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Collective oscillations of one-dimensional Bose-Einstein gas in a time-varying trap potential
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The collective oscillations of one-dimensioriaD) repulsive Bose gas with external harmonic confinement
in two different regimes are studied. The first regime is the mean-field regime when the density is high. The
second regime is the Tonks-Girardeau regime when the density is low. We investigate the resonances under
periodic modulations of the trap potential and the effective nonlinearity. Modulations of the effective nonlinear
coefficient result from modulations of the atomic scattering length by the Feshbach resonance method or
variations of the transverse trap frequency. In the mean-field regime we predict bistability moritieear
oscillations of the condensate. In the Tonks-Girardeau regime the resonance has the characlieeaf a
parametricresonance. In the case of rapid strong modulations of the nonlinear coefficient we find analytical
expressions for the nonlinearity managed soliton width and the frequency of the slow secondary oscillations
near the fixed point. We confirm the analytical predictions by direct numerical simulations of the 1D Gross-
Pitaevskii equation and the effective nonlinear Schrédinger equation with quintic nonlinearity and trap
potential.
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[. INTRODUCTION crossover between them. The theoretical predictions for the
frequencies in harmonic longitudinal trap&z):mwgzzlz

re obtained in Ref§8-17. It is shown that the frequency
of oscillations in the mean-field regime i8w,, while it is
2w, In the TG regime. The last value coincides with the one

bosonic and fermionic gase$l1-3]. Low-dimensional b d for the th | For the 3D oi he f
bosonic systems have many remarkable properties which di§>SEVe or the thermal gas. For the cigar the frequency
is V5/2w,. These investigations involve the combination of

tinguish them from three-dimension@D) systems. One of
g neiD) sy the exact solution by Lieb and Liniger, the local density ap-

them is the growth of the interaction when the density is e ; .
decreased. As a result the system enters into the Tonkgroximation, the hydrodynamic equations, and the extended

GirardeauTG) regime. The properties of the Bose gas thennonlinear Schrddinger equation. Note that information for

coincide with the gas of free fermions. This follows from the oscillati'ons.in the high'-dimensional regimes can be founq in
exact solution to the problem of hard-core bosons with re{N€ review in[13]. In this work we shall study resonances in

pulsive interaction obtained by Lieb and Linigg#,5]. The the oscillations of 1D_Bose gas in both regir_nes. The periodi_c
opposite regime with weak interactighigh-density caseis and rar_1dom modulatlons_of the trap potent_lal and the atomic
the mean-fieldMF) regime[6]. scattering Ieng;h are subjeqt to our analysis. _ )
The TG and MF regimes can be characterized by the pa- The 'V'F.reg'”_‘e IS descnbgd by the 1D Gross-Pitaevski
rametery which is equal to the ratio of the interaction energy (CP) €duation with two-body interaction
and the kinetic energy of the ground state of gas—he., 52
=mgp/ (A%n,p). Herem is the atomic massy;p is the one- ihih=— 2—1//ZZ+ V(z,t) ¢+ gyl (V)| ]2 (1)
dimensional coupling constant, amgy is the 1D density. m
The casey<1 corresponds to high densities, when the de-This equation is derived from the 3D GP equation in a
scription by the mean-field theory is valid. The cage1l  strongly anisotropic external potential. The dynamics in the
corresponds to the strong repulsive interaction—the Tonksradial direction is then averaged déf and the longitudinal
Girardeau regime. Modern experiments with Bose gas itprofile of the wave function satisfies Ed.). The wave func-
highly elongated traps now are in the regipr-1 [7]. tion is normalized so that the number of atoms in the BEC is
One of the important phenomena for experiments is coli = f|y(t,x)|2dx. HereV(z,t) is the longitudinal trapping po-
lective oscillations of the Bose gas in different regimes. It istential, which is assumed in this work to be harmonic,
particular!y interesting to investigate the Qynamics of breathV(z,t):mwﬁzzF(t) /2. The functionF(t) describes the varia-
ing and dipole modes for MF and TG regimes, as well as th§ion in time of the trap. The effective nonlinear coupling

constant isg;p. In the case of a harmonic transverse trap
potentialma? (x2+y?)/2, Eq.(1) is valid under the assump-
*FAX: (33)561556089. Electronic mail: garnier@cict.fr tion o, > w, and we haveg;p=2%a.w,. The functionI'(t)

Low-dimensional Bose-Einstein condensa{B&C's) in
highly asymmetric traps have recently been achieved, whic
opens new possibilities in the investigation of clouds of
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describes the variation in time of the effective nonlinearity. Aserved experimentally7]. As our attention is focused on
first method to vary the effective nonlinearity is to modulateresonance phenomena, E@) seems to be a good model,
in time the transverse trap width or equivalently the trans-both physically relevant and mathematically tractable. Using
verse frequency ;. The modulations of the transverse fre- the time-dependent variational method or the hydrodynamic
guency impose variations of the BEC density in ixey) approach we shall derive the equation for the TG gas width
plane, which in turn involve variations of the nonlinear in- and study resonances in oscillations under periodic and ran-
teraction[14]. Nonlinear resonances in 2D BEC’s for such dom modulations of the trap potential.
modulations have been studied[it6,16. A second method The paper is organized as follows. In Secs. II-IV we ana-
to vary the effective nonlinearity is to modulate the atomiclyze the nonlinear resonances in gas oscillations in the mean-
scattering length by the so-called Feshbach resonance tecfield regime using the 1D mean-field GP equation. We apply
nique[17]. a time-dependent variational approach and introduce action-
Theoretical and experimental studies have demonstrateahgle variables in Sec. Il. Sections Il and 1V are devoted to
that variation of thes-wave scattering length, including a the resonances driven by periodic and random modulations
possibility to change its sign, can be achieved by using thef the trap frequency and the nonlinearity, respectively. In
Feshbach resonance Sec. V we address the same problems for the 1D TG regime.

