
tions of the trap.

A. High-frequency periodic modulation of the trap

We shall first address the case where the oscillation fre-
quency of the trap modulation is higher than the trapping
frequency—i.e.,V@v=Î3. In such a case the influence of
the modulation is negligible unless its amplitude is large. We
introduce the small parameterd=1/V and assume that the
trap modulation amplitude is large, of orderd−1. We write
accordingly

FIG. 5. Root mean square of the BEC width in the presence of
random fluctuations of the nonlinear coefficient. The theoretical re-
sult [Eq. (22)] is plotted as the dashed line. The results of numerical
simulations of the PDE model are plotted as the solid line and
correspond to the averaging of 1000 different realizations of the
random noiseh.
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fstd = 1 +
f1

d
sinS t

d
D

and perform an asymptotic analysisd→0 following the
same line as in Sec. III A. We get that the slowly varying
envelope of the BEC width obeys the effective equation

a0tt =
g0

a0
2 − a0 −

f1
2

2V2a0,

with the initial conditions

a0s0d = as0d, a08s0d = a8s0d −
f1as0d

V
.

The high-frequency modulation thus involves a shift of the
effective potential which in turn implies a shift of the ground
state(see also[36]).

B. Resonances due slow periodic variations
of the trap potential

The study is similar to the nonlinear management, and
qualitatively the same conclusion holds true, especially con-
cerning the bistable diagram. We shall only point out the
main differences. First, the strongest resonance occurs when
the periodic modulation of the trap has the frequency

Vc = vÎ1 +
1

2
uf1u2/3, s23d

which is above the eigenfrequency of the BEC. Note thatVc
does not depend on the nonlinear coefficientg0 and is pro-
portional to the eigenfrequency of the BEC. The oscillation
amplitude of the BEC turns out to be also proportional to the
BEC width. The resonant bandwidth is of orderuf1u2/3v.
More precisely, ifV,Vc, then the oscillation amplitude of
the BEC is

aosc

ag
=

1

3
f27uf1u + 3Î24sv2 − V2d3 + 81f1

2g1/3

−
2sv2 − V2d

f27uf1u + 3Î24sv2 − V2d3 + 81f1
2g1/3

,

while for V.Vc,

aosc

ag
= 2Î2

3
sV2 − v2d cosS josc

3
D ,

josc= arccos1 uf1u

F2

3
sV2 − v2dG3/22 .

Evaluating the two expressions ofaosc around the critical
frequency Vc, we get that the amplitude of the jump is
aoscsVc

−d−aoscsVc
+d= uf1u1/3g0

1/3.

C. Random fluctuations of the trap

We consider in this section a random modulation of the
trap

fstd = 1 + f1hstd,

with 0, f1!1 andh is a normalized random noise. We once
again use the action-angle formalism. We carry out an
asymptotic analysis similar to the one presented in Sec. III C,
with the small parameterf1 and the functionh given by

hsI,fd =
1

2
A2sI,fd. s24d

We then get the statistical distribution of the slow evolution
of the action in terms of a Brownian motion,

Istd = SÎI0 +
Îac

Î2v
f1g0

1/3WtD2

,

wherev=Î3 andac is given by Eq.(20). As a consequence
the BEC widtha oscillates with frequencyv between the
valuesa− anda+ which evolve slowly as

a±std = ag ±
Îac

v
f1g0

1/3uWtu.

This means that the BEC spreads out at the diffusive rate
frms2sadstdg=acf1

2g0
2/3t / s2v2d. The doubling of the width is

observed after a time of orderv2/ sacf1
2d. In the case of an

optical trap imposed by a laser field whose intensity is fluc-
tuating the typical fluctuation level is of the order ofac
,0.01. If the trap frequencyvz=2p3300 Hz, then we pre-
dict that the doubling of the width should be observed after a
time of the order of a few seconds.

