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RESOLUTION AND STABILITY ANALYSIS

IN FULL-APERTURE, LINEARIZED CONDUCTIVITY

AND WAVE IMAGING

HABIB AMMARI, JOSSELIN GARNIER, AND KNUT SØLNA

(Communicated by Walter Craig)

Abstract. In this paper we consider resolution estimates in both the lin-
earized conductivity problem and the wave imaging problem. Our purpose is
to provide explicit formulas for the resolving power of the measurements in
the presence of measurement noise. We show that the low-frequency regime
in wave imaging and the inverse conductivity problem are very sensitive to
measurement noise, while high frequencies increase stability in wave imaging.

1. Introduction

The inverse conductivity problem is to find a conductivity inclusion from bound-
ary measurements. This problem lays a mathematical foundation to electrical
impedance tomography, which is a method of imaging the interior of a body by
measurements of current flows and voltages on its surface. On the surface one pre-
scribes current sources and measures voltage (or vice versa) for some or all positions
of these sources. The same mathematical model works in a variety of applications,
such as breast cancer imaging and mine detection.

The main objective of this paper is to introduce for the first time the notion of
resolution in solving the inverse conductivity problem and precisely quantify some
important non-intuitive facts in imaging. Since Rayleigh’s work, it has been ad-
mitted that the resolution measure in wave imaging is of order half the operating
wavelength [11]. This is a quite empirical limit on the resolution and is indeed
intriguing if stated independently of the signal-to-noise ratio in the data. More-
over, it has been noted that stability of the inversion increases at high frequency,
and infinite resolution can be achieved in the near-field [8, 14, 21]. Furthermore,
the link between conductivity and wave imaging has stayed quite mysterious. This
paper is an attempt to mathematically explain all of these important observations
and researchers’ beliefs. In doing so, we perform precise resolution estimates in the
case of conductivity data, and we contrast them with resolution estimates based on
Helmholtz data. In our analysis we moreover make use of asymptotic characteriza-
tion of the measurements to get explicit results on their resolving power, i.e., their
ability to separate small details. It is known that the inverse problems discussed in
this paper are exponentially instable in the general case [23].
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For both the conductivity and the wave problems, we linearize the imaging prob-
lem and consider the imaging of a perturbed disk. For the conductivity problem,
the data are collected on the boundary of a background medium containing the
perturbed disk, while for the Helmholtz equation, they consist of multi-static mea-
surements on coincident transmitter and receiver arrays. The Born approximation
is used in the wave propagation problem.

For the linearized conductivity problem, we first show that on the one hand, we
have “infinite resolution” in the near-field limit and, on the other hand, that the
relative resolution decreases rapidly with “depth” (the depth increases when the
radius of the inclusion decreases). We also give conditions on the signal-to-noise
ratio (SNR) and the radius of the inclusion in order to resolve the pth Fourier mode
of the perturbation and explicitly answer the question: for a fixed SNR and radius
of the unperturbed disk, which modes can be resolved? We finally characterize the
smallest radius one can probe for a certain mode number p and a given SNR and
show that the linearized inverse conductivity problem is very sensitive to noise.

For the wave imaging problem under the Born approximation, we consider two
regimes: a high-frequency regime where the radius of the inclusion is much larger
than the wavelength and a low-frequency regime where it is smaller. We first show
that in the high-frequency regime the resolution estimates are relatively insensitive
to noise for modes that correspond to lengths larger than half a wavelength. High
frequencies increase stability. On the other hand, the low-frequency regime is, as
in the conductivity case, very sensitive to noise. We provide explicit formulas for
the modes that can be estimated for a given SNR and radius of the inclusion.

In connection with our results, we refer in particular to the recent work by
Isakov [21] and the one by Nagayasu-Uhlmann-Wang [24]. For further discussions
on resolution for conductivity and wave imaging, see [6, 9, 10, 12, 13, 17, 20]. In
[21], a proof of increasing stability in wave imaging when frequency is growing was
given. In [24], a stability estimate for a linearized conductivity problem was derived.
Our results in this paper confirm these important observations and quantify them
precisely in terms of the SNR. As far as we know, our formulas for the resolving
power of the measurements in the presence of measurement noise are new. They
provide a deep understanding of the ill-posed nature of the considered imaging
problems and clarify the connection between the inverse conductivity problems
and the wave imaging problems. In the limited-view case, we have very recently
performed resolution estimates and described the effect of the limited-view aspect
on the resolving power of the noisy measurements [3]. We have in particular shown
that, in the shallow probing regime, where the inclusion is close to the boundary of
the background medium, we can resolve for any signal-to-noise ratio a sufficiently
shallow perimeter perturbation of a conductivity inclusion on the overlap of the
source and receiver apertures.