A
a) = as[l + m} ) Il. MEAN-FIELD CASE
whereas is the value of the scattering length far from reso- A. Variational approach
nance,B(t) is the time-dependent external magnetic field, We first put Eq. }1) into dimensionless form by setting
is the width of the resonance, aBg is the resonant value of t'=w.t, Xx=2/1,, |,=\/(mw,), andu=v2|ajw, /w,i. In the
the magnetic field. Feshbach resonances have been obserfetlowing we omit primes, so the mean-field GP equation
in 2°Na at 853 and 907 G17], in ‘Li at 725 G[18], and in  reads
%Rb at 164 G withA=11 G [19]. In the case of resonance
dynamics wherea, is slowly varying and keeps a constant iU, + }uxx_ }E(t)xzu -T®|uu=0, (3)
sign, atom losses are negligible. However, atom losses may 2 2
be important when crossing the resonaiit@,2d. This is ~ ~
the case of th&Na condensate where it is necessary to cros@nere F()=F(t/w,) and I'(t)=I'(t/ v,)sgria). We apply a
the Feshbach resonance to change the sign of the atomy@iational approach using the Gaussian ansatz
scattering length. The approach developed in this paper X2 b(t)x?
should then be modified to take into account this phenom- u(t,x) :Aex;<— T i i¢(t)).
enon. If we are not close to the resonance, losses are small 2a(t) 2
and in a first approximation they can be taken into accouniote that the equation for the gas center of mass is decou-
by a time-varying number of atoms in the effective varia-pled from the equations for oscillations, so we did not take it

tional equation for the width. This should lead to dampedinto consideration. The ansatz yields a closed-form evolution
secondary oscillations with a time scale larger than the oscilequation for the width

lation time. However, atoms losses can be minimized down
to a negligible level by certain experimental controls that i ﬂ
; ; : ; att_ f(ha+ 5)
have been implemented in particular in teRb case
[21-24. Furthermore, in Ref[18] it is demonstrated in the - _
case of'Li that a change of sign of the scattering length canwhere  f()=F(1), ¢)=PT(t), and P=[|ulfdx/\2m
be obtained without crossing the resonance by the so-called(2/adw,N)/(\27w,l,). In the repulsive casa,>0 and in
coupled-channel method. Our study of the nonlinear manthe absence of modulatiots=1, I'=1, we havef=1 and
agement is triggered by these experimental achievements. y=P=N/N* with N*=(y 27TwZ|Z)/(2aswl) If the number of
According to Kolomeiskyet al. [25] the TG regime is atoms is large enoughN>N*, then P>1 so that we can
described by the nonlinear Schrédinger equation with quintimeglect 14% in Eq. (5) and the fixed point is given by
nonlinearity and trap potential: a3
ag=P™". (6)

2 2
ifih = — ;L—¢ZZ+ V(z,t)p + 71;—ﬁ|¢|4¢, (2) In the dimensional variables we get
m m

—T(Joa 12 [ 1/3
It is known that this model does not capture every aspect of Le=l(v2adz0 N/ (V) I
the dynamics of an atomic gas in the TG regime; in particuwhich agreegup to a numerical multiplicative constantith
lar, it overestimates the coherence in interference patterns #te Thomas-Fermi value for the 1D BEC width.
a small number of particle6]. However, Eq(2) has been
shown to reproduce the collective spectrum of a gas in the
TG regime within a local density approximatidil,27.
Furthermore, we shall show that it also gives the correct We assume in this section thaft)=7,+7%(t) where the
frequency of oscillations as predicted theoretically and obaverage nonlinear coefficient,>0 which corresponds to

(4)

B. Action-angle variables

053604-2



COLLECTIVE OSCILLATIONS OF ONE-DIMENSIONAL.. PHYSICAL REVIEW A 70, 053604(2004)

the repulsive case, whil@ represents a zero-mean periodic determined by the initial conditions, so the evolution of the
or random component. Similarly, we také&)=1+f(t). The =~ BEC width is governed by

unperturbed problem consists in takifig) = f(t)=0. Assume a(t) = A(Z(E), ¢(t)),

that y, is large so that the kinetic term a7 can be neglected

in Eq. (5). The energyE of the unperturbed BEC is given by 20
B(t) = $(0) - ——-t.

