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Role of polarization mode dispersion on modulational instability in optical fibers
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We introduce the theory of modulational instabilityll) of electromagnetic waves in fibers with random
polarization mode dispersion. Applying a linear stability analysis and stochastic calculus, we show that the Ml
gain spectrum reads as the maximal eigenvalue of a constant effective matrix. In the limiting cases of small or
large fluctuations, we give explicit expressions for the Ml gain spectra. In the general configurations, we give
the explicit form of the effective matrix and numerically compute the maximal eigenvalue. In the anomalous
dispersion regime, polarization dispersion widens the unstable bandwidth. Depending on the type of variations
of the birefringence parameters, polarization dispersion reduces or enhances the Ml gain peak. In the normal
dispersion regime, random effects may extend the instability domain to the whole spectrum of modulations.
The linear stability analysis is confirmed by numerical simulation of the full stochastic coupled nonlinear
Schralinger equations.
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I. INTRODUCTION Here we examine the polarization MI of continuum waves

in a birefringent fiber with random birefringence. The model

Modulational instability(MI) is one of the fundamental for the random birefringent fiber that we consider in this
processes in nonlinear waves thepty-5]. Recently, much paper is that of polarization-mode dispersi#MD), which

attention was devoted to Ml in inhomogeneous media, paris 5 random function of propagation distance. PMD is de-
ticularly periodically varying medid6—8|]. Ml of electro- <. iped by a system of two coupled nonlinear Sdiiger

magnetic waves in random media is the natural extensiont LS) equationg 15]. A model in which the fast and slow
Random media encompass all frequencies, so we can expeg:\{ )

stochastic resonance phenomena, which are discussed intéhe> interchan_ge rando_m_ly at giv_en ?nterva_ls_ was iptroduced
sively herein. The scalar problem of fluctuating nonlinearity! Ref-[16]- This model is interesting in that it is the first one
and fluctuating group velocity dispersi¢BVD) in fibers has {0 address the problem of random PMD, but it is in some
already been studied in RgP] and Refs[10,11], respec- Sense incomplete since no power can be scattered between
tively. the two polarization modes. In Refd7,18, a more sophis-

It is interesting to ponder the existence of an analogougicated model was proposed in which the birefringence axes
phenomenon for the nonlinear evolution of polarization in aorientation and the phase shift between the modes are ran-
birefringent nonlinear dispersive medium with random pa-domly varied along the distance. As a consequence, in a
rameters. An important example is the evolution of the po-ixed reference frame the polarization state of light rotates
larization of a continuum wave in a randomly birefringent randomly on the Poincasphere. The aim was to investigate
fiber. Polarization Ml was investigated in the deterministicsoliton stability and radiation under random perturbations.
case in Refs[12,13. These earlier works discussed the de-The general model that we deal with in this paper takes into
pendence of the gain on the deterministic values of theaccount a group-velocity mismatch between the two polar-
group-velocity mismatch between polarizations, the frequenizations as well as coupling terms between the two polariza-
cies of initial modulations, and the powers of the wavestion modes, which are random functions of propagation dis-
However, in real fibers, birefringence is not constant, rathetance[19,20.
it is subject to random fluctuations along the propagation Note that in this work, we shall neglect fiber loss and
distance 14]. competing nonlinear effects, such as stimulated Brillouin

scattering, which may be relevant in the propagation of a
guasicontinuous wavew). As far as loss is concerned, it is

*Email address: Josselin.Garnier@polytechnique.fr; well known that in the presence of periodic all-optical am-
FAX: (+33).1.69.33.30.11. plification, the loss may be averaged out of the propagation

"Present address: Alcatel Corporate Research Center, Route ®éhenever the amplifier spacing is small when compared to
Nozay, 91461, Marcoussis, France. the characteristic dispersion distanggiiding-center soliton
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regime of the nonlinear propagation in the fibévioreover, ~whereX; are Pauli matrices:
Brillouin scattering may be neglected in the presence of rela-
tively wideband signals(still to be considered quasi-cw 01 _ 0 —i B 1 0

when compared, for example, with THz modulatipasn- 1 0/’ 2o= i 0]/’ 25= o -1/’

sisting of pump pulses of several picoseconds.

The paper is organized as follows. In Sec. II, the model isand S; are real-valued random functions off the fiber is
formulated. An analysis of the deterministic system is per-isotropic and if it has a perfectly circularly symmetric cross
formed in Sec. Ill. Equations for the mean fields and mearsection, then the&; are identically zero. If the fiber is bire-
intensities are analyzed in Secs. IV and V. Results of numerifringent, thenS; is equal to some constant parametey
cal simulations for the full stochastic NLS equations are fi-which may not be zera), is proportional to the group ve-

nally presented in Sec. VI. locity mismatch (GVM) between the two polarization
modes. In real units, the GVM reads,=to(k,—k;)/| 82|,
Il. DESCRIPTION OF THE MODEL where the primes denote derivatives with respeeb télow-

ever, in real fibers the circular symmetry is broken due to
unavoidable imperfections of the fiber. Thus the coefficients
S; acquirez-dependent values. Accordingl$; and S, are
taken as white Gaussian-distributed noises:

The evolution of polarized fields in randomly birefringent
fibers is governed by the coupled nonlinear Sdimger
equations with random PMD between two modpslariza-
tions) [19,20:

9 (S(2))=0, j=1.2, (6)
iA,+KA+iAA+ BA;+<=N;=0, (1) .