V. RESONANCES IN THE TONKS-GIRARDEAU REGIME

As is shown in Ref.[25] the variety of properties of the
hard-core Bose gas with repulsive interaction in the dilute
regime can be described by the nonlinear Schrödinger(NLS)
equation with quintic nonlinearity:

i"ft = −
"2

2m
fzz+ Vsz,tdf +

p2"2

2m
ufu4f, s25d

where Vsz,td is the time-dependent trap potential. In prin-
ciple it can include an anharmonic part together with the
harmonic component. Below we will restrict ourselves to the
harmonic caseVsz,td=mvz

2z2Fstd /2. The wave function is
normalized to the number of atoms,eufu2dz=N. This equa-
tion takes correctly into account the dependence on the den-
sity of the energy of the ground state of 1D Bose gas and
reproduces correctly the collective modes[11]. It was shown
in [26] by means of numerical simulations for a small num-
ber of atoms that the interference effects are overestimated
by this equation. It should be noted that the nonlinear coef-
ficient does not depend on the scattering length—i.e., the
details of the interaction. Accordingly this parameter cannot
be managed. Introducingx=z/ lz, t8= tvz, u=Îplzf /21/4, and
lz=Î" / smvd we can write the equation in the dimensionless
form
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iut = −
1

2
uxx +

1

2
fstdx2u + uuu4u, s26d

where we have dropped the primes andfstd=Fst /vzd. As can
be expected the change in the exponent of the nonlinear term
induces strong differences between the MF regime and the
TG regime. The quintic nonlinearity is especially interesting
in the 1D case as it represents the critical nonlinearity for the
NLS equation. Indeed, for a given dimensiond, there exists a
critical exponents=2/d for the nonlinear termuuu2su which
separates two different regimes[37]. These regimes are dif-
ferent in terms of global existence, blowup, instability
growth, etc. In the 1D case, this exponent iss=2 (quintic
NLS equation); in the 2D case, it iss=1 (cubic NLS equa-
tion). In the BEC framework, this leads for the repulsive gas
to the parametric instability in a trapped 1D quintic system
similarly to the parametric instability observed in a trapped
2D cubic system. For the attractive gas this leads to the col-
lapse in a 1D quintic system with a number of atomsN.Nc
as well as the collapse in a 2D cubic system forN.Nc.

A. Variational approach

We apply the variational approach with the Gaussian an-
satz(4). We find that the equation for the phase is decoupled
from the equation for the atomic cloud width that reads

att + fstda =
C̃

a3 , s27d

where C=euuu2dx=sp /Î2dN and C̃=1+s4C2d / s33/2pd. The
stationary value of the BEC width is given by the fixed point
of Eq. (27):

ag = C̃1/4.

In the dimensional variables the BEC width isLc

=fs2pd1/4/33/8gÎNlz. Linearizing near this solution the varia-
tional equation(27), we obtain the frequency of oscillations,
2vz, which coincides with the hydrodynamic calculations
based on the local field approximation(see the next section).
Equation (27) belongs to the so-called Ermakov-Penney
equations[12,38,39] and the solution is

astd =Îb2 +
C̃

W2c2, s28d

where the functionsb and c are linearly independent solu-
tions to the equation

ytt + fstdy = 0, s29d

W=bct−cbt is the constant Wronskian, andbs0d=as0d,
b8s0d=a8s0d, cs0d=0, andc8s0d=1. For a periodic function
f, Eq. (29) is the so-called Hill equation which has been
extensively studied[40]. So, in spite of the nonlinear char-
acter of Eq.(27), the resonant response of gas has a linear
character and, in particular, the frequency of oscillations
does not depend on the amplitude.

