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Role of polarization mode dispersion on modulational instability in optical fibers
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We introduce the theory of modulational instability~MI ! of electromagnetic waves in fibers with random
polarization mode dispersion. Applying a linear stability analysis and stochastic calculus, we show that the MI
gain spectrum reads as the maximal eigenvalue of a constant effective matrix. In the limiting cases of small or
large fluctuations, we give explicit expressions for the MI gain spectra. In the general configurations, we give
the explicit form of the effective matrix and numerically compute the maximal eigenvalue. In the anomalous
dispersion regime, polarization dispersion widens the unstable bandwidth. Depending on the type of variations
of the birefringence parameters, polarization dispersion reduces or enhances the MI gain peak. In the normal
dispersion regime, random effects may extend the instability domain to the whole spectrum of modulations.
The linear stability analysis is confirmed by numerical simulation of the full stochastic coupled nonlinear
Schrödinger equations.
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I. INTRODUCTION

Modulational instability~MI ! is one of the fundamenta
processes in nonlinear waves theory@1–5#. Recently, much
attention was devoted to MI in inhomogeneous media, p
ticularly periodically varying media@6–8#. MI of electro-
magnetic waves in random media is the natural extens
Random media encompass all frequencies, so we can ex
stochastic resonance phenomena, which are discussed i
sively herein. The scalar problem of fluctuating nonlinear
and fluctuating group velocity dispersion~GVD! in fibers has
already been studied in Ref.@9# and Refs.@10,11#, respec-
tively.

It is interesting to ponder the existence of an analog
phenomenon for the nonlinear evolution of polarization in
birefringent nonlinear dispersive medium with random p
rameters. An important example is the evolution of the p
larization of a continuum wave in a randomly birefringe
fiber. Polarization MI was investigated in the determinis
case in Refs.@12,13#. These earlier works discussed the d
pendence of the gain on the deterministic values of
group-velocity mismatch between polarizations, the frequ
cies of initial modulations, and the powers of the wav
However, in real fibers, birefringence is not constant, rat
it is subject to random fluctuations along the propagat
distance@14#.
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Here we examine the polarization MI of continuum wav
in a birefringent fiber with random birefringence. The mod
for the random birefringent fiber that we consider in th
paper is that of polarization-mode dispersion~PMD!, which
is a random function of propagation distance. PMD is d
scribed by a system of two coupled nonlinear Schro¨dinger
~NLS! equations@15#. A model in which the fast and slow
axes interchange randomly at given intervals was introdu
in Ref. @16#. This model is interesting in that it is the first on
to address the problem of random PMD, but it is in som
sense incomplete since no power can be scattered betw
the two polarization modes. In Refs.@17,18#, a more sophis-
ticated model was proposed in which the birefringence a
orientation and the phase shift between the modes are
domly varied along the distance. As a consequence, i
fixed reference frame the polarization state of light rota
randomly on the Poincare´ sphere. The aim was to investiga
soliton stability and radiation under random perturbatio
The general model that we deal with in this paper takes i
account a group-velocity mismatch between the two po
izations as well as coupling terms between the two polar
tion modes, which are random functions of propagation d
tance@19,20#.

Note that in this work, we shall neglect fiber loss a
competing nonlinear effects, such as stimulated Brillou
scattering, which may be relevant in the propagation o
quasicontinuous wave~cw!. As far as loss is concerned, it i
well known that in the presence of periodic all-optical am
plification, the loss may be averaged out of the propaga
whenever the amplifier spacing is small when compared
the characteristic dispersion distance~guiding-center soliton
de
©2001 The American Physical Society16-1
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regime of the nonlinear propagation in the fiber!. Moreover,
Brillouin scattering may be neglected in the presence of r
tively wideband signals~still to be considered quasi-cw
when compared, for example, with THz modulations! con-
sisting of pump pulses of several picoseconds.

The paper is organized as follows. In Sec. II, the mode
formulated. An analysis of the deterministic system is p
formed in Sec. III. Equations for the mean fields and me
intensities are analyzed in Secs. IV and V. Results of num
cal simulations for the full stochastic NLS equations are
nally presented in Sec. VI.

