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The long-term behavior of a modulationally unstable nonintegrable system is known to be characterized
by the soliton turbulence self-organization process: It is thermodynamically advantageous for the system
to generate a large-scale coherent soliton in order to reach the (““most disordered”) equilibrium state. We
show that this universal process of self-organization breaks down in the presence of a highly nonlocal
nonlinear response. A wave turbulence approach based on a Vlasov-like kinetic equation reveals the
existence of an incoherent soliton turbulence process: It is advantageous for the system to self-organize
into a large-scale, spatially localized, incoherent soliton structure.
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Introduction.—Understanding the mechanisms respon-
sible for self-organization processes in conservative and
reversible Hamiltonian wave systems is an arduous prob-
lem that generated a significant interest. An important
achievement was accomplished when Zakharov and col-
laborators identified a soliton turbulence self-organization
process in the framework of the focusing nonintegrable
nonlinear Schrodinger (NLS) equation [1]. Starting from a
homogeneous initial state, the wave exhibits a modula-
tional instability (MI) process that leads to the formation
of a train of solitonlike pulses. Because of the nonintegr-
able nature of the interaction, the solitons interact inelas-
tically, so that the system irreversibly relaxes toward a
statistical equilibrium state, in which a large-scale coherent
soliton remains immersed in a sea of thermalized small-
scale fluctuations [2—4]. The coherent soliton then plays
the role of a “statistical attractor” for the Hamiltonian
system, while the small-scale fluctuations contain, in prin-
ciple, all information necessary for time reversal. It is
important to underline that the soliton solution realizes
the minimum of the energy (Hamiltonian): The system
then relaxes toward the state of lowest energy, which
allows the small-scale fluctuations to store the maximum
amount of kinetic energy £ [2—4]. In this regard, this self-
organization process has, in essence, a thermodynamic
origin: It is thermodynamically advantageous for the sys-
tem to generate a coherent soliton structure, because this
allows the system to increase the amount of disorder in the
small-scale fluctuations [2—4].

The idea that an increase of entropy in a nonintegrable
Hamiltonian system requires the generation of a large-
scale coherent structure is fundamental. For instance, in
the presence of a defocusing NLS interaction, the self-
organization process manifests itself by means of the
generation of a coherent plane wave in the midst of ther-
malized fluctuations [5,6]. This phenomenon of condensa-
tion of classical nonlinear waves [6] generated much
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interest [7,8], in relation with Bose-Einstein condensation
in dilute quantum gases [9].

Our aim in this Letter is to show that this universal
process of self-organization breaks down in the presence
of a highly nonlocal nonlinear response. A nonlocal wave
interaction means that the response of the nonlinearity at a
particular point is not determined solely by the wave inten-
sity at that point, but also depends on the wave intensity in
its vicinity. Nonlocality thus constitutes a generic property
of a large number of nonlinear wave systems [10-14]. In
contrast with the expected soliton turbulence scenario, we
show here that a highly nonlocal wave system self-organizes
into spatially localized incoherent structures, i.e., ‘‘incoher-
ent solitons” (ISs). These IS structures are of a fundamen-
tally different nature than the “incoherent optical solitons,”
which were recently investigated in various different cir-
cumstances [15-22]. A wave turbulence (WT) [4,5,23,24]
approach of the problem reveals that this type of IS can be
described in detail in the framework of a Vlasov-like kinetic
equation, which is shown to provide an “exact” statistical
description of the highly nonlocal random wave system. In
particular, we obtain an IS solution characterized by a
compactly supported spectrum, which is found in quantita-
tive agreement with the NLS simulations. This kinetic for-
mulation reveals the existence of an “incoherent soliton
turbulence” process, in which ISs irreversibly coalesce
into a single large IS: an increase of “disorder” in the
system requires the generation of an IS structure.
Furthermore, contrarily to the conventional WT approach,
the Vlasov equation derived here does not require the as-
sumption of weakly nonlinear interaction, a feature that may
shed new light on the important issue of strong turbulence.