1 1 E
E()=>a2) +U@D), U@= a+2.  (7) 7

2 2 a For E close to the ground-state energy, we have
In the absence of fluctuations the enefgys an integral of 5
motion. The BEC width obeys a simple dynamics with a(E)=ag+ (- 1)) 4 /—(E—Eg), ji=1,2, (12
Hamiltonian structure 3

1
) 2 E-E =
Hipg)=or+ U@, ® 7= 1E=T 0 Al a2 codd).
\ V

with g=a and p=a. The potentialU possesses a unique (12)

minimum ag= 5> which is a stable fixed point with oscilla- .
tion frequencyw=13. The corresponding ground state hasFor large energieE> E;, we have
energyEy,=U(ay)=(3/2) %", oE E

If the initial conditions(a(0),a;(0)) correspond to an en- ay(E) = ag—q, ay(E) = ag [ =, (13)
ergy abovekEg, then the orbit of the motion is closed, corre- 3E Ey
sponding to periodic oscillations. In order to explicate the
periodic structure of the variablesanda;, we introduce the
action-angle variables. The orbits are determined by the en-
ergy imposed by the initial conditions

T(E) = m, I(E):; A(l, ) =211 + cog¢).
(14)

1
E= EaS(O) +U(a(0)).
IIl. RESONANCES IN THE MEAN-FIELD CASE DRIVEN

For E> Eg, we introducea;(E) <a,(E), the extremities of BY A TIME-VARYING NONLINEARITY
the orbit ofa for the energyE. They are the positive solu- ) ) _ )
tions of the cubic equatiok)(a)=E and they are given by In this section we address the role of a tmle-varylng non-
(j=1,2 linearity and assume that the trap is stationéity=0. We
12 j shall mainly focus our attention on the periodic management
a-(E)=—2(§> cos(w> I(t)=To+I; sin(Qgt), but we shall also consider random
i ' . : . o
3 3 fluctuations of the effective nonlinearity in the 1D GP equa-
tion.
3/2
fzarcco{(—g) }
E A. High-frequency nonlinear management
The actionl is defined as a function of the energyby We shall first address the case where the oscillation fre-
a(E) quency of the nonlinear management is much higher than the
7(E) = iff; pdg= lj V2E-2U(b)db.  (9)  trapping frequency—i.e(}q> w, We must also assune,
27 T J a(E) <w, to prevent from exciting the transverse modes. In such

a case the influence of the nonlinear management is negli-

The motion described by Eg8) is periodic, with period gible unless the nonlinear management amplitude is large.

dq ay(E) db The problem of nonlinearity management for BEC'’s, the so-
TE) = % —ZZI e (100  called Feshbach resonan@éR) management, has already
P aE) V2E—2U(b) been considered for 1D BEC'’s in Ref24,28 and for 2D

or else 7(E)=2m(dZ/dE)(E). The angleg is defined as a BEC's in Refs[29,30. In Ref. [24] the authors were the first
function of E anda by ones to propose a technique of FR management, based on a
time-periodic change of the magnitude and sign of the scat-
2 p 27 (2 db tering length by a resonantly tuned ac magnetic field. The FR
$(E,a) =~ Edq: - TE)) \2E- 20(b)’ management resembles the so-called dispersion-management
(DM) technique in fiber optics, which is based on a periodic
The transformatioriE,a) — (I, ¢) can be inverted to give the concatenation of fibers with opposite signs of the group-
functions £(1) and A(l, ¢). The BEC width oscillates be- velocity dispersion. The DM technique has been shown to
tween the minimum valuey(E) and the maximum value support robust breathing pulses, the so-called DM solitons

a,(E). The energyE as well as the actiohare constant and celebrated in opticg31]. The FR technique is shown in Refs.
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FIG. 1. BEC width(a) and oscillation frequencgb) as predicted by the theoretical modil dimensionless unifsFor y,>1 the BEC

width is 74" and the oscillation frequency ig3.

[24,28 to drive stable localized structures, named FR-

) S 2_
managed matter-wave solitons. Here, in distinction from a;=
[24,28, we give analytical expressions for the fixed point

(corresponding to the FR managed soljtaand the fre-

quency of slow secondary oscillations. More precisely, we

introduce the small parametér w,/ (), and we assume that
the nonlinear management amplitude is large compared
the average value. We write accordingly

Y1 . t)
t)= + —sin| —
Y1) =% 5 (5

and perform an asymptotic analysi—0 following the
Kapitsa averaging theorem. We expand(t)=ay(t)
+ a4 (t,t/ 5)+- - -. We substitute this form into E@5) and get
a compatibility condition which reads

(15

while the first-order corrective term can be expressed as

Y1
ayt,m)=—"—-

ag(t)

Note that the initial conditions for the slowly varying enve-
lope are

sin(7).

Y1
a(0)?’

ay(0) =a(0), ay0)=a'(0)-

wherea(0) anda’(0) are the initial values of the width and

its time derivative. The ground state can then be analyticall

studied. Let us first deal with the casg=0. We introduce
the critical valuey,=¥4/27=0.62. It is found out that, if
[11] < y., then Eq.(15) admits a unique fixed point describ-
ing the width of the ground state:

2

2= — cos[} arcco{
%73

If [y2]> e, then

"

%

4

" :

2>ml<l+ -

1/3
n

( )1/3 (

= +11-14/1
"

8y increases withy,; and goes from the value 1 foy,

0 to the asymptotic behavia,~ 2" for large y;. The

linear stability analysis of the effective equatigtb) shows

tI%at the fixed point is stable. If the initial condition is close to

this point, then the widtha oscillates around the valug,

with the oscillation frequenc‘,«zb:\s"G‘—_2/a;1 which increases

from 2 for y,=0 to its limit value V6. In the general case

v # 0, 71 # 0, there exists a unique fixed point which is the

unique positive zero of the equati@d—a%+y,a’+5=0. It

is plotted in Fig. 1a), and the corresponding oscillation fre-

quency is plotted in Fig. (b).

We have carried out numerical simulations of the ordinary
differential equatiofODE) model(5) and the partial differ-
ential equatioPDE) model(3) to check the theoretical pre-
dictions of the asymptotic analys— 0 (see Fig. 2 Note
that stable BEC’s can be achieved with a negative, at-
tractive) or positive(i.e., repulsive average nonlinear coef-
ficient .