‘ 8 (S(2)S(2'))=20%8(z—2"), =12, (7)

whereA is the row vector A;,A,)T that denotes the enve- while S; is taken as the sum of the constant tegpnand a

lopes of the electric field in the two eigenmodes; we usenhite Gaussian-distributed noise:
standard dimensionless variables. The matri€cesxd A de-

scribe random fiber birefringence. The GVD coefficienBjs (S3(2))=Ao, (8
which is positive(negative for anomalougnorma) disper-
sion. TheN; term stands for the nonlinear terms, ([S3(2) = Aol[Sa(z' ) —Agl)=2058(z—2). 9)
a In the following, o will be referred to as the standard de-
(|AL?+ a|Axl?) A+ EAéA*{ viations of the fluctuations oS;. A simplified model for
N,= ' (2)  random birefringence is a random concatenation of different
(1Agl2+ | A2 Ay + EAZA* fiber sections whos8;’s have equal absolute values but op-
2 L posite signg16]; see als22]. The lengths of these seg-

ments are of the order of 30100 m, typically much less

where the cross-phase modulatioris: § for linearly bire-  than the dispersion distanég=1t2/|8,|. Such configuration
fringent fiber. o may be described by the previous white-noise model with

As shown by Way and Menyuk, one can eliminate the fasiyZ=[t,(k; —k;)/| 85| 1%l ., wherel; is the correlation length.

random birefringence variations that appear in EL. by More generally, the presence of the teﬁmjt is associ-

means of a change of variables, which leads to the new V€Gted with linear coupling between the modes, as well as an

tor equation accumulation of a mismatch between their phases. In spite of
this extension, which includes linear mode coupling, the
model remains analytically solvable and it predicts some
- . ~general new features associated with the random nature po-
whereU=M"*A, U=(u,0)" represents the slow evolution [arization MI. We believe that these features will be pre-
of the field envelopes in the reference frame of the locakeryed to a large extent in the full numerical simulations of
polarization eigenmodes, and the matkixobeys the equa- nonlinear pulse propagation in a random fiber, and ultimately
tion iM ,+ KM =0. The nonlinear ternN, reads in the experiments. For example, an analysis of the stochastic
decay of the vector soliton under random variationsSef
- ((|U|2+ a|v|2)U) that was performed in the framework of the systen[23]
Np= 2 2 ’
(afu[*+v[*)v

iU,+iQU+ BUyu+N,=0, (3)

) leads to practically the same results as the conclusions of a
study performed with thdull model in[19,20. Note also
where the cross-phase modulatior 1 after averaging over that the systen{3) with S;=S,=0 was employed for the
fiber birefringencg21]. investigation of resonant phenomena in the solitons dynam-
Q is az-dependent matrix that is associated with the coudcs for the case of periodically varying birefringer{@]. In
pling between the modes due to perturbations. We consider[25], the system(3) with the white-noise model for PMD

general form for(}: excitationS; has been applied to obtain an analytical expres-
sion for the jitter due to the interaction with the continuum
0=S53,+S,3,+533 3, (5) component. Analogies with the noise-driven harmonic oscil-
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lator were observed and confirmed by the numerical Simulathe random rotations generated éyand the dynamics in-
tions of Eq.(3) with white-noise perturbations. We may also yolved in the nonlinear homogeneous terms. To perform a
remark that WheneV@l'EO anda=1, one obtains the inte- precise ana|ysis of the Systdm) and (]_5) we use the com-

grable Manakov system. _ plex representation;=C+iD, v;=E+iF and perform the
The nonlinear plane-wave solutions of the syst@mwead  Equrier transform

uo(z)=Aexdi(A%+ aB?)z], (10) . A
c= f ceetdt, d= f De'“tdt, (16)
vo(2)=B exdi(aA%+B?)z]. (11
Linear stability is evaluated by substituting so that we get the following system for Fourier components:
u(z,t)=[A+uy(zt)]exdi(A%+ aB?)z], (12) c,=—inSe—iwS,f—iwS;c— Bw?d, (17
v(z,t)=[B+uv(zt)]exdi(B%+ aA?)z]. (13 e,= —iwS,ctiwS,d+inSe— Bw?f, (18)

into Eq. (3). By retaining only the first-order terms, one ob- 4 _ _; ' ¢ e—i d+ Bw?c—2A(Ac+ aBe
tains a linear system of equations oy anduv: z oSt oS, 0Ssd+ fo ( “ ()1’9)

iUy, +iS101+ S 1 +iSaUy+ Busy+2A% Re(uUy) f,=—i0Sd—iwS,c+ wS;f+ Bw?e—2B(Be+ aAc)
, :

+2aABRev,)=0, (14 (20
i01,+1S1Uy— SoUy—iSquyi+ Bu i+ 2B? Re(vy) Iil. DETERMINISTIC SYSTEM
+2aABReu;)=0. (15 We remind the reader of the results corresponding to the

homogeneous configuration; =0 [26,27]. In such a case,
we haveS;=0, j=1,2, while S;=A,. The system of equa-
tions for the row vectoﬁzz(c,d,e,f)T is

In the homogeneous configuratiorS;ES,=0 and S;
=A,), the MI problem is reduced to an analysis of the ei-
genvalues of a A4 matrix. One can then derive the well-
known MI gain spectra of vector modulational instability .
[26,27]. The main features of this homogeneous configura- dqg - 21
tion will be sketched out in the next section. E_Qq’ @)
If S; arez-dependent, then a convenient representation of
the polarization evolutions induced by the fluctuatid®s  whereQ is the 4x4 matrix,

may be done in terms of the Stokes vecassociated to the

Fourier components of the modulation;(v): —iwl Bw? 0 0
C 2A’— Bw? —iwA, 2aAB 0
si(@)=(Jug|*=[v|*)(w), Q= 0 0 iwA, Bo?
Sy(w)=2 Re(U0%)(w), 2aAB 0 2B%2—Bw? iwA,