2. Interface estimation with conductivity data

In this section we discuss estimation in the case of conductivity data in the two-
dimensional case. We will contrast this process with estimation based on Helmholtz
data in Section 3. Our objective is to image inclusions from noisy boundary mea-
surements. The inclusions are with constant material parameters. To simplify this
severely ill-posed problem, we consider only changes in the inclusion shapes. The
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reconstruction problem is therefore linearized. We discuss the concepts of resolu-
tion and stability and perform precise estimates of the resolving power of noisy
measurements.

2.1. Differential measurements. The measurements are taken on a circle of unit
radius in our non-dimensionalized setting. The domain of interest, encapsulated by
the measurements, is thus

Ω =
{
x = reθ | r ≤ 1, 0 ≤ θ < 2π

}
,(1)

where eθ = (cos θ, sin θ). Imbedded in the domain there is a homogeneous inclusion
centered at the origin and with the shape of a perturbed circle. As said before,
our objective is to estimate the rim of the inclusion. We denote the domain of the
unperturbed disk by D and the perturbed domain by Dε:

D =
{
x = reθ | r ≤ α, 0 ≤ θ < 2π

}
,(2)

Dε =
{
x = reθ | r ≤ α + εh(θ), 0 ≤ θ < 2π

}
.(3)

Here we let h be order one and assume that h is of class C1 and ε � 1.
The field for different source configurations is indexed by m = ±1,±2, · · · and

is chosen to solve in the perturbed case:

(4) ∇ · (1 + (k − 1)χDε
)∇um

ε = 0 , x ∈ Ω ,

with the Neumann boundary conditions at the surface ∂Ω:

(5)
∂um

ε

∂ν
(eθ) = e−imθ , θ ∈ [0, 2π) ,

∫ 2π

0

um
ε (eθ)dθ = 0 .

Here, ν denotes the outward normal to ∂Ω, the positive constant k is the con-
trast in the conductivity between the inclusion and the background, and f(eθ) :=
f(r = 1, θ). The field corresponding to the unperturbed domain D is denoted by
um = um

0 . The differential measurements are denoted by

ân,m =

∫ 2π

0

e−inθ(um
ε − um)(eθ)dθ .(6)

A central point of our analysis is to assess the resolving power of the measure-
ments in the presence of measurement or instrument noise. We thus introduce

(7) âmeas
n,m = ân,m + σŴn,m ,

with the noise terms Ŵn,m modeled as independent standard complex circularly

symmetric Gaussian random variables (such that E[|Ŵm,n|2] = 1) and σ thus mod-
eling the noise magnitude.

In our analysis we moreover make use of asymptotic characterization of the
wave field to get explicit results on the resolving power of the measurements. This
representation uses the results of [5]. In fact, for any |n|, |m| � (1/ε), we have the
representation

ân,m = (Qĥ)n,m + ε2V̂n,m ,(8)

where

(9) (Qĥ)n,m = εcn,m(α, k)ĥn+m ,
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with the coefficients

(10) cn,m(α, k) = −8π(k − sign(nm))

α(k − 1)

1

(α−|n| k+1
k−1 + α|n|)(α−|m| k+1

k−1 + α|m|)

if nm �= 0 and cn,m(α, k) = 0 if nm = 0. Here we have used the Fourier convention

(11) ĥp =
1

2π

∫ 2π

0

h(θ)e−ipθdθ , h(θ) =

∞∑
p=−∞

ĥpe
ipθ .

Thus, we have

(12) âmeas
n,m = (Qĥ)n,m + σŴn,m + ε2V̂n,m .

Note that (Qĥ)n,m = (Qĥ)m,n and (Qĥ)n,−m = (Qĥ)−n,m.

2.2. Short range sharp resolving power of conductivity. Our objective now
is to identify the rim or perimeter perturbation of the inclusion, that is, the function

h. Note that, from (8), only ĥp for 0 < |p| � 1/ε can be reconstructed from
boundary measurements. Therefore, let M � 1/ε be a positive integer and suppose

that ĥp = 0 for |p| ≥ M .
The adjoint of the operator Q defined by (9) is

(13) (Q�â)p = ε

∞∑
j=−∞

cp−j,j(α, k)âp−j,j .