II. DESCRIPTION OF THE MODEL

The evolution of polarized fields in randomly birefringe
fibers is governed by the coupled nonlinear Schro¨dinger
equations with random PMD between two modes~polariza-
tions! @19,20#:

iAW z1KAW 1 iDAW t1bAW tt1
9

8
N1
W50W , ~1!

whereAW is the row vector (A1 ,A2)T that denotes the enve
lopes of the electric field in the two eigenmodes; we u
standard dimensionless variables. The matricesK andD de-
scribe random fiber birefringence. The GVD coefficient isb,
which is positive~negative! for anomalous~normal! disper-
sion. TheN1

W term stands for the nonlinear terms,

N1
W5S ~ uA1u21auA2u2!A11

a

2
A2

2A1*

~ uA2u21auA1u2!A21
a

2
A1

2A2*
D , ~2!

where the cross-phase modulation isa5 2
3 for linearly bire-

fringent fiber.
As shown by Way and Menyuk, one can eliminate the f

random birefringence variations that appear in Eq.~1! by
means of a change of variables, which leads to the new
tor equation

iUW z1 iVUW t1bUW tt1NW 250W, ~3!

whereUW [M 21AW , UW 5(u,v)T represents the slow evolutio
of the field envelopes in the reference frame of the lo
polarization eigenmodes, and the matrixM obeys the equa
tion iM z1KM50. The nonlinear termNW 2 reads

NW 25S ~ uuu21auvu2!u

~auuu21uvu2!v D , ~4!

where the cross-phase modulationa51 after averaging ove
fiber birefringence@21#.

V is az-dependent matrix that is associated with the c
pling between the modes due to perturbations. We consid
general form forV:

V5S1S11S2S21S3S3 , ~5!
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whereS j are Pauli matrices:

S15S 0 1

1 0D , S25S 0 2 i

i 0 D , S35S 1 0

0 21D ,

andSj are real-valued random functions ofz. If the fiber is
isotropic and if it has a perfectly circularly symmetric cro
section, then theSj are identically zero. If the fiber is bire
fringent, thenS3 is equal to some constant parameterD0
which may not be zero.D0 is proportional to the group ve
locity mismatch ~GVM! between the two polarization
modes. In real units, the GVM readsD05t0(kx82ky8)/ub2u,
where the primes denote derivatives with respect tov. How-
ever, in real fibers the circular symmetry is broken due
unavoidable imperfections of the fiber. Thus the coefficie
Sj acquirez-dependent values. Accordingly,S1 and S2 are
taken as white Gaussian-distributed noises:

^Sj~z!&50, j 51,2, ~6!

^Sj~z!Sj~z8!&52s j
2d~z2z8!, j 51,2, ~7!

while S3 is taken as the sum of the constant termD0 and a
white Gaussian-distributed noise:

^S3~z!&5D0 , ~8!

^@S3~z!2D0#@S3~z8!2D0#&52s3
2d~z2z8!. ~9!

In the following, s j will be referred to as the standard d
viations of the fluctuations ofSj . A simplified model for
random birefringence is a random concatenation of differ
fiber sections whoseS3’s have equal absolute values but o
posite signs@16#; see also@22#. The lengths of these seg
ments are of the order of 102100 m, typically much less
than the dispersion distanceLd5t0

2/ub2u. Such configuration
may be described by the previous white-noise model w
s3

25@ t0(kx82ky8)/ub2u#2l c , wherel c is the correlation length.

More generally, the presence of the termVUW t is associ-
ated with linear coupling between the modes, as well as
accumulation of a mismatch between their phases. In spit
this extension, which includes linear mode coupling, t
model remains analytically solvable and it predicts so
general new features associated with the random nature
larization MI. We believe that these features will be pr
served to a large extent in the full numerical simulations
nonlinear pulse propagation in a random fiber, and ultimat
in the experiments. For example, an analysis of the stocha
decay of the vector soliton under random variations ofS3
that was performed in the framework of the system~3! @23#
leads to practically the same results as the conclusions
study performed with thefull model in @19,20#. Note also
that the system~3! with S15S250 was employed for the
investigation of resonant phenomena in the solitons dyn
ics for the case of periodically varying birefringence@24#. In
@25#, the system~3! with the white-noise model for PMD
excitationSj has been applied to obtain an analytical expr
sion for the jitter due to the interaction with the continuu
component. Analogies with the noise-driven harmonic os
6-2
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lator were observed and confirmed by the numerical sim
tions of Eq.~3! with white-noise perturbations. We may als
remark that wheneverSj[0 anda51, one obtains the inte
grable Manakov system.