Let us estimate the parameters for a realistic experiment.
For the ®Rb condensate witha;=—0.5 nm, », =2
X360 Hz, w,=2mx14.4Hz, N=10% 1,=100um, Q
=10w,, I'y=1, andl'1=2, we find that the condensate width
is a;=~0.7, and the frequency of the secondary oscillations
is w=2.6w,.

and

B. Resonant nonlinear management

In this section we address the case where the periodic
nonlinear management is resonant or close to resonant. We
shall focus our attention to the particularly interesting case
Yvhere the number of atomé is large, which in turn implies
that the dimensionless parametgyris large(say, at least b
We shall see that a periodic modulation of the nonlinear co-
efficient

() = ¥+ 1 SIN(Q)

may dramatically modify the dynamics, and this phenom-
enon will be noticeable when the dimensionless paramegter
is of order 1. Ifyo=5, then Eq.(5) can be simplified into
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1.35 D

13 0.9 ;

1.25 038 | |
<

1.2 0.7

1.15 0.6

i) 10 20 30 ) 10 20 30

(a) t (b) t

FIG. 2. BEC width in the presence of high-frequency periodic modulation of the nonlinear coefficientytt)ergg+2 sinf10t) with
v=1 (a) and y;=-1 (b). The solid and dashed lines stand for full numerical simulations of the PDE system with two different initial
conditions(dashed lines: theoretical ground stateghile the dotted lines represent the theoretical predictions.

lution can be described at first order aa(t)=a,
+3,(t)cog Qt+4(t)]. The stability analysis shows very inter-
esting features. It appears that the strongest resonance occurs

In the ab_sence of periodic modulati(yﬂ:O, the ground state when the nonlinear management has frequency
is agz%yo and the oscillation frequency of the BEC is

273
=43 in dimensionless units. We now consider a periodic Q.= wA /1+}<ﬁ) , (19)
modulation of the nonlinear coefficient with an amplituge 2\
smaller thany, and with frequency) of the same order as
w. We expanda=ag+a wherea satisfies

att:—a+§. (16)

which is above the oscillation frequency of the BEC. Reso-
nance is still noticeable for a modulation frequerieyin a
T+ 0%+ 52+ NEE = € Sin(Q1) + e, SIN(QNE, vicinity of Q. with bandwidth of orderw('yl/yo).m. More

_ 3 o3 o3 ., precisely, if(Q <., then there exists a unique fixed point to
with 6==3y,"", N=4%"", e=—71y,"", and =-2y1,".  the system(17) and (18). The value ofd, corresponding to
This is the equation for a nonlinear oscillator with externalthis fixed point is
and parametric drives. The analysis of this problem can be 1

. ; . X j s

carried out by applylng the standard methpdeescrlbed in Bgec= _[27y1+ 3V24)/§(w2—02)3+ 817%J
Ref. [32]. We consider the harmonic expansionaof 3

B=%, oY v) + 3y + 3, COL20), 295 %(w? - 0?)

- 2_ 023 13’
where v(t)=Qt+ 6(t). We substitute this ansatz into Ed.6) (2771 + 3\2495(0” - 07)° + 81]]
and we collect the terms with the same harmonic. This yield$\ jinear stability analysis shows that this fixed point is
a system of differential equations that give the zeroth andtable. If)> (), then there are three fixed points. A bista-
second harmonics in terms of the first one and a compatibiljjity in the condensate oscillations occurs. The intermediate
ity condition which reads as a system of two differential fixed point is always unstable. The upper fixed point is the

equations for the first harmoni; and the slow phase: continuation of the fixed point exhibited in the cae< Q..
2 ~ It can be observed by increasing slowly and carefully the
0@y, = {- i( 63 cosz(b’)) + 655 (@ + %&3@) modulation frequency from a frequency beldly to a fre-
20 9w 0\ 24 18w quency above().. The lower fixed point is the one that is
76351 . observed when imposing without any particular precaution a
e cog6) |sin(6), (17 modulation with frequency)> Q. or when perturbing the
metastable upper fixed point. The value of the stable fixed
point is

0’ - 0% Sere

20 = T co(6) - 22020 cog(6) Bgec= 2\/%C0<%SC>,

i(l ~ egcos’-(a))cosw)

ZQ 9(1)4 51 g — arcco |’)/1|
&Fe  5de ~ (3 58\, o 2 . 312
+{ - 90 + 820 coqHya; + 80~ 1270 aj. 573 (02 - ?)
(18)

Thus the system encounters a jump in the oscillation ampli-
The first harmonic is dominant so that the BEC width evo-tude when the modulation frequency crosses the vélpe
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4 p should observe much smaller oscillations wif.~0.3,.
P Practically, if we start from the fixed poirg; given by Eq.
3l /,:j:" (6), we should observe oscillations of the BEC width with

the maximumag+2a,.