We moreover have

(14) (Q�Qĥ)p = ε2qp(α, k)ĥp , qp(α, k) =

∞∑
j=−∞

|cp−j,j(α, k)|2 .

The least squares estimate of ĥp using âmeas is (see, for instance, [15])

ĥest
p =

(
(Q∗Q)−1Q∗âmeas

)
p

= ε−2qp(α, k)−1 (Q∗âmeas)p

= ĥp + ε−2qp(α, k)−1
(
Q∗(σŴ + ε2V̂ )

)
p
.(15)

We then have

(16) E

[∣∣ĥest
p − ĥp

∣∣2] ≤ qp(α, k)−1

[(σ
ε

)2

+ ε2
∞∑

j=−∞
|V̂p−j,j |2

]
,

using the fact that

E

[∣∣(Q∗Ŵ )p
∣∣2] = ε2qp(α, k)

and
∣∣(Q∗V̂ )p

∣∣2 ≤ ε2qp(α, k)
∞∑

j=−∞
|V̂p−j,j |2 .

We assume the following.

Assumption 1. ε2 � σ.
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Assumption 1 insures that indeed the instrument errors dominate the approxi-
mation error. We remark that below we will assume without loss of generality that

p ≥ 1. We can therefore conclude from (16) that to resolve the pth mode of h, ĥp,
we need the following resolving condition to be satisfied:

(17)
(σ
ε

)2

< qp(α, k) ,

assuming that indeed ĥp is of order one.
By substituting into definition (14) of qp the following lower and upper bounds

for cn,m(α, k) which follow from Taylor expansion of cn,m with respect to α,

(18)
(8π(k − 1)2

4α(k + 1)2

)
α|n|+|m| ≤ |cn,m(α, k)| ≤

(8π|k − 1|
α(k + 1)

)
α|n|+|m| ,

we immediately find that

(19)
(8π(k − 1)2

4(k + 1)2

)2

≤ qp(α, k)

α2p−2
(

2α4

1−α4 + p− 1
) ≤

(8π(k − 1)

(k + 1)

)2

.

We introduce the signal-to-noise ratio, SNR, and the contrast adjusted signal-to-
noise ratio SNRk:

(20) SNR :=
( ε

σ

)2

, SNRk :=
4π2(k − 1)4

(k + 1)4
SNR .

Combining (17) and (19), the mode resolving sufficient condition is therefore

(21) SNR−1
k < α2p−2

( 2α4

1 − α4
+ p− 1

)
.

We can see that we have “infinite resolution” in the limit α ↑ 1 in the sense that

we can estimate all modes ĥp in this limit. We correspondingly have the following
necessary condition associated with the lower bound in (19):

(22) S̃NR
−1

k < α2p−2
( 2α4

1 − α4
+ p− 1

)

for

(23) S̃NRk =
64π2(k − 1)2

(k + 1)2
SNR ,

which has exactly the same behavior as the sufficient condition (21). Therefore we
will now work only with (21).

We can now answer the question: for a fixed SNR and radius α, which modes
can be resolved? From the previous analysis the answer is that it is possible to
estimate the pth mode up to p = p(α, SNRk), where p(α, SNRk) is the resolving
mode number bound defined by

(24) p(α, SNRk) = sup

{
p ≥ 1

∣∣∣∣ inf
1≤p′≤p

α2p′−2
( 2α4

1 − α4
+ p′ − 1

)
> SNR−1

k

}
.

If the set in the sup is empty, then p(α, SNRk) = 0, which means that estimation
is not possible. In Figure 1 we show the maximal mode number p(α, SNRk). It is
seen that the relative resolution decreases rapidly with “depth” (decreasing radius
α). Figure 2 shows the resolution bound, defined by

(25) λ(α, SNRk) := 2π
α

p(α, SNRk)
,
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Figure 1. Maximal mode number p(α, SNRk) (see (24)) as a func-
tion of radius α and signal-to-noise ratio SNRk.
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Figure 2. Resolution λ(α, SNRk) (see (25)) as a function of radius
α and signal-to-noise ratio SNRk.

as a function of the radius α and the noise ratio SNRk. We remark that the
resolution measured in this way actually improves for a very small radius due to
reduction in scale for fixed p with reduced radius. In fact, for large SNRk, the
function α → λ(α, SNRk) is approximately −4πα ln(α)/ ln(SNRk) and it has a
maximum whose value is 4π/(e ln(SNRk)) for the argument α = e−1. We will
revisit this observation in the next subsection.