The nonlinear plane-wave solutions of the system~3! read

u0~z!5A exp@ i ~A21aB2!z#, ~10!

v0~z!5B exp@ i ~aA21B2!z#. ~11!

Linear stability is evaluated by substituting

u~z,t !5@A1u1~z,t !#exp@ i ~A21aB2!z#, ~12!

v~z,t !5@B1v1~z,t !#exp@ i ~B21aA2!z#. ~13!

into Eq. ~3!. By retaining only the first-order terms, one o
tains a linear system of equations foru1 andv1:

iu1z1 iS1v1t1S2v1t1 iS3u1t1bu1tt12A2 Re~u1!

12aAB Re~v1!50, ~14!

iv1z1 iS1u1t2S2u1t2 iS3v1t1bv1tt12B2 Re~v1!

12aAB Re~u1!50. ~15!

In the homogeneous configuration (S15S2[0 and S3
[D0), the MI problem is reduced to an analysis of the
genvalues of a 434 matrix. One can then derive the wel
known MI gain spectra of vector modulational instabili
@26,27#. The main features of this homogeneous configu
tion will be sketched out in the next section.

If Sj arez-dependent, then a convenient representation
the polarization evolutions induced by the fluctuationsSj

may be done in terms of the Stokes vectors¢ associated to the
Fourier components of the modulation (u1 ,v1):

s1~v!5~ uû1u22uv̂1u2!~v!,

s2~v!52 Re~ û1v̂1* !~v!,

s3~v!52 Im~ û1v̂1* !~v!,

whose modulusAs1
21s2

21s3
25uû1u21uv̂1u2 is proportional

to the power at frequencyv. In terms of the Stokes param
eters, the dynamics induced by the fluctuationsSj is simple
when neglecting the terms arising from the nonlinear
@containingA andB in Eqs.~14! and ~15!#:

ds¢

dz
522vQW ~z!3s¢,

whereQW (z) is the row vector (2S3 ,2S1 ,S2)T(z). Thus the
Sj appear as elementary infinitesimal generators of rand
rotations of the Stokes vector over the Poincare´ sphere. On
the other hand, if we take into account only the nonline
terms of Eqs.~14! and ~15!, then we exhibit a coupling be
tween the components of the modulations at frequencyv and
2v. The relevant phenomena thus involve an interplay
06661
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the random rotations generated byQW and the dynamics in-
volved in the nonlinear homogeneous terms. To perform
precise analysis of the system~14! and~15! we use the com-
plex representationu15C1 iD , v15E1 iF and perform the
Fourier transform

c5E Ceivtdt, d5E Deivtdt, ~16!

so that we get the following system for Fourier componen

cz52 ivS1e2 ivS2f 2 ivS3c2bv2d, ~17!

ez52 ivS1c1 ivS2d1 ivS3e2bv2f , ~18!

dz52 ivS1f 1 ivS2e2 ivS3d1bv2c22A~Ac1aBe!,
~19!

f z52 ivS1d2 ivS2c1vS3f 1bv2e22B~Be1aAc!.
~20!

III. DETERMINISTIC SYSTEM

We remind the reader of the results corresponding to
homogeneous configurations j50 @26,27#. In such a case
we haveSj[0, j 51,2, whileS3[D0. The system of equa
tions for the row vectorqWª(c,d,e, f )T is

dqW

dz
5QqW , ~21!

whereQ is the 434 matrix,

Q5S 2 ivD0 bv2 0 0

2A22bv2 2 ivD0 2aAB 0

0 0 ivD0 bv2

2aAB 0 2B22bv2 ivD0

D .

~22!