(22)
— Nonx
Ss(@)=2Im(uy)(w), The Ml gain is defined as twice the maximal value of the real

Cr 2 2 i parts of the eigenvalues of the mat@«< When it is positive,
whose modulusysi+s;+s3=|uy|*+[v4|* is proportional i~ governs the exponential growth of the modulation

to the power at frequency. In terms of the Stokes param- |A > ~ o S .
T o Uq|%(@)+|v4]%(w). The algebra is simplified by consider-
Svtﬁ;’ t:: ?gcrlfr‘wmlﬁem?grcnfg Zzi;?r? fl?r(gr%at;gsijmﬁézrit ing the casd=A. Nevertheless, it should be underlined that
[containing A angB in Egs.(14) and ?15)]_ Yinis simplification does not affect the generality of the fol-
9 as- ' lowing results and conclusions. We introduce the character-

ds istic frequenciesv;, w_, o, , andwg:
—=-2w0(2)Xs5,
dz a)c::\/2,871(1+ a)A?,

where@(z) is the row vector € S;,—S;,S,) "(2). Thus the

S; appear as elementary infinitesimal generators of random
rotations of the Stokes vector over the Poincsplere. On
the other hand, if we take into account only the nonlinear wei=\2A?B 1~ a?A%A .

terms of Eqs(14) and (15), then we exhibit a coupling be-

tween the components of the modulations at frequemeypnd  These frequencies may be imaginary. g£>0 and AS
— . The relevant phenomena thus involve an interplay of<«?BA?/2, or if <0, thenw3<O0.

w.=\2B Y1+ a)A%+ B72A2,
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A. Anomalous dispersion>0, o;=0 Then the system of equations for the row vector of mean

If A,=0, then the frequencies belaw; are unstable and fields (q)=((c),(d),(e),(f)) T is
the corresponding MI gain is )
d{q)

G(w)=23|w|\/wg—w2. (23 W=(Q—Uzw2|d4)<ﬁ), (29

If Ag#0 and is such thah3< Ba’A?/2, then there is MI

i i where Ig, is the 4x 4 identity matrix,o?:= o3+ o5+ 05, and
if |o|<w,, and the MI gain is 4 y o’=01+ 05+ 03

Q is given by Eq.(22). The gain for mean fields is equal to
twice the maximal value of the real parts of the eigenvalue of
the matrixQ— o?w?ld,. The eigenvalue analysis shows that
the effect of the PMD fluctuations is to shift all eigenvalues
Jo(@)=2B" A Vo’ — w}. (25 by the term— o2w? with respect to the homogeneous con-
figuration 0=0. It thus appears that the effects of random-
If Ag#0 and is such thaBaA?>AF>Ba’A?/2, then ness, as far as the mean fields are concerned, are the follow-
there is Ml for|w|<w. . Note that 0<w,<w_<w, since ing. (i) The MI gain is reduced(ii) The MI spectrum is

w? —w2=(aA?A,t+ B71A,)?. The exact expression of the narrower. Nevertheless, as we shall see in the next section,

G(w)=28|w| 2B 1A= B 2A5— w’+Jo(w), (24)

MI gain can be written on the intervéb|< w, as these results are not relevant from the point of view of modu-
lational instability growth, since the first moments of the
G(w)=\2B|w| 28 1A?= B72A2— w?+Ji(w), fields do not capture the exponential growth of the modulus
(26)  of the fields because of the presence of fast random phases.
- B 2?2 V. SYSTEM FOR MEAN INTENSITIES
Ji(0)=\/ (w? =287 A%+ B72A7)*~ . (27)
(1+a)? It should be noted that the first-order moments do not lead
to a prediction of resonant phenomena. For a search of reso-
and on the intervalo| e [we,w ] as Eq.(24). nant processes, it is necessary to investigate the behavior of

If Ag#0 and is such thah>BaA?, then there is Ml if  the second moments. The problem at hand is indeed analo-
|w|<we and the corresponding MI gain is E@6). There is  gous to the harmonic oscillator with a randomly perturbed
also Ml if || e[w_ ,w ], and the corresponding Ml gain is frequency,
given by Eq.(24). Note that there is a gap in the spectrum
betweenw, andw_ in which there is no Ml. Vot w1+ E(2) v =0, (30)

B. Normal dispersion 8<0, o;=0 where §(z) is the Gaussian random process. The equations
1 83=2pl(1— )%, then here i no W26l Ther s 5F 18 St moments obey a il dynamis, ndeed. e
MI only if A2>2|B|(1— a)A2. P y

2 a2 ,  second-order moments equatig@s)].
More exactly, If 2|(1-a)A*<Ag=2|B[(1+a)A%, It can be easily shown that a study of the spatial growth
then there is Ml ifo<w_. The corresponding MI gain is

rates of the first moments of the modulations does not cor-
rectly capture the growth rate of the intensity of the modu-
lation, when it is averaged over the ensemble of fibers that
generate the random processg$z). In fact, the spatial
growth rates of the average values of the components of the
modulations are reduced owing to random phase factors of
the kind exprilw/§S(z')dZ ] that multiply the coefficients,

d, e, andf; as a result, the expectation values of these coef-
IV. THE SYSTEM FOR MEAN FIELDS ficients decay exponentially alorgy Therefore, it is neces-
sary to consider the growth of the second-order moments
ro=((|c|?,{|d|?),(|el?),{|f|?)), which are directly related

to the intensity of the modulation. Unfortunately, the vector

G(w)=2|8||0|V2B A2— B 2A5— w?—Jo(w) (28)

wherelJ, is defined by Eq(25).
If A2>2|B|(1+ a)A?, then there is Ml ifv e[ w, ,0_].
The corresponding MI gain is given by E@8).