B. Hydrodynamic approach

Equation(26) can be cast in the form of Landau hydro-
dynamic equations by settingu=Îr expsiud [11,41]. Further-
more, we get the Thomas-Fermi solution by neglecting the
kinetic energy term with respect to the interaction term, so
that the equations read

rt = − srvdx, s30d

vt = − vvx − fstdx + 2rrx, s31d

where the velocity field v is defined by ust ,xd
=exvsx8 ,tddx8. The equilibrium profile forr corresponds to a
stationary solution of the formust ,xd=exps−imtdũsxd where
the chemical potentialm is related to the normalized number
of atoms, C=euuu2dx, through the identitym=Î2C/p=N.
The equilibrium profile has a finite extension

rst,xd =
m

astd
Î1 −

x2

2a2std
s32d

for xP s−Î2a,Î2ad, the velocity field isxbstd, anda and b
satisfy the coupled equations

at = ab, s33d

bt = − b2 − fstd +
m2

a4 . s34d

Accordingly a satisfies the closed-form equation

att + fstda =
C̃

a3 , s35d

where C̃=m2=2C2/p2. Note that we have normalized the
density profile so thata/Î2 is the rms width, which is the
same as for the Gaussian ansatz(4). We can thus compare
the result(27) obtained with the variational approach using
the Gaussian ansatz with the result(35) obtained with the
hydrodynamic approach. Taking into account that the hydro-
dynamic approach is derived in the framework of a large
number of atoms to neglect the kinetic term, we get that both
approaches give the same effective equation, up to a small

mismatch in the numerical value ofC̃.0.245C2 (variational

approach) and C̃.0.203C2 (hydrodynamic approach). This
departure originates from the fact that the two stationary pro-

files do not coincide. Note that the stationary point isC̃1/4, so
that the difference is around 5% which is negligible in prac-
tical situations. Eventually, the BEC dynamics is found to be
governed by the same effective equation according to both
approaches.

C. Periodic modulations of the trap potential

The dynamics of the Hill equation driven by a periodic
modulationfstd=1+f1 sinsVtd is characterized by a paramet-
ric resonance phenomenon studied in[32]. In particular the
stability of the solutions to the Hill equation depends on the
parametersf1 and V. The theoretical prediction is that the
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stationary solutionag is unstable when the modulation fre-
quency is close enough to the eigenfrequency of the BEC or,
more precisely,

uV − 2u ø
uf1u
2

. s36d

We have performed numerical simulations of the PDE(26)
to check this theoretical prediction. We have initiated the
PDE with the initial condition given by the theoretically sta-
tionary Gaussian profile withC=5p /Î2. The initial width is
then ag.2.36. Note in Fig. 6 the presence of a cone of
instability in the sf1,Vd landscape, in full agreement with
Eq. (36). We have found numerically that the dynamics is
unstable ifuV−2uø0.55uf1u.

Note that the equation for the oscillations of a cloud of
nonineracting fermions in a time-dependent elongated trap
has the same form as Eq.(27) (see, for example,[33]). As a
consequence the linear parametric resonance for the width of
a fermionic cloud at the same frequency exists. In that sense
we can say that the Fermi-Bose mapping still exists for the
Tonks gas in an oscillating trap potential.

D. Random modulations of the trap potential

We examine in this section the effects of random modu-
lations of the trap potential of the formfstd=1+hstd whereh
is a zero-mean stochastic process. The dynamics then exhib-
its stochastic resonance as shown, for instance, in[42,43].
Contrarily to the periodic case, we always observe an expo-
nential growth of the oscillations of the BEC width, unless
the random modulation has a vanishing power spectral den-
sity in the vicinity of the resonant eigenfrequency 2. More
precisely, we get thata periodically oscillates between the
valuesag±aoscstd with aosc, which grows exponentially as

aoscstd , expSact

4
+

Îac

2
WtD , s37d

whereac=e0
`khs0dhssdlcoss2sdds andWt is a Brownian mo-

tion. If h is a white noisekhs0dhstdl=2s2dstd, then we sim-
ply haveac=s2. The long-time behavior ofa is dominated

by the deterministic exponential growth term expsact /4d
with very high probability becauseWt,Ît. Note, however,
that taking the expectation of Eq.(37) yields a different ex-
ponential growth rate

kaosc
2 l1/2std , expSac

2
tD . s38d

This is due to the fact that some exceptional realizations of
the random fluctuations may induce very strong oscillations,
and these exceptional realizations actually impose the value
of the expected value.