Model.—A nonlocal nonlinear response is found in sev-
eral systems such as, e.g., dipolar Bose-Einstein conden-
sates [10], atomic vapors [11], nematic liquid crystals [12],
thermal susceptibilities [13], and plasma physics [14]. We
consider here the standard nonlocal NLS model equation,
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where U(x) is the nonlocal response, while 8 and 7y refer
to the linear (dispersive) and nonlinear coefficients, respec-
tively. Equation (1) conserves the power (or number
of particles) N = [|#|?dx, and the Hamiltonian
H=E+U, where E£=p[lo,yl’dx and U=
=3 J UK = Xy (x)*|(x')|*dxdx’ denote the kinetic
and nonlinear contributions to the energy J{. We denote
by o the spatial extension of U(x). The dynamics will be
shown to be ruled by the comparison of o with the healing

length A = +/B/(yp), where p = IN'/L is the density of
power (particles), L being the size of the numerical win-

dow. We underline that, although we consider here a 1D
model, our work can readily be extended to any spatial
dimension.

NLS simulations.—A physical insight into incoherent
soliton turbulence may be obtained by integrating
numerically the NLS Eq. (1). The initial condition is a
homogeneous (plane) wave (x,t=0)=/p with a
superimposed small noise to initiate the MI process
(By >0). In this example, we considered a Gaussian
response, U(x) = exp[—x%/(20?)]/V2mo?; however, the
same behavior is obtained, e.g., with an exponential re-
sponse. The remarkable result is that the behavior of the
system changes in a drastic way as the ratio o/ A increases.
For o < A, we recover the conventional soliton turbulence
scenario, in which the solitons generated by MI interact
inelastically and slowly merge into a big coherent soliton
that remains immersed in a sea of small-scale fluctuations
[see Fig. 1(a)]. These fluctuations exhibit a slow thermal-
ization process, characterized by an irreversible evolution
toward an equilibrium state of energy equipartition [2,3],
as described by the Hasselmann WT kinetic equation and
an analogy of Boltzmann’s H theorem of entropy growth
[4,5,8,23]. Conversely, for o > A, the system no longer
generates a coherent soliton but instead self-organizes into
an IS-like structure, whose typical width, A, is of the same
order as the nonlocal range, o ~ A [see Figs. 1(b) and 2].
More precisely, the ISs generated through MI coalesce into
a unique IS, so that the final IS captures almost all the
power of the wave, N5 ~ N Since o ~ A, the ampli-
tude of the IS increases proportionally with the grid size L.
We underline that the IS is characterized by a compactly
supported spectrum [see Fig. 3(b)], in marked contrast
with the expected thermal equilibrium spectrum,
whose tails exhibit an energy equipartition power law,
[ 2(k) ~ &2 [2].

To qualitatively interpret this result, we recall that a
coherent soliton results from a balance between the linear
and the nonlinear effects, so that its width / and amplitude

a are related through al ~ 4/8/y. In order for the soliton to
be confined by its self-consistent potential, the width /
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FIG. 1 (color online). Numerical simulations of the

NLS Eq. (1) starting from a homogeneous wave amplitude,
P (x, t = 0) = /n. For (a) & = A, one recovers the conventional
soliton turbulence scenario (¢ = 6007,). For (b) o = 30A, the
wave self-organizes into an IS state (r = 70007,). [7, = 1/(yp),
A =4/B/(yp), and p = IN/L; we applied periodic boundary

conditions].

should be of the order of, or larger than, o (otherwise,
the self-consistent potential would be smoothed out by the
large nonlocality). The amplitude must thus satisfy a <
VB/v/o.ie., a/./p < A/o.In the regime of incoherent
soliton turbulence, we have o > A, so that a < Jp: If the
soliton were generated, its amplitude would be smaller
than the amplitude of the fluctuations (~ ./p); i.e., the
small-amplitude soliton would not be able to feel its self-