We will use for the decoupling of the mean values the
Furutzu-Novikov formuld 28],

, 5X(2) r, does not satisfy a closed-form differential equation, and it
_ =(S (z—7' ’ is necessary to complete the vectqr with other second-
(S(X)=(S)}X)+ | vj(z—2') dz’,
0 0Si(z") order moments to get a well-posed problem.

If Ag=0, denoting
where y; is the autocorrelation function of the proceSs
—(S;), which is assumed to be white noise so thetz) ro=Re((c*d),(c*e),(c*f) (d*e),(d*f),(e*f)),
=2<r]-25(z). oXI6S; stands for the variational derivative Xf
with respect toS;. For instance, Eq(17) implies that the ten-dimensional row vector:=(rq,r,)" satisfies the
6¢(2)15S,(z)= —iwe(z), so that (S;(z)c)=—iwo?(e). closed-form differential equation
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(31)

whereM is a 10< 10 matrix whose explicit form is given in
Appendix A. Instability occurs whenever an eigenvaludvof

PHYSICAL REVIEW E3 066616

random, then we find that the MI region is increased so that
all frequencies are unstable as soomﬁ?O forj=2 or 3,
while the MI gain peak is reduced. The MI peak is equal to
2(1+ a)A% when o;=0, and we shall see that it decays to
2A? asoj, j=2 or 3, increases. We can give the first terms

has a positive real part, and the Ml gain, which correspondgf the asymptotic expansion of the Ml gain in the limit of

to an exponential growth dfic|?), (|d|?), {|e|?), or (|f|?),

is twice as large as the value of the real parts of the eigen-

values ofM.
If Ap# 0, denoting

rg:=Im((c*d).(c*e),(c*f),(d*e),(d*f).(e*f)),

small noisqe‘lajz<1. For|w|< ., the Ml gain is reduced,
G(w)=2B|w|Jwi—w?—20%(c5+d3).

For |o|>w,, the MI gain is positive while it is zero fow;
:0’

(33

the 16-dimensional row vectar:=(r,,r,,rs)" satisfies the G(w)=Gy(w)o5+Gs(w) 03, (34)
closed-form differential equation
where

I W (M N) (32 (1-a?)p 2A"

J— r = —

dz ' P R/’ Gylw)=4——F——+G3(w), 35

2( ) Kl((()) 3( ) ( )
whereN, P, andR are, respectively, 106, 6x10, and 6
X 6 matrices whose explicit forms are given in Appendix A. Gl0) =40 KoK1(w)—K3(w)+10a?B~2A%
Henceforth, we simplify the algebra by considering the lw)=4w > 2 o—ond’

caseB=A. The study of Ml consists in finding the largest 3KoKy(w) +5Kg(w) = 20a747°A 38
value of the real parts of the 10 eigenvalues of the matrix (36)
Although all coefficients of the matrices are explicitly o Z1n2
known, such a problem is intricate and it is difficult to write Ko(w)=w™=28""A% (37)
down the MI gain in a closed form. Nevertheless, in the - > — —
limiting cases of either small PMD fluctuatior1;18|*1crj2 Ki(w)=Vo'-48 A%’ +48 % (1-a®)A%.  (39)

<1 or large quctuation$B|*loj2>l, respectively, we will

be able to obtain explicit expansions for the MI gain. Fur-NOte thato, does not appear in this expression, which means

thermore, by using thelAPLE code[29], we can solve the

eigenvalue problem with high accuracy, and plot the Ml gain

as a function of the frequenay for any given set of values
for A, Ay, oj, B, anda.

In view of the particular form of the matrii, results

corresponding to any powe¥’ can be deduced from results

of an equivalent problem in whicA=1 through the trans-
formation

|\~/|ij(8A,,8,8A0,a'j2 ,a,gw)=szmij(A,B,Ao,0j2 @, W)

foralli,j=1,...,16. Consequently, if one finds that there is

MI for some configuration Ao,,B,AO,ojz,a) for w

e[ wq,wq] with gain Gy(w), then we can claim that there is

Ml for the configuration €A, B,2A¢,07,a) for o

elewg,ew,] with gain £?Gy(e 1w) for any e>0. This

that fluctuations of5; do not induce any modification of the
MI gain spectrum. lfe=1, thenG, andG; are equal, which
shows that the influences & andS; are equivalent. lfw
<1, thenS, involves a stronger effect characterized by the
first term on the right-hand side of E(B5).

We have checked the accuracy of the expansions derived
above compared with the full intricate theoretical expres-
sions. We have compared the exact M| géaibtained with
MAPLE) with the expansior(34), which is only valid up to
terms of order 2 with respect ;@flajz. We have seen that,
for relatively small values otr; (less than 0.3), the expan-
sion (34) is a very good approximation of the real gain.