C. Random fluctuations of the nonlinear coefficient

We assume here that the scattering length or the trans-
verse frequencyn, is randomly varying, inducing random
fluctuations of the nonlinear coefficient of the GP equation

' 16 18 2 20
Q Y1) = yo + y17(D),

FIG. 3. Oscillation amplitude as predicted by the theoretical . . . .
model (solid lines. Here y,=10 and y,=1. Comparisons with where 7(t) is a normalized random noise with standard de-

simulations with the ODE modetrossesand with the PDE model  Viation of order 1 andy, >0 represents the amplitude of the
(circles. random fluctuations. This model also presents an interest for
the study of nonlinear management schemes in spatial opti-
cal solitons if the widths of the nonlinear layers in arrays of
waveguides are randomly distributf2¥]. We use the angle-
action formalism introduced in Sec. Il B. In the presence of
perturbations, the motion da is not purely oscillatory, be-
fause the energy and action are slowly varying in time. We
adopt the action-angle formalism, because it allows us to
eparate the fast scale of the locally periodic motion and the
Slow scale of the evolution of the action. We assume that
is smaller thany, and introduce the dimensionless parameter
= v1! vo. Thus, after rescaling= 6°r, the action-angle vari-
ables satisfy the differential equations

Evaluating the two expressions af. just above and just
below the critical frequency)., we get that the amplitude of
the jump isagsd Q) —ansd Q¢) =71/,

In Fig. 3 we plot the values of the oscillation amplitude as
a function of the frequency of the nonlinear management in
the casey,=10 andy;=1. The theoretical prediction is that
the modulation frequency driving the most resonant responsg
is Q,=1.823 which is above the eigenfrequeney=\3
=1. 732 We have carried out numerical experiments with the
ODE model(5) and the full PDE mode(3) to check this
prediction. The results for the frequen€y=1.5 are plotted
in Fig. 4. For each frequency we can detect the amplitude of

the oscillations and report on Fig. 3 to compare with the ﬂ:ln(l>h (1,)
theoretical predictions. We have numerically determined that dr 6\ &)?

the frequency driving the most important resonance 1s84

which is indeed above the elgenfrequemﬁyand very close deb 1 1 (7

to the theoretical predictiof}.. The numerical simulations —=-=w)- —77<—)h|(|,¢),
confirm the jump in the oscillation amplitude when crossing dr s\ &

the critical frequency.

Let us estimate parameters for a realistic experiment. Thwhere h(l,¢)==y/A(l,¢) and o(l)=27/7(E(1)) are
magnetic trap can be taken with parametess =27  smooth functions andh is periodic with respect tap with
X 10% Hz, w,= 27X 10 Hz, and the number of atomsBRb  period 27. Applying a standard diffusion-approximation
N=5x 10*. For the external fiel8=159 G,a,=0.8 nm(re-  theorem[35] establishes that, for smad, (I(7)),~o has the
pulsive gas Then, for 2=18.25 Hz, we should observe statistical distribution of a diffusion Markov process charac-
large oscillations witha,,.~2.1l,, while at Q=15 Hz we terized by the self-adjoint infinitesimal generator

3 3

5 M

0 50 100 150 200 0 50 100 150 200
(a) t (b) 1

FIG. 4. BEC width versus time for a nonlinear management with frequéhsyl.5. We compare the theoretical envelope of the
oscillation with numerical simulations of the ODE moda) and the PDE moddb). Herey,=10 andy;=1. For the simulation of the PDE
model the initial state is the Gaussian ansatz wifk 2.15, which corresponds to the theoretical fixed point in the absence of nonlinear
management. The solid lines represent the theoretical slowly varying eneidpeg+ 2a,5]Sin(wosd/ 2)|.
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£=17n0)?
24 A 05
T ~
where 0.4t ]
s p
L 2T é 0.3
All) = ;J f hy(l, #)hy(l, é = o()){(7(0) (t))dtde 02
00 04 /7

and the brackets stand for a statistical averaging with respect 0 ‘ ‘ ,
to the distribution of the noise. This means in particular 0 10 . 20 30
that the probability density function dfsatisfies the Fokker-
Planck equatio,p=Lp, p(7=0,1)=&(1-1o), wherel, is the FIG. 5. Root mean square of the BEC width in the presence of

initial value of the action at time 0. As long as the energyrandom fluctuations of the nonlinear coefficient. The theoretical re-
remains close to the the one of the ground state, we can usalt[Eq.(22)] is plotted as the dashed line. The results of numerical
the asymptotic expansiorf42) to expand the effective dif- simulations of the PDE model are plotted as the solid line and
fusion coefficientA(l). In the original time scale we then correspond to the averaging of 1000 different realizations of the

establish that the growth of the action is random noiser.
— \s';y 2
I(t)=<\'lo+—;2/§Wt) ; 0
wYo Vo= 0 ,
where w=13, W, is a standard Brownian motiogi.e., a 2a0 %"
Gaussian process with zero-mean and standard devigfipn

w=43, as.=02, V, is the source term, anll, is a stochastic
resonance term. It is negligible during the first steps of the
w dynamics and becomes important only when the rms ampli-
tude becomes of the order af=y”>. However, in that case,
ac= f (n(0) n(t))cod wt)dt. (200 the linearization procedure is not valid anymore. Integrating
0 Eqg. (21) by neglectingM; we get

and

ac’}/%

If the BEC is in the ground state at time 0, then the BEC
9 - [rm(a)(t)] = 74/3w2(t—
0

width a oscillates with eigenfrequency=y3 between the
valuesa_ anda, which evolve slowly as

(22)

sin(2wt) )
2w '

In Fig. 5 we compare the statistical predictions with a set of

p N numerical simulations of the PDE model. We have taken
a()=9p"% o W/ Y%=71=10. We have adopted a stepwise constant model for
0

7(t). Here 5 is constant over elementary intervals with du-

As a result, taking into account the periodic modulations, thé@tion tc and takes random values uniformly distributed be-
rms BEC width is[rms(a)(t)]= agy2t/ (0?2 where the tween -1 and 1. W|/t3hc:O.03 we havey;=0.005. The initial
root mean square(rms is defined by [rmsa)]=((a BEC width |sag:y(1? =2.15. The diffusive growth in agree-
—(@)?)12. ment with Eq.(22) is noticeable.