2.3. Probing in depth with conductivity. We now revisit the question ad-
dressed in the previous subsection by considering the alternative question: for a
fixed SNR and mode p, what is the minimal radius α of the inclusion that can be
probed? We find from (21) that a resolving condition is α ≥ α�(p, SNRk) where we
have defined the “resolving radius” by

(26) α�(p, SNRk) = F−1
p

( 1

SNRk

)
.

Here F−1
p is the inverse of the function α → Fp(α) = α2p−2

(
2α4

1−α4 + p − 1
)

that

is increasing and one-to-one from [0, 1) to [0,∞). The quantity α�(p, SNRk) has
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Figure 3. Resolving radius α�(p, SNRk) (see (26)) as a function
of mode number p and signal-to-noise ratio SNRk.
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Figure 4. Resolution λ�(p, SNRk) (see (27)) as a function of mode
number p and signal-to-noise ratio SNRk.

the interpretation of being the smallest radius one can probe for a certain mode
number p and signal-to-noise ratio SNRk. The probing depth is of course limited
by SNRk. By reducing the mode number, one can however probe deeper. We can
correspondingly define

(27) λ�(p, SNRk) :=
2πα�(p, SNRk)

p
,

which has the interpretation of being the resolution at the maximum probing depth.
In Figures 3 and 4 respectively we show the resolving radius α� and the associated
resolution λ�.

In fact, for large SNRk, p �→ λ�(p, SNRk) has a maximum. The argument at the
extremal, p�, satisfies

p�(SNRk)
SNRk↑∞∼ 1

2
ln(SNRk) .

We also have

α�(p�(SNRk), SNRk)
SNRk↑∞∼ e−1 ,
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which conforms with the behavior seen in Figure 2. We then have the following
asymptotic characterization of the resolution:

λ�(p�(SNRk), SNRk)
SNRk↑∞∼ 4π

e ln(SNRk)
.

We conclude that indeed the conductivity is sensitive to noise with a high resolution
requiring a very high signal-to-noise ratio.

3. Detection with Helmholtz data

We now change the focus to the wave propagation problem. That is, we con-
sider the case when the data are time-harmonic observations, the solutions of the
Helmholtz equation, and the estimation problem analogous to that discussed in the
previous section. It has been admitted that on one hand, the resolving power of
waves is of order half the wavelength, and on the other hand, stability increases with
frequency. Here, we show that the resolution and stability analysis heavily depends
on the regime we are considering. The estimates of the resolving power (or the res-
olution measure) in terms of the SNR of the measurements are completely different
in the high-frequency regime from those in the low-frequency regime. Moreover,
we clarify the link between conductivity and low-frequency imaging. High SNR is
needed for imaging in both cases. In the high-frequency regime, the estimation of
the resolving power is relatively insensitive to noise.

3.1. Differential measurements. The measurements are taken on a circle of unit
radius in a non-dimensionalized setting. The domain of interest and the perturba-
tion domain is as before characterized by (1) and (2). Following [2] we model the
estimation problem below. Suppose first that the inclusion Dε is illuminated by an
array of N elements {y1, . . . ,yN}. In polar coordinates the points of the transmit-
ter array are yn = (cos θn, sin θn). In this case, the field perturbed in the presence
of the inclusion is the solution u(·,ym) to the following transmission problem:

(28)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δu +
ω2

c20
u = −δym

, in R2 \Dε ,

Δu +
ω2

c2
u = 0 , in Dε ,

u
∣∣
+
− u

∣∣
− = 0 , on ∂Dε ,

∂u

∂ν

∣∣∣
+
− ∂u

∂ν

∣∣∣
−

= 0 , on ∂Dε ,

u satisfies the outgoing radiation condition,

where ω/c0 and ω/c are the wavenumbers associated with the free space and the
inclusion respectively. Here, Dε is defined by (3) and Dε=0 = D given by (2).