In the white noise casekhs0dhstdl=2s2dstd, using the
same linearization procedure as in Sec. III C we can get pre-
cise expressions for the rms amplitude as long as stochastic
resonance can be neglected:

frmssadstdg =
sag

v
Ît −

sins2vtd
2v

, s39d

wherev=2 is the eigenfrequency. The simplest way to take
into account stochastic resonance is to multiply the previous
expression by the exponential damping term expss2t /2d.
There exists a more accurate way based on Itô’s calculus.
Assume that the initial state isas0d=a0, a8s0d=0. The col-
umn vectorX=ska2l ,kabl ,kb2ldT satisfies the closed system

dX

dt
= MX, M = 1 0 2 0

− 1 0 1

2s2 − 2 0
2 , s40d

starting fromXs0d=V0=sa0
2,0 ,C̃/a0

2dT. As a first application
we can compute the exact expression of the largest eigen-
value of M which governs the exponential growth of the
modulationka2l:

lmax=
s54s2 + 6Î48 + 81s4d2/3 − 12

s54s2 + 6Î48 + 81s4d1/3
.

Note that we recover formula(38) by expanding this expres-
sion for s!1: lmax.s2+Oss6d. A straightforward numeri-
cal integration of Eq.(38) gives the exact evolution ofka2l.
We have performed numerical simulations of the PDE sys-
tem (26) with a random modulation of the trap potential to
check the predictions obtained with the variational approach.
We have taken the model wherehstd is stepwise constant
over elementary intervals with durationtc and takes random
values uniformly distributed between −1 and 1. Withtc
=0.06 we then haveac=0.01. We compare the results of
numerical simulations with the theoretical predictions in Fig.
7. We can see that Eq.(39) efficiently predicts the initial
growth of the oscillation amplitude, but it is necessary to
take into account stochastic resonance when the amplitude
becomes larger.

VI. CONCLUSION

In this work we have considered the resonances in collec-
tive oscillations of 1D Bose gas under time-dependent varia-
tions of the trap potential and the effective nonlinearity. Two

FIG. 6. Contour levels of the oscillation amplitude of the BEC
width in the TG regime in the presence of periodic modulation of
the trap potentialfstd=1+f1 sinsVtd. The gray area corresponds to
the configurations where a blowup of the solution has been numeri-
cally observed.
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regimes have been studied—the mean-field regime and the
Tonks-Girardeau regime. The analysis shows that in the
mean-field regime the resonances arenonlinearand bistabil-
ity exists in the vicinity of a critical frequency which is sig-
nificantly above the eigenfrequency of the BEC. The dynam-
ics is then characterized by stable oscillations with large
amplitudes which depend on the frequency detuning between
the frequency of the breathing mode and the modulation fre-

quency. This type of dynamics is also predicted for the
modulations of the trap as well as for the modulations of the
atomic scattering length. In the Tonks-Girardeau regime the
theory based on the nonlinear Schrödinger equation with
quintic nonlinearity predictslinear parametricresonance in
the gas oscillations. The effect reflects the Bose-Fermi map
existing for the Bose gas in this regime[11]. We also study
the oscillations under random variations of the trap potential
and effective nonlinearity. The analysis shows that the dy-
namics is nonlinear in the mean-field regime. In the Tonks-
Girardeau regime the study predicts stochastic parametric
resonance. We also investigate the dynamics of 1D Bose gas
in the mean-field regime under rapid and strong modulations
of the atomic scattering length. This problem has recently
attracted great attention since the dynamically stable nonlin-
earity managed atomic matter solitons can be generated. We
find the analytical expressions for the stationary value of the
width and frequency of the slow secondary oscillations of the
width. All theoretical predictions turn out to be well sup-
ported by direct numerical simulations of the 1D GP equa-
tion and the quintic nonlinear Schrödinger equation.
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