The MI gain is defined as twice the maximal value of the r
parts of the eigenvalues of the matrixQ. When it is positive,
it governs the exponential growth of the modulatio
uû1u2(v)1uv̂1u2(v). The algebra is simplified by conside
ing the caseB5A. Nevertheless, it should be underlined th
this simplification does not affect the generality of the fo
lowing results and conclusions. We introduce the charac
istic frequenciesvc , v2 , v1 , andve :

vcªA2b21~11a!A2,

v6ªA2b21~16a!A21b22D0
2,

veªA2A2b212a2A4D0
22.

These frequencies may be imaginary. Ifb.0 and D0
2

,a2bA2/2, or if b,0, thenve
2,0.
6-3
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A. Anomalous dispersionbÌ0, s jÄ0

If D050, then the frequencies belowvc are unstable and
the corresponding MI gain is

G~v!52buvuAvc
22v2. ~23!

If D0Þ0 and is such thatD0
2<ba2A2/2, then there is MI

if uvu<v1 , and the MI gain is

G~v!52buvuA2b21A22b22D0
22v21J0~v!, ~24!

J0~v!52b21uD0uAv22ve
2. ~25!

If D0Þ0 and is such thatbaA2.D0
2.ba2A2/2, then

there is MI for uvu<v1 . Note that 0,ve,v2,v1 since
v6

2 2ve
25(aA2D0

216b21D0)2. The exact expression of th
MI gain can be written on the intervaluvu<ve as

G~v!5A2buvuA2b21A22b22D0
22v21J1~v!,

~26!

J1~v!5A~v222b21A21b22D0
2!22

a2vc
2

~11a!2
, ~27!

and on the intervaluvuP@ve ,v1# as Eq.~24!.
If D0Þ0 and is such thatD0

2.baA2, then there is MI if
uvu<ve and the corresponding MI gain is Eq.~26!. There is
also MI if uvuP@v2 ,v1#, and the corresponding MI gain i
given by Eq.~24!. Note that there is a gap in the spectru
betweenve andv2 in which there is no MI.

B. Normal dispersion bË0, s jÄ0

If D0
2<2ubu(12a)A2, then there is no MI@26#. There is

MI only if D0
2.2ubu(12a)A2.

More exactly, If 2ubu(12a)A2,D0
2<2ubu(11a)A2,

then there is MI ifv,v2 . The corresponding MI gain is

G~v!52ubuuvuA2b21A22b22D0
22v22J0~v! ~28!

whereJ0 is defined by Eq.~25!.
If D0

2.2ubu(11a)A2, then there is MI ifvP@v1 ,v2#.
The corresponding MI gain is given by Eq.~28!.

IV. THE SYSTEM FOR MEAN FIELDS

We will use for the decoupling of the mean values t
Furutzu-Novikov formula@28#,

^Sj~z!X&5^Sj&^X&1E
0

z

g j~z2z8!K dX~z!

dSj~z8!
L dz8,

where g j is the autocorrelation function of the processSj
2^Sj&, which is assumed to be white noise so thatg j (z)
52s j

2d(z). dX/dSj stands for the variational derivative ofX
with respect toSj . For instance, Eq.~17! implies that
dc(z)/dS1(z)52 ive(z), so that ^S1(z)c&52 ivs1

2^e&.
06661
Then the system of equations for the row vector of me
fields ^qW &5(^c&,^d&,^e&,^ f &)T is

d^qW &
dz

5~Q2s2v2Id4!^qW &, ~29!

where Id4 is the 434 identity matrix,s2
ªs1

21s2
21s3

2, and
Q is given by Eq.~22!. The gain for mean fields is equal t
twice the maximal value of the real parts of the eigenvalue
the matrixQ2s2v2Id4. The eigenvalue analysis shows th
the effect of the PMD fluctuations is to shift all eigenvalu
by the term2s2v2 with respect to the homogeneous co
figuration s50. It thus appears that the effects of rando
ness, as far as the mean fields are concerned, are the fo
ing. ~i! The MI gain is reduced.~ii ! The MI spectrum is
narrower. Nevertheless, as we shall see in the next sec
these results are not relevant from the point of view of mo
lational instability growth, since the first moments of th
fields do not capture the exponential growth of the modu
of the fields because of the presence of fast random pha