Suppose also that the receiver array used to detect the inclusion coincides with
the transmitter array. The data consists of the multi-static response (MSR) matrix
A = (An,m)n,m=1,...,N which describes the transmit-receive process performed by
this array. In the presence of the inclusion the scattered field induced on the nth
receiving element, yn, from the scattering of an incident wave generated at ym can
be expressed as follows:

(29) An,m = u(yn,ym) − Γq0(yn − ym) .
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Here q0 = ω/c0 is the homogeneous wavenumber, Γq0 is the associated free space
Green’s function,

(30) Γq0(x) =
i

4
H

(1)
0

(
q0|x|

) q0|x|�1

 eiπ/4

2
√

2πq0|x|
eiq0|x|,

and H
(1)
0 is the Hankel function of the first kind of order zero.

The problem we consider is how to image the inclusion Dε from the MSR matrix.
We assume that the target is extended; i.e., its characteristic size is much larger
than half the wavelength π/q0.

Let us define the contrast parameter

(31) C =
c20
c2

− 1 .

As shown in [2] (see also [18, 19, 27]) the response matrix is given asymptotically
when c ∼ c0 by

(32) Am,n[D] =
iq0C
8π

∫
D

eiq0[|yn−x|+|ym−x|]dx .

Using the Taylor series expansion

(33) |yn − x| = |yn| −
yn · x
|yn|

+ O
( |x|2
|yn|

)
,

we find that, in polar coordinates x = (r cos θ, r sin θ),

(34) Am,n[D] = ei(2q0+π/2) q0C
8π

∫ 2π

0

dθ

∫ α

0

rdre−iq0r[cos(θ−θm)+cos(θ−θn)] ,

which is valid if the Rayleigh distance q0diam2(D) is smaller than the distance
from the target D to the array (this is the Fraunhofer regime). Thus, we make the
following assumption:

Assumption 2. α2q0 � 1.

Similarly, we have for the case of measurements from the perturbed domain

(35) Am,n[Dε] = ei(2q0+π/2) q0C
8π

∫ 2π

0

dθ

∫ α+εh(θ)

0

rdre−iq0r[cos(θ−θm)+cos(θ−θn)] .

Expansions (32) and (35) are known as the Born approximations.
In the continuum approximation the response matrix of the unperturbed domain

then corresponds to the operator whose kernel is

(36) A[D](θ1, θ2) =
q0C
8π

∫ 2π

0

dθ

∫ α

0

rdre−iq0r[cos(θ−θ1)+cos(θ−θ2)] .

In fact,

Am,n[D] = ei(2q0+π/2)

∫ 2π

0

∫ 2π

0

A[D](θ1, θ2) δ(θ1 − θm)δ(θ2 − θn) dθ1dθ2,

where δ is the Dirac delta function. The kernel of the operator corresponding to
the perturbed domain has a similar expression with α + εh(θ) instead of α. From
the asymptotic expansion of Am,n[Dε] in (35) as ε → 0 [2], it follows that the kernel
associated with differential measurements can be written as

(37) H[D](θ1, θ2) =
q0Cαε

8π

∫ 2π

0

dθe−iq0α[cos(θ−θ1)+cos(θ−θ2)]h(θ) .
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It is convenient to express the data in the continuum approximation and in the
Fourier domain as the singular vectors of the kernel which indeed constitute the
Fourier basis. This moreover corresponds to the measurement configuration of the
conductivity case discussed in the previous section. In the Fourier domain, the
observations are

(38) b̂n,m =
1

(2π)2

∫ 2π

0

∫ 2π

0

H[D](θ1, θ2)e
−i(nθ1+mθ2)dθ1dθ2 .

Using Neumann’s formula [16, Formula 7.7.2(11)], it follows from (38) that b̂n,m
are given by

(39) b̂n,m =
εq0Cα

4
Jn(q0α)Jm(q0α)i−(n+m)ĥn+m ,

where the Jn’s are the Bessel functions of the first kind. The coefficients b̂n,m are
the analogue of ân,m for the conductivity case. The analogue of (9) then becomes

(40) b̂n,m = (Rĥ)n,m , (Rĥ)n,m =
εq0Cα

4
Jn(q0α)Jm(q0α)i−(n+m)ĥn+m .

If we incorporate instrument noise and again assume that the effect of approxima-
tion error is relatively small, then we can write

(41) b̂meas
n,m = b̂n,m + σŴn,m ,

with Ŵn,m again being modeled as standard and independent circularly symmetric
Gaussian entries.