In the white noise casey(0) 5(t))=2024(t), there exists a

direct way to compute the growth of the rms amplitude. It |\, RESONANCES IN THE MEAN-FIELD CASE DRIVEN
consists in writing a closed-form system for the second-order BY A TIME-VARYING POTENTIAL TRAP
moments of the BEC width and its derivative. We expand

a=a,+a and denotE):at. By considering the column vector We first focus our attention on the periodic management
X(0)=((32),3b) . (6%)), we get by applying It&'s calculus that f(t)=1+f, sin(Q2t), and second we address random fluctua-

S tions of the trap.
X satisfies the closed-form system P

d_X =MgX+ M X+V,, (21) A. High-frequency periodic modulation of the trap

dt We shall first address the case where the oscillation fre-
where quency of the trap modulation is higher than the trapping
frequency—i.e. 0> w=v3. In such a case the influence of

0 2 0 0 00 the modulation is negligible unless its amplitude is large. We
M=l -2 0 1 M. = 0 0 0 introduce the small parameté~1/() and assume that the
0 5 ' ! > ’ trap modulation amplitude is large, of ordérl. We write
0 -20° 0 8acyiyy” 0 O accordingly
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f t f(t)=1+f,9(t),
f(t)=1+§15in<3) =1+,
with 0<f; <1 and#is a normalized random noise. We once
and perform an asymptotic analysis—0 following the again use the action-angle formalism. We carry out an
same line as in Sec. lll A. We get that the slowly varying asymptotic analysis similar to the one presented in Sec. Il C,
envelope of the BEC width obeys the effective equation  with the small parametef; and the functiorh given by

2
Y
am:a_g‘afz_&a“’ h(l,¢):%Az(l,¢). (24)

with the initial conditions We then get the statistical distribution of the slow evolution

, f,a(0) of the action in terms of a Brownian motion,
20(0) =a(0), a0)=a’'(0) - ==
r,_ 2
N \l’a
The high-frequency modulation thus involves a shift of the I(t) = (\|o+ Ezfﬁélgwt) :

effective potential which in turn implies a shift of the ground

state(see alsq36]). wherew=13 anda, is given by Eq.(20). As a consequence

the BEC widtha oscillates with frequency between the

B. Resonances due slow periodic variations valuesa_ anda, which evolve slowly as

of the trap potential

The study is similar to the nonlinear management, and .

Vag

qualitatively the same conclusion holds true, especially con- a,(t) =ag* 7f17(1)/3|Wt|-
cerning the bistable diagram. We shall only point out the
main differences. First, the strongest resonance occurs Wherhis means that the BEC spreads out at the diffusive rate
the periodic modulation of the trap has the frequency [rmsz(a)(t)]:acfiygmt/(sz). The doubling of the width is

1 observed after a time of ordarzl(acff). In the case of an

Qc=w\|1+=|f25, (23)  optical trap imposed by a laser field whose intensity is fluc-

2 tuating the typical fluctuation level is of the order af
which is above the eigenfrequency of the BEC. Note fhat ~ 0-01. If the trap frequency, =27 300 Hz, then we pre-
does not depend on the nonlinear coefficiggtand is pro-  dict that the doubling of the width should be observed after a
portional to the eigenfrequency of the BEC. The oscillationtime of the order of a few seconds.
amplitude of the BEC turns out to be also proportional to the

BEC width. The resonant bandwidth is of ordgg|?3w. V. RESONANCES IN THE TONKS-GIRARDEAU REGIME

More precisely, ifQ2 <(), then the oscillation amplitude of . ) . .
the BEC is As is shown in Ref[25] the variety of properties of the

hard-core Bose gas with repulsive interaction in the dilute

Qosc_ }[27|f1| + 3\/24((02 — 093+ 81f§]1’3 regim_e can be de_sqribed by the_ n.onlinear Schrodifges)
a; 3 equation with quintic nonlinearity:
~ 2(0? - Q2 _ 52 w2
[27/f,] + 3v24(e? - 023 + 81f2]1/3’ ihp= = bt VZ$+ = -|dl'd, (25)

while for Q> Q, . . . .
¢ where V(z,t) is the time-dependent trap potential. In prin-

aLSC_2 2 0P o osc ciple it can include an anharmon_ic part together with the

- 3( ) CO 3 ) harmonic component. Below we will restrict ourselves to the

harmonic cases/(z,t):mwgzzF(t)/Z. The wave function is

normalized to the number of atomf4|’dz=N. This equa-

£sc= Arcco 7 |- tion takes correctly into account the dependence on the den-
£(02- o?) sity of the energy of the ground state of 1D Bose gas and
3 reproduces correctly the collective modés]. It was shown

in [26] by means of numerical simulations for a small num-

ber of atoms that the interference effects are overestimated
by this equation. It should be noted that the nonlinear coef-

Evaluating the two expressions af. around the critical
frequency ()., we get that the amplitude of the jump is

80sd 0g) ~a0sd F) =135, ficient does not depend on the scattering length—i.e., the
. details of the interaction. Accordingly this parameter cannot
C. Random fluctuations of the trap be managed. Introducing=2/1,, t' =tw,, u='ml,¢/2*, and
We consider in this section a random modulation of thel,=%/(mw) we can write the equation in the dimensionless
trap form
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1 1 ) . B. Hydrodynamic approach
iU =— Uy, + = f(t + , 26 . .