V. SYSTEM FOR MEAN INTENSITIES

It should be noted that the first-order moments do not le
to a prediction of resonant phenomena. For a search of r
nant processes, it is necessary to investigate the behavi
the second moments. The problem at hand is indeed an
gous to the harmonic oscillator with a randomly perturb
frequency,

vzz1v0
2@11j~z!#v50, ~30!

wherej(z) is the Gaussian random process. The equati
for the first moments obey a trivial dynamics. Indeed, t
stochastic parametric resonance is only observed from
second-order moments equations@28#.

It can be easily shown that a study of the spatial grow
rates of the first moments of the modulations does not c
rectly capture the growth rate of the intensity of the mod
lation, when it is averaged over the ensemble of fibers t
generate the random processesSj (z). In fact, the spatial
growth rates of the average values of the components of
modulations are reduced owing to random phase factor
the kind exp6i@v*0

zSj(z8)dz8# that multiply the coefficientsc,
d, e, and f; as a result, the expectation values of these co
ficients decay exponentially alongz. Therefore, it is neces
sary to consider the growth of the second-order mome
r 1ª(^ucu2&,^udu2&,^ueu2&,^u f u2&), which are directly related
to the intensity of the modulation. Unfortunately, the vec
r 1 does not satisfy a closed-form differential equation, an
is necessary to complete the vectorr 1 with other second-
order moments to get a well-posed problem.

If D050, denoting

r 2ªRe~^c* d&,^c* e&,^c* f &,^d* e&,^d* f &,^e* f &!,

the ten-dimensional row vectorrª(r 1 ,r 2)T satisfies the
closed-form differential equation
6-4
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dr

dz
5Mr , ~31!

whereM is a 10310 matrix whose explicit form is given in
Appendix A. Instability occurs whenever an eigenvalue ofM
has a positive real part, and the MI gain, which correspo
to an exponential growth of̂ucu2&, ^udu2&, ^ueu2&, or ^u f u2&,
is twice as large as the value of the real parts of the eig
values ofM.

If D0Þ0, denoting

r 3ªIm~^c* d&,^c* e&,^c* f &,^d* e&,^d* f &,^e* f &!,

the 16-dimensional row vectorr̃ª(r 1 ,r 2 ,r 3)T satisfies the
closed-form differential equation

dr̃

dz
5M̃ r̃ , M̃5S M N

P RD , ~32!

whereN, P, and R are, respectively, 1036, 6310, and 6
36 matrices whose explicit forms are given in Appendix

Henceforth, we simplify the algebra by considering t
caseB5A. The study of MI consists in finding the large
value of the real parts of the 10 eigenvalues of the matrixM.
Although all coefficients of the matrices are explicit
known, such a problem is intricate and it is difficult to wri
down the MI gain in a closed form. Nevertheless, in t
limiting cases of either small PMD fluctuationsubu21s j

2

!1 or large fluctuationsubu21s j
2@1, respectively, we will

be able to obtain explicit expansions for the MI gain. Fu
thermore, by using theMAPLE code @29#, we can solve the
eigenvalue problem with high accuracy, and plot the MI g
as a function of the frequencyv for any given set of values
for A, D0 , s j , b, anda.

In view of the particular form of the matrixM̃ , results
corresponding to any powerA2 can be deduced from resul
of an equivalent problem in whichA51 through the trans-
formation

M̃ i j ~«A,b,«D0 ,s j
2 ,a,«v!5«2M̃ i j ~A,b,D0 ,s j

2 ,a,v!

for all i , j 51, . . .,16. Consequently, if one finds that there
MI for some configuration (A0 ,b,D0 ,s j

2 ,a) for v
P@v0 ,v1# with gainG0(v), then we can claim that there i
MI for the configuration («A0 ,b,«D0 ,s j

2 ,a) for v
P@«v0 ,«v1# with gain «2G0(«21v) for any «.0. This
scaling property thus allows straightforward extrapolatio
that are useful for theoretical analysis as well as for exp
mental investigations.