We then get the least squares estimate,

ĥest,p = ĥp + σ
(
(R∗R)−1R∗Ŵ

)
p

= ĥp +
4σ

εq0Cα

∑∞
l=−∞ Jl(q0α)Jp−l(q0α)ipŴl,p−l∑∞

l=−∞ J2
l (q0α)J2

p−l(q0α)
,(42)

which shows that the estimation is unbiased with the variance

Var(ĥest,p) = E

[∣∣ĥest,p − ĥp

∣∣2] =
( 4σ

εq0Cα
)2 1∑∞

l=−∞ J2
l (q0α)J2

p−l(q0α)

=
( 4σ

εq0Cα
)2 2π∫ 2π

0
J2
p (2q0α cos θ)dθ

.(43)

Here we have used the identity

(44)
∞∑

l=−∞
J2
l (q0α)J2

p−l(q0α) =
1

2π

∫ 2π

0

J2
p (2q0α cos θ)dθ ,

which follows from Neumann’s formula and Parseval’s formula.
We consider in the next two subsections the high- and low-frequency regimes.

3.2. High-frequency regime. We consider the high-frequency regime defined by:

Assumption 3. q0α � 1.
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We remark that Assumptions 2 and 3 imply α � 1 and q0 � 1. In this asymp-
totic framework, when p is smaller than 2q0α, then we have [26, Eq. 4]

1

2π

∫ 2π

0

J2
p (2q0α cos θ)dθ =

1

π2q0α

[
log q0α + 5 ln 2 + γ − 2

(
1 +

1

3
+ · · · + 1

2p− 1

)

+O
(
(q0α)−1/2

)]
,(45)

where γ is the Euler’s constant, while when p is larger than 2q0α, the integral is
exponentially close to zero [1, Eq. 9.3.2]:

(46)
1

2π

∫ 2π

0

J2
p (2q0α cos θ)dθ ∼ exp

[
− 4q0αR

( p

2q0α

)]
,

with R(s) = s
[
cosh−1(s) − tanh

(
cosh−1(s)

)]
and cosh−1 is the inverse hyperbolic

cosine.
We introduce the signal-to-noise ratio SNR and the contrast adjusted signal-to-

noise ratio SNRC :

(47) SNR =
( ε

σ

)2

, SNRC = C2SNR .

The stability condition that allows for the estimation of the pth mode is

(48) Var(ĥest,p) < 1 ,

with Var(ĥest,p) given by (43). For p < 2q0α, this condition reads

SNR−1
C <

q0αlog(q0α)

(4π)2
.(49)

For p > 2q0α the condition (48) means that SNR−1
C should be exponentially large

in q0α. Therefore we need p < 2q0α, otherwise the signal is exponentially small
and the constraint on the signal-to-noise ratio is prohibitive. This corresponds to
the “global” resolution constraint:

p ≤ p(α) ,
2πα

p(α)
=

λ0

2
,(50)

where λ0 = 2π/q0 is the homogeneous wavelength. Thus, this constraint limits the
resolution to half the wavelength.

In order to estimate the coefficients ĥp for all p ≤ 2q0α, we need (49) to be
satisfied. Note that a large parameter q0α actually allows for the estimation of the

coefficients ĥp for a small SNRC since the high-frequency q0 amplifies the returns
as shown in (37). This shows that in this high-frequency regime the estimation is
relatively insensitive to noise. From (49) we have for the probing constraint

(51) α ≥ α�(SNRC) , α�(SNRC) =
λ0

2π
F−1

(
(4π)2SNR−1

C
)
,

where F(x) = x log x is an increasing one-to-one function from [1,∞) to [0,∞). The
radius α� is the minimal radius of the inclusion that can be probed and estimated
with a signal-to-noise ratio SNRC in the high-frequency regime. In Figure 5 we show
the relative minimal resolving radius α�/λ0 as a function of SNRC . We remark that
Assumption 3 means that 2πα/λ0 � 1.
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Figure 5. Relative minimal radius α�(SNRC)/λ0 (see (51)) as a
function of SNRC in the high-frequency regime.

3.3. Low-frequency regime. We consider the low-frequency regime defined by:

Assumption 4. q0α � 1.