B. Analysis of the general case\,#0

If A§<BaA2 ando;=0, then the Ml gain is found to be
in a band of frequencies below the critical valwe . By

scaling property thus allows straightforward extrapolationstaking into account the fluctuations;>0, j=1,2,3, one
that are useful for theoretical analysis as well as for experifinds that there is Ml for all frequencies.
mental investigations. If Aj=pBaA? anda;=0, the MI gain consists of a first
peak corresponding to low frequencies and a second peak
that lies close tg8~!|Ao|, more precisely betweea_ and
o, . When taking into account PMD fluctuations, the second
peak is strongly reduced and finally it disappears for large
We consider in this section the particular cagg=0. In  o;. However, new peaks may appear at low frequencies in
the homogeneous configuratiom;=0, j=1,2,3, we get the case of large fluctuations & . The analysis can be
back the results of Sec. Il A showing that the frequenciesmade clearer by considering separately the influences of the
below the critical valuev, are unstable and that the Ml gain different types of variations of the birefringence parameters
is Eq. (23). If the birefringence parameters of the fiber areS;, j=1,2,3.

VI. ANOMALOUS DISPERSION

A. Expansion of the MI gain for zero mean GVM
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(b) FIG. 2. MI peak(a) vs PMD deviationso; for an anomalous
dispersionB=1, «=1, and different GVM meani,,.
2r —1,— Bw?e+2B[Be+ a(z)Ac]=0,
= where c=cexpid(z), d=dexpid(z), e=eexp—ip(2), T
S L =fexp-id(2), and ¢(2)=w[§Ss(y)dy, which obeys the
1- statistical distribution of a Brownian motion. The study of
3 MI of electromagnetic waves with a random birefringence
S5(2) is therefore equivalent to the study of Ml of electro-
magnetic waves with a random cross-phase modulation co-
0 efficient a(z):=aexpd¢(2). For very largeos, the cou-

pling coefficient has a very fast random phase which makes
it average to 0. The limit systes™ 1cr§>1 corresponds to a
decoupled Manakov system with=0. From the results of
FIG. 1. MI gain vs frequency for an anomalous dispersin Sec. Il A, Eq. (39) can be interpreted as the gain of the

=1, =1 and different GVM meanda  and deviationsrs. decoupled Manakov system with=0, S;=0.
The MI peak versus the amplitude of the noise is plotted
C. Fluctuations of S; in Fig. 2. It shows rather chaotic behaviors depending

Assume in this section that, = o,= 0. Figure 1 plots the strongly onAg 2for sr_nall_ values ofo3, but all curves finally
MI gain spectrum versus increasing values of the standar§onverge to A% which is the MI peak corresponding to Eg.
deviationa, for different GVM meansi. It shows the con- (39 The mechanism behind these irregularities is made
version of the gain spectrum from the deterministic configu-clearer by considering the variations of the optimal fre-
ration that strongly depends d, to an asymptotic form that duency. It may happen that the optimal frequency jumps
seems to be independent af,. This observation can be fr_om one value to ano_ther, and this is due to the fact thgt the
proved rigorously. Applying the technique developed in Ap_hlg_h-frequency peak is canceled by the PMD fluctuations,
pendix B, we get that the Ml spectrum in the asymptoticWhile the low-frequency peak converges to Egg). Never-
configuration~to2>1 does not depend of,. Indepen- theless, independent of the |n/|t|al GVM meA@, the opti-
dent of A, the gain for large8™ o2 is equal to mal frequency converges ® Y A| aso; increases, which

is the optimal frequency corresponding to E8Q).
G(w)=2,8|cu|\/2,871A2—wZT (39
D. Fluctuations of S,

if |o|<y2B "4A| and 0 otherwise. This result is not sur- Figure 3 plots the MI gain spectrum versus increasing
prising. The stability conditions for the systet®7)—(20)  yajues of the standard deviatiom,. This confirms the
whenS,=S5,=0 are equivalent to requiring the stability of asymptotic result obtained by applying Appendix B, which
the auxiliary system, claims that, in the limit3~ 13> 1, independent of\o, the

MI gain spectrum consists of two parts:

EZ—,BwZa=O,
(10
~ _of1_ 2p2
ez—,8w2?=0, G(w)=2V1—a“Af \/54 i
—d,— BoZe+ 2A[ AT+ a(2)*Be] =0, +2VAY a?—1)+2A2Bw?— BPw®,  (40)
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—————] A=, Ay =0 |7 zero meam =0, ajz>0,then there is MI and all frequen-
4k E———— cies are unstable. As in the cage-0, the closed-form ex-
/N e 62=0.5 | ] pression of the MI gain is too complicated to be written
i N o2=1 |1 down explicitly. Nevertheless, we can give the first terms of
3 A U gz=10 - the asymptotic expansion of the MI gain for small PMD
I T L = ]

F ] quctuations|B|‘1oj2<1. We found that for anyw|>0, the

£ \ . Ml gain is positive and it is given by Eq34). For instance,
o 2F j,;,;r/’\\}.\ ] if a=1, B=—1, ando;=0,=0, then the Ml gain spectrum
7 N ] is maximal forwoy=2(v2—1)*?A=0.910A and it corre-
A/ W E sponds to a maximal gain ofG.,=[4(v2—1)(2y2
¥ AN ] +1)/(5+3V2)]A%05=0.68A%03. If @=2/3, wgy
[ A ] ~=1.274 and G yp=0.24A%03.
ol e e T ey A
0 1 2 3 4 5

B. Analysis of the general case\,#0

. . As discussed in Sec. Ill B, i;=0, there is MI for fre-
FIG. 3. Ml gain vs frequency for an anomalous dispers®n quencies lying inside a band aroul@ ~!|A|, more exactly

(0

=1, a=3%, GVM meanA,=0, and fluctuations 08,. betweenw_ andw, . When one increases the PMD fluctua-
tions, this peak disappears, but all frequencies are made un-
where stable. We shall analyze the effects of the different types of
fluctuationsS; separately.
1 (4w?—/5an2+ 64w+ 63w\ 27+ 641*)?
f(w)=— . C. Fluctuations of S,