induced potential, which explains why the coherent soliton
is not generated.
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FIG. 2 (color online). Spatiotemporal evolution of the wave
intensity |¢|?(x, £) obtained by integrating numerically the NLS
Eq. (1) for o = 10?>A: The ISs generated through coherent MI
coalesce into a large-scale IS structure that is conserved for
arbitrarily large times.
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FIG. 3 (color online). Comparison of the simulations of the
NLS Eq. (1) with the stationary analytical solution (4) of the
Vlasov Eq. (3): (a) Intensity ||?(x, #,) at t, = 1600007, cor-
responding to Fig. 2 (thin blue line), and intensity profile
N*(x) = (2m) ! [n3'(x)dk associated to the solution (4) with
oy = T5A (thick red line). (b) Spectrum ||(k, t,) (thin blue
line) corresponding to (a), and Vlasov spectrum S%(k) =
[ nt(x)dx associated to the solution (4) in the Log, scale (thick
red line). The dashed green lines show the initial conditions:
(@ ¢(x,r=0), (b) |§F]*(k,r=0). The compactly supported
form of the spectrum in (b) is analogous to that obtained
in Fig. 4(h).

Despite the fact that a coherent soliton cannot be gen-
erated, it turns out that the formation of a localized IS
structure leads to an increase of ““disorder” in the system,
i.e., an increase of the kinetic energy £, which provides a
measure of the “amount of fluctuations™ in the system
[1-4]. We compare the kinetic and nonlinear contributions
to the total energy in different states of the system. In the
initial coherent state (a), @ (x, 1 = 0) = /P, we have
£@ =0, so that H@W/L = —yp%/2. We first note that
this state (a) cannot evolve toward a statistical homoge-
neous (i.e., nonlocalized) incoherent state (b). Indeed,
because of the averaging of the fluctuations due to the
nonlocal response, we would have H® /L = pB/A2 —
yp?/2> H '@ /L, where A, denotes the correlation length
of the wave. Accordingly, the evolution (a) — (b) cannot
preserve the energy and is thus forbidden. Conversely, the
formation of an IS is possible and “thermodynamically
favorable™: Since the IS captures almost all the power of
the wave (Nig~ N) and since A ~ o, the intensity
profile of the IS can be written as N(x) = (|¢|?) X
(x) ~ p(L/o)Ny(x/o) and U(x) = o~ 'Uy(x/0o), with
JUy(X)dx = [Ny(¥)dx = 1 (¥ = x/o). This transforma-
tion allows us to extract a dimensionless number, Cy =
[ No(X)Uy(X — &)No(&)dxdx' /2, of order 1 in the expres-
sion of the Hamiltonian, H ©)/L = pB/A2 — yp*CyL /0.
Because L > o, this shows that the formation of an IS
leads to a decrease of the contribution of the nonlinear
energy. This decay is compensated by an increase in the
kinetic energy: the evolution (a) — (c) leads to an increase

of AE/L~ pB/A2=—AUJ/L~ yp*CyL/o. Accord-
ingly, the generated IS is characterized by £ ~ U
and by a typical correlation length

Ae ~Ba/(ypLCo) ~ Ao /L. 2)

The IS structures identified numerically in Figs. 1 and 2
are fundamentally different than the spatial IS widely
investigated in optics [15-19]. Indeed, we deal here with
an instantaneous response of the nonlinearity [see Eq. (1)],
whereas the spatial self-trapping of an incoherent beam is
only possible because of the noninstantaneous nonlinear-
ity, which averages the wave fluctuations provided that
its response time 75 is much longer than the correlation
time t, of the wave, i.e., 7p > f. [15-19]. The ISs inves-
tigated here are also different from those recently demon-
strated in “‘effectively instantaneous” nonlocal nonlinear
materials [20].