In the asymptotic framework when q0α � 1, using the fact that Jp(z)
z→0∼

(z/2)p/p!, we have

(52)
1

2π

∫ 2π

0

J2
p (2q0α cos θ)dθ ∼ (q0α)2pH(p) ,

with

(53) H(p) =
1

2π(p!)2

∫ 2π

0

cos2p(θ)dθ =
1

4

(2p)!

22p(p!)4
.

We then get (as in (48)) the stability condition that allows for the estimation of
the pth mode:

(54) SNR−1
C <

(q0α)2p+2H(p)

4
=

(2πα

λ0

)2p+2H(p)

4
.

Note the qualitatively different dependence on the mode number in the high- and
low-frequency regimes (compare with (49)). We can now answer the question: for a
fixed SNRC and α, which modes can be resolved? The answer is that it is possible
to estimate modes up to p = p(α/λ0, SNRC) with

(55) p(α/λ0, SNRC) = sup

{
p ≥ 1

∣∣∣∣ inf
1≤p′≤p

(2πα

λ0

)2p′+2H(p′)

4
> SNR−1

C

}
.

We plot in Figure 6 the maximal mode number p(α/λ0, SNRC) as a function of
the relative radius α/λ0 and signal-to-noise ratio SNRC . We remark that Assump-
tion 4 means that 2πα/λ0 � 1. Note that a high signal-to-noise ratio is needed in
this low-frequency regime even to get estimates of relatively low modes. Figure 7
shows the resolution bound as defined by (25):

(56)
λ(α/λ0, SNRC)

λ0
= 2π

α/λ0

p(α/λ0, SNRC)
,

with p(α/λ0, SNRC) given by (55).
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Figure 6. Maximal mode number p(α/λ0, SNRC) (see (55)) as a
function of relative radius α/λ0 and SNRC in the low-frequency
regime.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

α/λ0

D
ep

th
 D

ep
en

d
en

t 
R

es
o
lu

ti
o
n

 

 

SNR=103

105

107

109

Figure 7. Relative resolution λ(α/λ0, SNRC)/λ0 (see (56)) as a
function of relative radius α/λ0 and SNRC in the low-frequency
regime.

In terms of the radial dependence we can contrast (54) with the corresponding
condition in (21). The low-frequency limit is very sensitive to the noise conforming
with the discussion of the conductivity case in the previous section. From (54) we
have the probing constraint

(57) α ≥ α�(p, SNRC) , α�(p, SNRC) =
λ0

2π

( 4

H(p)SNRC

)1/(2p+2)

,

which is the low-frequency version of (51). This answers the question: for the mode
number p that we want to resolve and a given signal-to-noise ratio SNRC , what is
the minimum radius α� that we can probe? We plot the relative minimal radius
α�/λ0 in Figure 8.

We can next associate the relative minimum radius with the resolution measure
λ�(p, SNRC) = 2πα�(p, SNRC)/p. Thus, we introduce the p- and SNR-dependent

Licensed to Ecole Normale Superieure, Paris. Prepared on Wed Sep 11 11:12:45 EDT 2013 for download from IP 129.199.97.145.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



3444 HABIB AMMARI, JOSSELIN GARNIER, AND KNUT SØLNA

10
3

10
4

10
5

10
60

0.05

0.1

0.15

0.2

SNR

R
el

a
ti
v
e 

M
in

im
a
l 
R

es
o
lv

in
g
 R

a
d
iu

s

 

 
p=1
2
3

Figure 8. Relative minimal radius α�(p, SNRC)/λ0 (see (57)) as
a function of SNRC and mode number p in the low-frequency
regime.
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Figure 9. Relative resolution measure λ�(p, SNRC)/λ0 in the low-
frequency regime (see (58)) as a function of SNRC and mode num-
ber p.

resolution constraint by

λ�(p, SNRC) =
λ0

p

( 4

H(p)SNRC

)1/(2p+2)

.(58)

A small λ� corresponds to a good resolution. Using Stirling’s formula, it follows
from (58) that

λ�(p, SNRC)
p→∞∼ λ0

e
.(59)

Therefore, in the low-frequency regime, there is a saturation effect for the resolution.
In Figure 9, we plot the resolution measure λ�(p, SNRC)/λ0. Figure 9 shows that,
in this low-frequency regime, a relatively high SNR is needed. Moreover, with a
very high signal-to-noise ratio the relative resolution can then be very high. It in
fact increases with the SNR but saturates for high modes.
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