3 354w+ 6amb+63W\27+ 64t

Let us first study the effects of fluctuations 8f and
considero, = o,=0. Figure 4 plots the MI gain spectrum for

This shows that there exist two bands of unstable frequen?o'frferent values of the GVM meali, and deviationsrs and

— — H -1 _2
cies. The first one consists of low frequencies whose opti- a=1, = . 1 In the asymptotic frameworkBLZ 73
>1, the Ml gain is close to O up to a term of ordeg “ for

all frequencies. More exactly, for any frequency not too
small w>|A|o3 %, we have wheng| to5>1

(41)

mum is obtained ato,, 1= (V1+ @A)/20, and its value is
Gopt.i=(1—a?)A?% It is independent of3, it vanishes ifa
=1, and it is maximal foww=0. The second band of the Mi
gain spectrum lies at high frequencies. It vanishea 0
and it is maximal fora=1. Its optimum is obtained at G(w)
wopt2= B~ ?A and its value iG 7= 2A?, which is larger
(smalley than Gy g if @=3 (a<3). Note that, whena
=1, the MI gains induced by large fluctuations®fand S
are the same, but they are very different when 1.

|Bla”A*
=———03". (43

2A2— B2 °
This result is consistent with a comparison with the decou-
pled Manakov system, which is valid for large fluctuations

|8|"*o3>1. Indeed, the decoupled Manakov system for a
normal dispersiofB<<0 with «=0 andS;=0 is not affected

E. Fluctuations of S, by MI. That is why one finds that the Ml gain goes to O as
Applying Appendix B establishes that in the limit s 90es to infinity. _ .
Bflo_%>1' the MI gain becomes independent . If A, The MI peak versus the amplitude of the noise is plotted

=0, there is no action 0%,. If A;#0, large fluctuations of in Fig. 5. Fordo=0, and more gene.rally for smal_l values of
S, impose the MI gain spectrum to adopt the shape of th%egclrtleip;?z;iir;hjr; :!(‘)? s'\élrlnge?ﬁaflgfpga%zsoglﬂ;ngzd

- : ; -1_2 0 0 ,
;afeiéo iv(;.nAt;ccordmgly, the MI gain spectrum fq8 "oy but not on the poweA?. Fora=1, 8=—1, andA,=0, one

9 y finds thato35=0.85. The corresponding optimal frequency is

Glw)=2 [ — ol 42 close to 0.9}lA|. For deviations larger thams,, the gain and
(@)=2po|Noc—o 42 the optimal frequency decay to 0.

Fluctuations ofS, involve an enhancement of the Mi peak _!f A40#0, then the MI peak is als<2) nonzero in thg absence
and a qualitative change of the unstable bandwidth. Thegf fluctuations, given byGqy=2aA" for A0>2|,8|A - zanzd
make the high-frequency peak disappear while the lowcorresponds to an optimal frequencyog,~pB"“Ag

frequency peak widens. +2A?B~1. Stronger fluctuations lead to a decrease of the
peak gain and of the optimal frequency to O: for largg the
VIl. NORMAL DISPERSION MI gain behaves like in Eq43).
A. Expansion of the MI gain for zero mean GVM D. Fluctuations of S,
If the PMD is identically zerdi.e., Ay=0, o;=0), then Figure 6 plots the Ml gain spectrum for increasing values

there is no MI as shown in Sec. Il B. If the birefringence of o,. In the limit |,8|*1a§>1, the MI gain becomes inde-
parameters of the fiber randomly fluctuate and the GVM hagendent ofg and is given by
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(a)

021 /°

A=1, Ay=0

gain

gain

FIG. 4. MI gain vs frequency for a normal dispersigs —1,
a=1, and different GVM mean4, and deviationsr;. Remember
the MI gain is zero for all frequencies in the absence of PMp.
=0, 03=0.

0'2(1)
V24/1— a?A

wheref is defined by Eq(41). This shows that there exists a
band of unstable low frequencies. The optimal MI gain is
obtained atw = (V11— a?A)/20, and its value I p= (1

— a®)A?. Note that the MI peak may become higher than in
the homogeneous case, and that in the casel, the Ml
gain spectrum completely vanishes.

G(w)=2V1- A%t

: (44)

E. Fluctuations of S;

In the limit | 8| "*o3>1, the MI gain becomes indepen-
dent of Ay. WhenA,=0, there is no action d8;, and when
Ay#0, large fluctuations o8, impose the MI gain spectrum
to adopt the shape of the cadg=0. Thus the peak that
exists in the homogeneous medium in the cAget 0 van-
ishes.

VIIl. UNIFORM FLUCTUATIONS OF PMD

PHYSICAL REVIEW B3 066616

T T — A=1 | T 7
b —— Ay=0
T | ICRPIESS Ap=1
1.5 :—\3 _____ A0= .
‘ ————— A0=3
e 4
o B
& 1 ~ \,‘\ i
[ Y
= [N
4 5

FIG. 5. Ml peak vs PMD deviations; for a normal dispersion
B=—1, a=1, and different GVM meani,,.

case for most experimental configurations. In the case of
small fluctuationso;=0<1, the expansions derived in the
above sections are valid. Let us discuss the dgse0. In

the anomalous regime, the MI gain spectrum is given by Eq.
(33) for |w|<w. and Eq.(34) for |w|>w.. One can thus
observe that fluctuations of birefringence parameters involve
a broadening of the MI spectrum and a reduction of the Ml
peak. In the normal regime, the MI gain spectrum is given by
Eq. (34) for |w|>w., which shows that all frequencies are
made unstable.