Vlasov approach.—The simulations of the NLS Eq. (1)
in Figs. 1 and 2 correspond to a single realization of the
stochastic function ¢ (x, ). We adopt a statistical approach
to unveil the underlying soliton behavior based on a WT-
type theory. The classical WT theory provides a natural
closure of the infinite hierarchy of moment equations for
the random wave ¢ on the basis of the fundamental
assumption that the nonlinearity is weak, |U/E| < 1
[4,5,23,24]. In the weakly nonlinear regime, linear disper-
sive effects dominate the interaction and bring the wave to
a state of Gaussian statistics. If the random wave exhibits
fluctuations that are homogeneous in space, the WT theory
leads to the irreversible Hasselmann equation that de-
scribes wave thermalization to equilibrium [4,5,23,25].
Conversely, if the wave exhibits a quasihomogeneous sta-
tistics, the WT theory leads to a reversible Vlasov-like
equation for the local spectrum of the field [24,25], which
is defined from n(x, 1) = [ B(x, &, t) exp(—ik&)dé, where
Blx, & 1) = (Y(x + &/2, )" (x — £/2, 1)) is the correla-
tion function.

We stress that the validity of the kinetic equation that we
derive here does not require the assumptions of (i) weakly
nonlinear interaction and of (ii) quasihomogeneous statis-
tics. Indeed, in the highly nonlocal regime defined by
the small parameter ¢ = A/o < 1, the length scale of
the inhomogeneous statistics (i.e., width of an IS) is
of the same order as the nonlocal range, o ~ A, and we
have A, < o, i.e., the quasihomogeneous statistics is au-
tomatically satisfied (note that, according to Eq. (2), we

have A./A ~ egq/o/L < 1). In these conditions, the self-
averaging property of the nonlinear response holds, which
leads to a closure of the hierarchy of moment equations.
More specifically, using statistical arguments similar to
those in [26], one can show that, owing to the highly
nonlocal response, the statistics of the random wave turns
out to be Gaussian. In this sense, the Vlasov equation
derived here provides an ‘“‘exact” statistical description
of the random field ¢ (x, ) in the highly nonlocal regime,
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e < 1. Using a multiscale series expansion in the small
parameter &, we obtain the Vlasov-like equation [27]

Ang(x, 1) + 0, @i (x, )9, np(x, 1) — 9, @i (x, 1) dpni(x, 1) = 0,
3)

where the generalized dispersion relation reads @(x, t) =
w(k) = V(x, 1), with V(x, 1) =1y [Ulx—x)NX)dx,
N(x,)=B(x,£=0,0)=Q2m) " [n;(x,1)dk, and w(k) =
Bk?. Equation (3) conserves N = (27) ™! [ ni(x, 1)dkdx,
the Hamiltonian H = [wlk)n(x, )dkdx—
T JV@N@)dx, and M = [ f[nldkdx, where f[n] is an
arbitrary functional of n. The kinetic Eq. (3) has a structure
analogous to a Vlasov equation considered in plasma
physics [28] or more recently to studying long-range in-
teracting systems [29]. However, to our knowledge, it is the
first time that this equation is considered in nonlinear wave
systems described by NLS-like equations. In particular, it
differs from the Vlasov equation used to describe ISs and
incoherent MIs in plasmas [24,30], hydrodynamics [31],
and optics [17,19,22,26].

IS solution.—Soliton solutions to Vlasov-like equations
have not been widely investigated in the literature, pre-
sumably because of the strong assumptions (i) and (ii)
discussed above, which seriously limit the physical rele-
vance of the Vlasov equation. However, contrary to
the conventional Vlasov equation [17,19,24,30,31], here
Eq. (3) is expected to provide an “‘exact’ description of the
ISs identified numerically in Fig. 2. We generalize to
a nonlocal interaction and to a moving solution the stand-
ing IS solution obtained in [30] for a local interaction,
U(x) — 6(x). In a reference frame traveling with a
velocity v, the stationary Eq. (3) reads 9;@(z)d.n,(z) —
0,01 (2)0 i (z) +va.m(z) =0,  with  z=x+ vt
Assuming a Gaussian intensity profile, N(z) =
NQmo3) 2 exp[—z%/(20%)], and, making use of the
self-consistent method [30,32], we obtain the exact IS
solution of the Vlasov Eq. (3)

nit(x + vt) = Q. {c N¥(x + vt)
— Blk + v/@2B) P}/« 1/2, 4)