VI. ANOMALOUS DISPERSION

A. Expansion of the MI gain for zero mean GVM

We consider in this section the particular caseD050. In
the homogeneous configurations j50, j 51,2,3, we get
back the results of Sec. III A showing that the frequenc
below the critical valuevc are unstable and that the MI ga
is Eq. ~23!. If the birefringence parameters of the fiber a
06661
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random, then we find that the MI region is increased so t
all frequencies are unstable as soon ass j

2.0 for j 52 or 3,
while the MI gain peak is reduced. The MI peak is equal
2(11a)A2 when s j50, and we shall see that it decays
2A2 ass j , j 52 or 3, increases. We can give the first term
of the asymptotic expansion of the MI gain in the limit o
small noiseb21s j

2!1. Foruvu,vc , the MI gain is reduced,

G~v!52buvuAvc
22v222v2~s2

21s3
2!. ~33!

For uvu.vc , the MI gain is positive while it is zero fors j
50,

G~v!5G2~v!s2
21G3~v!s3

2 , ~34!

where

G2~v!54
~12a2!b22A4

K1~v!
1G3~v!, ~35!

G3~v!54v2
K0K1~v!2K0

2~v!110a2b22A4

3K0K1~v!15K0
2~v!220a2b22A4

,

~36!

K0~v!5v222b21A2, ~37!

K1~v!5Av424b21A2v214b22~12a2!A4. ~38!

Note thats1 does not appear in this expression, which mea
that fluctuations ofS1 do not induce any modification of th
MI gain spectrum. Ifa51, thenG2 andG3 are equal, which
shows that the influences ofS2 and S3 are equivalent. Ifa
,1, thenS2 involves a stronger effect characterized by t
first term on the right-hand side of Eq.~35!.

We have checked the accuracy of the expansions der
above compared with the full intricate theoretical expre
sions. We have compared the exact MI gain~obtained with
MAPLE! with the expansion~34!, which is only valid up to
terms of order 2 with respect tob21s j

2 . We have seen that
for relatively small values ofs j ~less than 0.3), the expan
sion ~34! is a very good approximation of the real gain.

B. Analysis of the general caseD0Å0

If D0
2,baA2 ands j50, then the MI gain is found to be

in a band of frequencies below the critical valuev1 . By
taking into account the fluctuationss j.0, j 51,2,3, one
finds that there is MI for all frequencies.

If D0
2>baA2 and s j50, the MI gain consists of a firs

peak corresponding to low frequencies and a second p
that lies close tob21uD0u, more precisely betweenv2 and
v1 . When taking into account PMD fluctuations, the seco
peak is strongly reduced and finally it disappears for la
s j . However, new peaks may appear at low frequencies
the case of large fluctuations ofSj . The analysis can be
made clearer by considering separately the influences of
different types of variations of the birefringence paramet
Sj , j 51,2,3.
6-5
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C. Fluctuations of S3

Assume in this section thats15s250. Figure 1 plots the
MI gain spectrum versus increasing values of the stand
deviations3 for different GVM meansD0. It shows the con-
version of the gain spectrum from the deterministic config
ration that strongly depends onD0 to an asymptotic form tha
seems to be independent ofD0. This observation can be
proved rigorously. Applying the technique developed in A
pendix B, we get that the MI spectrum in the asympto
configurationb21s3

2@1 does not depend onD0. Indepen-
dent ofD0, the gain for largeb21s3

2 is equal to

G~v!52buvuA2b21A22v2 ~39!

if uvu,A2b21/2uAu and 0 otherwise. This result is not su
prising. The stability conditions for the system~17!–~20!
when S15S250 are equivalent to requiring the stability o
the auxiliary system,

c̃z2bv2d̃50,

ẽz2bv2 f̃ 50,

2d̃z2bv2c̃12A@Ac̃1a~z!* Bẽ#50,

FIG. 1. MI gain vs frequency for an anomalous dispersionb
51, a51 and different GVM meansD0 and deviationss3.
06661
rd