In the case of large fluctuationg=o>1, we found that
the values of3 andA g play no role, while the value af has
only a small quantitative influence. The asymptotic Ml gain
does not depend 08, but only onS, andS;. Qualitatively,
one can say that for large fluctuations of the birefringence
parameterd 8| "1o?>1, the MI spectrum is progressively
concentrated at low frequencies, and that there is a Ml peak
(of order A%) at some low optimal frequencjof order

AI(N20)]:

gain

Rl O

5

FIG. 6. MI gain vs frequency for a normal dispersigs —1,
a=1, GVM meanA,=0, and different standard deviations $.

We can also perform an asymptotic study in the frame-Remember the MI gain is zero for all frequencies in the absence of

work in which allo; are equal. We may think that this is the
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(a) X T w---wW‘ g=0|""|""|' I I,"\ I
4+ — 0i=0 | 2r . o 7
---------- 0;=0.5 £ R A\
_____ Gj =1 81 B “ ;* *“‘ i
3/ | Gj=2 | RN i
-/ e - c;=10 L ' L)
& 0 L 1 1
5,0 E 0 1 (02 3 4
i ‘\ FIG. 8. Gain curve forB=1, Ay=2, A=1, and 03=0.25.
1 Y ‘\\ = Stars: numerics; solid curve: linear stability analysis; dashed curve:
i// \ ‘\\\ - ] deterministic M| gain.
() A TN s <o - with e=10"“. The number of points in the time domain was
0 05 1 L5 2 25 3 35 4 256 and thez step was a small fraction of the propagation
length (dz=L/2000).
The results of the numerical simulations in gr@malous
(b) e A=l Ag=0 dispersion regime are presented in Fig. 8. Thetsylid
i — oj= curve predicts a decrease in the gain and an extension of the
NN T g.l: f‘l’-5 i MI gain spectral width with respect to the unperturbed case
1T||/ \,\ ______ o2 03=0 (dashed curve As can be seen, good agreement was
i ‘}! A - cj. =10 obtained between theoretical predictions and numerical
P ! i R simulations(stars.
5 I{j\ SN The results for th@ormaldispersion regime are shown in
0.5 -,' 3;’ \, . Fig. 9. Here the theory predicts an extension of the spectral
ri \\ AN width of the MI gain, and instability for all modulation fre-
N T guencies. These predictions are confirmed by numerical
4 x"\\ simulations. The gain values agree well with theoretical es-
0 ’,.~‘" SNl T e e timates. With decreasiny,, we observed a reduction to zero
0 05 1 15 2 25 3 35 4 of the spectral width of the deterministic Ml gain and the
® growth of the spectral width of the gain due to the random

FIG. 7. MI gain vs frequency for an anomalous dispersin

=1 (a) and normal dispersiog=—1 (b), GVM meanA,=0, «
=1, and different standard deviations §f. Here we assumer;

=02=03.

2)_

G(w):2A2f(2A

modulations of fiber. In the limit case d&f;=0, the gain
originates entirely from the randomness of the birefringent
medium.

An evolution of the spectral intensity of the self-
modulated quasicontinuous wave field along the propagation
distance is presented in Fig. 10 for the case of the normal
group velocity dispersion. One can see that in the initial
stage of evolution, the exponential gain growth is accompa-
nied by some oscillations, whereas the asymptotic value of
the MI gain(for z>10) is in good agreement with the theo-

Figure 7 plots the MI spectra of various configurations forretical prediction(dashed ling
increasing values of the standard deviations- o,= 3. AS

can be seen, for large birefringence fluctuations the Ml spec-
trum is concentrated at low frequencies.

IX. NUMERICAL SIMULATIONS
OF THE MODULATIONAL INSTABILITY

In this section, we present an example of the comparison
of the predictions of the effective system for mean intensities
with the direct numerical simulations of the stochastic Mana-
kov system. We performed numerical simulations of the sys-
tem (3) with a randomly varying birefringenc8;(z). The
simulations were done using the split-step Fourier method
and the discrete value of the deviatioq is ogs=03/\dz,
wheredz is thez step. The initial state is

ul:Ul:Eefiwt_i_Eeiwt,

(49)

FIG. 9. Ml gain curves foB=—1, A=1, ando3;=0.25. In the
pictures(a) and(b) Ag is equal to 3 and 0.5, respectively.
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0 NLS equations. We found good agreement between theoret-
“% ical predictions and the results of numerical simulations.
250 From the present analysis, we may expect that a similar ex-
= . tension of the Ml domain will be observed in a dispersion-
20 managed optical transmission line, where fibers with oppo-
10 site signs of dispersion are concatenated to combine a low
z path-average dispersion with a relatively high local disper-
= sion. We plan to investigate this case in future work.
o
N
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FIG. 10. Evolution of the mean intensity spectrgim In scal¢ ~ Munications(CNET).
along the fiber(a). Optimal gain of the mean intensity spectrum vs
the distance propagatian(b). The dashed line corresponds to the
estimated growth rate. The averaging has been realized over 20
realizations. The parameters g8e= —1, A=1, 03=0.25, andA,
=0.5[as in Fig. 9b)].