where 0, =27B"T(a' + 1)/[T(a™! + 1/2)x
r(1/2)cY%, TI'k) being the Gamma function,
and ¢, = Q@) 2yay N1 =402 + 03) /2, with
a=[1+(c/oy)*]"!. As remarkably illustrated in
Fig. 3, the solution (4) is found in quantitative agreement
with the numerical simulations of the NLS Eq. (1). This
good agreement is obtained for |U/&| =~ 1.5, which con-
cords with the qualitative estimation discussed above
through Eq. (2) [i.e., U ~ £©)] and thus confirms the
validity of the Vlasov approach in the nonlinear regime of
interaction. o only weakly affects the analytical spectrum
SS(k) = [ ni!(x)dx in Fig. 3(b). Note that the typical width
k. of the compactly supported spectrum of the IS solution
(4) is given by a self-trapping condition, Bk*> — V(x) = 0,

ie., k.~+V/B, where V(x) = yU=*N = (ypL/o) X
JUx — ¥)No(¥)dx' ~ ypL/o. Accordingly, A, ~
k;' ~ AyJo/L, which is in agreement with the estimation
given in Eq. (2). Also note that the small soliton velocity
v ~0.05A7;"! in Fig. 2(b) gives a negligible frequency
shift k, = —v/(28) in the spectrum S™(k), i.e., k; < k..
We remark that the momentum captured by the IS has
mean zero and a standard deviation that grows like
(P3)/? ~ /L as a function of the grid size L (as a con-
sequence of the central limit theorem for fluctuation
phenomena), while the power captured by the soliton
grows like Ng ~ L, and therefore the fluctuations of
the velocity of the IS should decay as (Vi)!/? =
(P2 Nys ~ 1/4/L.

We finally show that the Vlasov Eq. (3) describes a
process of incoherent soliton turbulence, in agreement
with the NLS simulation reported in Fig. 2(a) (>
10007y): The IS structures generated through coherent
MI collide and slowly merge into a single large IS. This
scenario is reproduced in detail by the Vlasov Eq. (3) (see
Fig. 4). We started the simulation from a homogeneous
spectrum, n;(x, 7 = 0) = nY, which is periodically per-
turbed to seed the incoherent MI [15-17,19,30,31].
Because of the nonlinear Hamiltonian flow, particles fol-
lowing different orbits travel at different angular speeds in
the phase space (x, k), a process known as phase-mixing.

x [A]

x [A]

spectrum
S OdabNO

k[AT]

FIG. 4 (color online). Simulation of the Vlasov Eq. (3) for
o = 10?A. The initial homogeneous spectrum exhibits incoher-
ent MI: the four modulations excited by the initial condition lead
to the generation of four ISs, which slowly coalesce into two, and
then into a single IS structure. (a) ¢ = 300, (b) ¢ = 1000,
(c) t = 1500, (d) t+ = 3000, (e) t = 4000, and (f) t = 10* (in
units of 7). (g) Evolution of the intensity, N(x, ) = 27)~! X
[ (x, 0)dk. (h) Spectrum  S(k, 1y) = [ni(x, to)dx at 1y, =
70007, (Logq scale).
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Each MI modulation thus starts spiraling in the phase
space, then leading to the formation of four ISs, which
are mutually attracted and coalesce into two, and eventu-
ally into a single large IS (Fig. 4). We remark that the
spectrum S(k) in Fig. 4(h) has the same compactly sup-
ported form as the analytical soliton solution (4) and the
NLS simulations in Fig. 3(b). Note that phase-mixing is
responsible for a homogenization of the perturbations of
localized Vlasov states, a dynamical feature that refers to a
long-standing mathematical problem [33].

Conclusion.—We reported a process of incoherent soli-
ton turbulence in highly nonlocal wave systems that is
described in detail by a Vlasov-like kinetic approach. A
preliminary study indicates that our results can be extended
to account for an additional defocusing local nonlinearity
relevant to dipolar Bose-Einstein condensates [10]. Work is
also in progress to study genuine long-range interacting
nonlinear wave systems [29].
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