' ZUXX 2 (Ox°u+|ufu (26) Equation(26) can be cast in _the form of Landau hydro-

. B dynamic equations by setting=vp exp(i6) [11,41. Further-
where we have dropped the primes d(d=F(t/w,). AS can  nore, we get the Thomas-Fermi solution by neglecting the

be expected the change in the exponent of the nonlinear ternetic energy term with respect to the interaction term, so
induces strong differences between the MF regime and thgat the equations read

TG regime. The quintic nonlinearity is especially interesting

in the 1D case as it represents the critical nonlinearity for the pe==(pv)x, (30
NLS equation. Indeed, for a given dimensidthere exists a
critical exponentr=2/d for the nonlinear ternfu|’u which vy = —vug— F(O)X+ 2ppy, (31

separates two different regimg37]. These regimes are dif- . ) . i

ferent in terms of global existence, blowup, instability Where the velocity field v is defined by 6(t,x)
growth, etc. In the 1D case, this exponeniois 2 (quintic ~ =J v(X",H)dx". The equilibrium profile fop corresponds to a
NLS equation; in the 2D case, it isr=1 (cubic NLS equa- Stationary solution of the form(t,x) =exp(—iut)u(x) where
tion). In the BEC framework, this leads for the repulsive gasthe chemical potential is related to the normalized number
to the parametric instability in a trapped 1D quintic systemof atoms,C=[|u[’dx, through the identityu=y2C/m=N.
similarly to the parametric instability observed in a trappedThe equilibrium profile has a finite extension

2D cubic system. For the attractive gas this leads to the col- 5
lapse in a 1D quintic system with a number of atois N, p(t,X) = /1~ XT (32)
as well as the collapse in a 2D cubic system Nor N.. a(t) 2a%(t)
for x e (-\2a,v2a), the velocity field isxb(t), anda andb
A. Variational approach satisfy the coupled equations
We apply the variational approach with the Gaussian an- a =ab (33)
satz(4). We find that the equation for the phase is decoupled ’
from the equation for the atomic cloud width that reads 2
< bt=—b2—f(t)+¥. (34
+f(t)a=—, 27 . - .
B+ (1) a @7 Accordingly a satisfies the closed-form equation
where C=f|ul2dx=(7/\2)N and C=1+(4C?)/(3%27). The a, + f(Ha= é 35
stationary value of the BEC width is given by the fixed point it T a8

of Eq. (27): -
where C=u?=2C?/7%. Note that we have normalized the
ag:E:”“. density profile so thaa/ V2 is the rms width, which is the
same as for the Gaussian ansgtz We can thus compare
In the dimensional variables the BEC width ik;  the result(27) obtained with the variational approach using
=[(2m)Y4/3%8]{NI,. Linearizing near this solution the varia- the Gaussian ansatz with the res(86) obtained with the
tional equation27), we obtain the frequency of oscillations, hydrodynamic approach. Taking into account that the hydro-
2w, which coincides with the hydrodynamic calculations dynamic approach is derived in the framework of a large
based on the local field approximati¢see the next sectign  number of atoms to neglect the kinetic term, we get that both
Equation (27) belongs to the so-called Ermakov-Penneyapproaches give the same effective equation, up to a small

equationg12,38,39 and the solution is mismatch in the numerical value Gf=0.2452 (variational
= approach and C=0.203C? (hydrodynamic approaghThis
- 2. C o departure originates from the fact that the two stationary pro-
a(t) = \/ g7+ ¢, (28) ~
W2 files do not coincide. Note that the stationary poin€i’, so

that the difference is around 5% which is negligible in prac-
tical situations. Eventually, the BEC dynamics is found to be
governed by the same effective equation according to both

Y+ f(y=0, (29  approaches.

where the functiong and c are linearly independent solu-
tions to the equation

W=pgc,—cp; is the constant Wronskian, ang(0)=a(0),
B'(0)=a’(0), c(0)=0, andc’(0)=1. For a periodic function
f, Eq. (29) is the so-called Hill equation which has been The dynamics of the Hill equation driven by a periodic
extensively studied40]. So, in spite of the nonlinear char- modulationf(t)=1+f; sin(Qt) is characterized by a paramet-
acter of Eq.(27), the resonant response of gas has a linearic resonance phenomenon studied32]. In particular the
character and, in particular, the frequency of oscillationsstability of the solutions to the Hill equation depends on the
does not depend on the amplitude. parameterd; and (). The theoretical prediction is that the

C. Periodic modulations of the trap potential
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by the deterministic exponential growth term éxg/4)
with very high probability becaus@/,~ \t. Note, however,
that taking the expectation of E(B7) yields a different ex-
ponential growth rate

67
(@2 V1) ~ exp( E%) : (38)
This is due to the fact that some exceptional realizations of
the random fluctuations may induce very strong oscillations,
18505 01 015 02 025 03 and these exceptional realizations actually impose the value
f of the expected value.

FIG. 6. Contour levels of the oscillation amplitude of the Bec " the white noise casén(O)v?(t)>-2025(t), using the
width in the TG regime in the presence of periodic modulation ofS2Me linearization procedure as in Sec. Il C we can get pre-
the trap potentiaf(t)=1+f, sin(Qt). The gray area corresponds to Cis€ expressions for the rms amplitude as long as stochastic
the configurations where a blowup of the solution has been numerf€sonance can be neglected:

cally observed. -
rms@v]= 284 t- 2020 (3

stationary solutiorgy is unstable when the modulation fre-
quency is close enough to the eigenfrequency of the BEC ofyherew=2 is the eigenfrequency. The simplest way to take

more precisely, into account stochastic resonance is to multiply the previous
It expression by the exponential damping term (e%p/2).