APPENDIX A: EXPLICIT FORMS OF THE MATRICES M
AND M

We present here the explicit forms of the matridésnd

X. CONCLUSION M which appear in Eqg31) and(32), respectively:
In conclusion, we investigated the evolution of the Ml M M
gain spectrum in optical fibers in the presence of linear ran- M= —2(02+ o2+ o2 wlldant | H 1
dom birefringence. We included in the model both a random (o1t o3t 03)w i My My’

variation of the absolute value of the birefringence as well as

a rar_1dom coup_ling between the two fiber axes. Using a lineafhere I, is the 10< 10 identity matrix.M; is the 4x 4
stability analysis and random process theory, we obtained fQf, 5¢rix

the white-noise model of fluctuations of birefringence a sys- ’

tem of equations for the second moments. We proved that 2 2 9
the MI gain can be obtained as the maximal eigenvalue of a o3 0 o1 o
constant effective matrix. On the one hand, we were able to 0 o5 o5 of
derive analytical expressions for the Ml gain in the limit of M;=2w? s 2 2

either small or large standard deviatioms of the birefrin- 1 03 05 O
gence noise process. On the other hand, for arbitrary values o5 o2 0 o}

of o, the spectral domains of MI gain could be easily com-
puted from our analysis by using commonly available soft-
ware such asmapLE. We considered both the anomalous and
normal dispersion regimes of propagation of continuous

M5 is the 4X6 matrix,

beams in fibers. For the anomalous dispersion regime, we 2B0*> 0 0 O

predicted an extension of the spectral width of the main gain 2A, 0 0 2C © 0
curve. In other words, we found that in the presence of ran- M= 0 0 0 0 0 2Bw?
dom birefringence, an intense continuous wave in the @
anomalous dispersion regime will be unstable with respect to 0 0 2 0 0 2B,

relatively high frequency modulations, which otherwise
would not lead to Ml in a constant bl_refnnggnce fiber. _Or_lMZI is the 6x 4 matrix,
the other hand, in the normal dispersion regime, Ml gain is
predicted, in principle, for all modulations through phase

matching mediated through the random frequency content of A, Bw® 0 0
the birefringence variations. We have also distinguished be- 0 0 0 0
tween two types of variations of birefringence, depending on c 0 0 0
whether they involve a reduction or an enhancement of the M=

MI peak. Indeed, as a general conclusion, we obtained that c 0 C ©
even when the deterministic case is completely stable, bire- 0 0 0 0
fringence randomness may lead to polarization MI. 0 0 B, Bu?

In a particular case, we checked the analytical predictions
based on the linear stability analysis by means of numerical
simulations of the full stochastic system of coupled modifiedM 5, is the 6X 6 matrix,
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20502 C 0 0 0 A0%— o5) w?
0 2(0%-03)w? Bw? Bw? — 205w 0
0 B, 2(0’%—0’%)w2 20'%&)2 Bw? 0
Mz2= 0 A, 205w? 2(03— 03) w? Bw? 0
C —20%w? A, B, 2(02—0d) w? C
2(0%-03) w? C 0 0 0 205 w?

with B, =2B%— Bw?, A,=2A%— Bw?, andC=2aAB.
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001000 0000O0OOGO0T10Q
000100 000O0OOOTU 0O
0 00 0 1 8/
0 00 0O
2050° C 0 0 0 (02+ 03) w?
0 —2(Ui+0'§)a)2 Bw? Bw? 203(»2 0
0 B, —2(03+ 03)w? —20%w? Bw? 0
R= 0 A, —20'§w2 —2(0%4—0'%)(»2 Bw? 0
—-C 20502 A, B, —2(0%+ 03) w? C
2(02+ 03) w? -C 0 0 0 20502
[
APPENDIX B: EXPANSIONS OF THE EIGENVALUES where the corrective termll is given by

OF A PERTURBED MATRIX

In this appendix, we attempt to sketch out the derivations
of the expansions of the MI gain with respect to the small
parametet 8| o2. The method is general and can be applied
to the following framework. Let us assume tHdf is ad
xd matrix whose eigenvalues are denoted hy,
=1,...d. Let us consider the matrid :=M°+eM* and the
associated eigenvaluesy(),—, . 4, wheree is a small pa-

d
1 L
M= Z, (-1 IdetminorM® -\l ), M.

Proof. We first remember that the “det” mapping that
associates to every matrix its standard determinant is con-
tinuously differentiable and its partial derivatives are given

b
rameter andM?! is anotherd X d matrix. y
Proposition.Let us fix somd =1, ... d. If the matrixM° JdetM
[the (i,j)th minor of a matrixM is the matrix obtained by e(_) —=(—1)i+] i -
' ! 4 tall (—1D)"" det(minor(M);).
removing theith row and thejth column ofM] satisfies IMj;

d

Let us now consider the function
Do:=>, deminorM®—\0l14);)#0,
i=1

R? — R
then the eigenvalug; can be expanded as powerssohs ©: (N,e) +— de(M°+eMi=\ly).
)\f:)\P+8)\|l+0(8)1 This function is continuously differentiable and we have
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d

o ;l detminoM%+eM—X\1g);),

J0

d
90 .
E:ij};l (—1)"*1 de(minor M%+eM*—\1 )i )M}, .

On the one hand, we ha\feAP,O)=O. On the other hand, we
have [&()\,8)/&)\]|()\I0’0)= Dy, which is nonzero by as-

sumption. Consequently, by applying the implicit function
theorem we get that there existg>>0 and a function\
eCY((—€g,e0),R) such that

A0)=\ and®O(\(g),e)=0 Vee(—egq,&0).

Moreover this function is continuously differentiable and

PHYSICAL REVIEW B3 066616

00
an(e) %(MS).S)
P '
—0(e).¢)

Consequently, applying Taylor's formula,

IN(g)

Ne)=N(0)+e e

+0(g)

which completes the proof of the proposition.
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