—_. (36) There exists a more accurate way based on Ité’s calculus.
7 Assume that the initial state &0)=a,, a’(0)=0. The col-

We have performed numerical simulations of the P@E)  umn vectorX=((a%),(ab),(b?)" satisfies the closed system

to check this theoretical prediction. We have initiated the

Q-2 <

PDE with the initial condition given by the theoretically sta- dXx 0 20
tionary Gaussian profile wit€=57/+2. The initial width is T MX, M={-1 0 1], (40)
then a;=2.36. Note in Fig. 6 the presence of a cone of 202 =2 0

instability in the (f;,Q)) landscape, in full agreement with _

Eq. (36). We have found numerically that the dynamics isstarting fromX(0)=V,=(a3,0,C/a3)". As a first application
unstable if{(0-2|<0.55f,|. we can compute the exact expression of the largest eigen-
Note that the equation for the oscillations of a cloud ofvalue of M which governs the exponential growth of the

nonineracting fermions in a time-dependent elongated traprodulation(a):

has the same form as E@7) (see, for examplg33]). As a
consequence the linear parametric resonance for the width of
a fermionic cloud at the same frequency exists. In that sense
we can say that the Fermi-Bose mapping still exists for the

Tonks gas in an oscillating trap potential. Note that we recover formuig8) by expanding this expres-
sion for < 1: A= 02+0(c®). A straightforward numeri-

cal integration of Eq(38) gives the exact evolution d&?).

We have performed numerical simulations of the PDE sys-
We examine in this section the effects of random modu+tem (26) with a random modulation of the trap potential to
lations of the trap potential of the forfft)=1+7(t) wheren  check the predictions obtained with the variational approach.

is a zero-mean stochastic process. The dynamics then exhildde have taken the model whengt) is stepwise constant

its stochastic resonance as shown, for instancg4243. over elementary intervals with duratidgpand takes random
Contrarily to the periodic case, we always observe an expovalues uniformly distributed between -1 and 1. With
nential growth of the oscillations of the BEC width, unless=0.06 we then havey.,=0.01. We compare the results of
the random modulation has a vanishing power spectral demumerical simulations with the theoretical predictions in Fig.
sity in the vicinity of the resonant eigenfrequency 2. More7. We can see that Eq39) efficiently predicts the initial
precisely, we get thaa periodically oscillates between the growth of the oscillation amplitude, but it is necessary to
valuesagtay(t) with a,s, Which grows exponentially as  take into account stochastic resonance when the amplitude

N (540% + 6148 + 8102 - 12
" (540%+ 6148 + 810413

D. Random modulations of the trap potential

becomes larger.
a.t \/;c
Aosdt) ~ exp —= + — W], (37)
4 2 VI. CONCLUSION
wherea,= [5(7(0) 7(s))cod2s)ds andW, is a Brownian mo- In this work we have considered the resonances in collec-

tion. If » is a white noisg 7(0) 7(t))=2024(t), then we sim- tive oscillations of 1D Bose gas under time-dependent varia-
ply have a;=c?. The long-time behavior o& is dominated tions of the trap potential and the effective nonlinearity. Two
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N

quency. This type of dynamics is also predicted for the
modulations of the trap as well as for the modulations of the

15 atomic scattering length. In the Tonks-Girardeau regime the
theory based on the nonlinear Schrodinger equation with

s quintic nonlinearity predictéinear parametricresonance in
é’ 1 - the gas oscillations. The effect reflects the Bose-Fermi map

p existing for the Bose gas in this reginigl]. We also study
0.5 £ the oscillations under random variations of the trap potential
il and effective nonlinearity. The analysis shows that the dy-
namics is nonlinear in the mean-field regime. In the Tonks-
0 20 20 60 Girardeau regime the study predicts stochastic parametric
t resonance. We also investigate the dynamics of 1D Bose gas
FIG. 7. Root mean square of the BEC width obtained from thein the mean—.field regir_ne under rapiq and strong modulations
averaging over a set of 1000 numerical simulaticswiid ling) and ~ ©f the atomic scattering length. This problem has recently
compared with the theoretical growth rate without stochastic reso@ttracted great attention since the dynamically stable nonlin-
nance(dotted ling and with stochastic resonan@ashed ling The ~ €arity managed atomic matter solitons can be generated. We
initial state is the Gaussian ansatz withe57/\2 and a(0)=a, find the analytical expressions for the stationary value of the
=2.36. width and frequency of the slow secondary oscillations of the
. ) ] . width. All theoretical predictions turn out to be well sup-
regimes have been studied—the mean-field regime and thesrted by direct numerical simulations of the 1D GP equa-
Tonks-Girardeau regime. The analysis shows that in thgon and the quintic nonlinear Schrédinger equation.
mean-field regime the resonances aoalinearand bistabil-

ity exists in the vicinity of a critical frequency which is sig-
nificantly above the eigenfrequency of the BEC. The dynam-
ics is then characterized by stable oscillations with large
amplitudes which depend on the frequency detuning between F.Kh.A. is grateful to University Paul Sabatier for sup-
the frequency of the breathing mode and the modulation freport.
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