-

-

2 f̃ z2bv2ẽ12B@Bẽ1a~z!Ac̃#50,

where c̃5c expif(z), d̃5d expif(z), ẽ5e exp2if(z), f̃
5 f exp2if(z), and f(z)5v*0

zS3(y)dy, which obeys the
statistical distribution of a Brownian motion. The study
MI of electromagnetic waves with a random birefringen
S3(z) is therefore equivalent to the study of MI of electr
magnetic waves with a random cross-phase modulation
efficient a(z):5a exp 2if(z). For very larges3, the cou-
pling coefficient has a very fast random phase which ma
it average to 0. The limit systemb21s3

2@1 corresponds to a
decoupled Manakov system witha50. From the results of
Sec. III A, Eq. ~39! can be interpreted as the gain of th
decoupled Manakov system witha[0, S3[0.

The MI peak versus the amplitude of the noise is plot
in Fig. 2. It shows rather chaotic behaviors depend
strongly onD0 for small values ofs3, but all curves finally
converge to 2A2, which is the MI peak corresponding to Eq
~39!. The mechanism behind these irregularities is ma
clearer by considering the variations of the optimal fr
quency. It may happen that the optimal frequency jum
from one value to another, and this is due to the fact that
high-frequency peak is canceled by the PMD fluctuatio
while the low-frequency peak converges to Eq.~39!. Never-
theless, independent of the initial GVM meanD0, the opti-
mal frequency converges tob21/2uAu ass3 increases, which
is the optimal frequency corresponding to Eq.~39!.

D. Fluctuations of S2

Figure 3 plots the MI gain spectrum versus increas
values of the standard deviations2. This confirms the
asymptotic result obtained by applying Appendix B, whi
claims that, in the limitb21s2

2@1, independent ofD0, the
MI gain spectrum consists of two parts:

G~v!52A12a2A2f S s2v

A2A4 12a2A
D

12AA4~a221!12A2bv22b2v4, ~40!

FIG. 2. MI peak~a! vs PMD deviationss3 for an anomalous
dispersionb51, a51, and different GVM meansD0.
6-6
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where

f ~w!5
1

3

~4w22A3 54w2164w616A3w2A27164w4!2

A3 54w2164w616A3w2A27164w4
.

~41!

This shows that there exist two bands of unstable frequ
cies. The first one consists of low frequencies whose o
mum is obtained atvopt,15(A11aA)/2s2 and its value is
Gopt,15(12a2)A2. It is independent ofb, it vanishes ifa
51, and it is maximal fora50. The second band of the M
gain spectrum lies at high frequencies. It vanishes ifa50
and it is maximal fora51. Its optimum is obtained a
vopt,25b21/2A and its value isGopt,252aA2, which is larger
~smaller! than Gopt,1 if a> 1

2 (a< 1
2 ). Note that, whena

51, the MI gains induced by large fluctuations ofS2 andS3
are the same, but they are very different whena,1.

E. Fluctuations of S1

Applying Appendix B establishes that in the lim
b21s1

2@1, the MI gain becomes independent ofD0. If D0

50, there is no action ofS1. If D0Þ0, large fluctuations of
S1 impose the MI gain spectrum to adopt the shape of
caseD050. Accordingly, the MI gain spectrum forb21s1

2

@1 is given by

G~v!52buvuAvc
22v2. ~42!

Fluctuations ofS1 involve an enhancement of the MI pea
and a qualitative change of the unstable bandwidth. T
make the high-frequency peak disappear while the lo
frequency peak widens.

VII. NORMAL DISPERSION

A. Expansion of the MI gain for zero mean GVM

If the PMD is identically zero~i.e., D050, s j50), then
there is no MI as shown in Sec. III B. If the birefringenc
parameters of the fiber randomly fluctuate and the GVM

FIG. 3. MI gain vs frequency for an anomalous dispersionb
51, a5

2
3 , GVM meanD050, and fluctuations ofS2.
06661
n-
i-

e
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zero meanD050, s j
2.0, then there is MI and all frequen

cies are unstable. As in the caseb.0, the closed-form ex-
pression of the MI gain is too complicated to be writte
down explicitly. Nevertheless, we can give the first terms
the asymptotic expansion of the MI gain for small PM
fluctuationsubu21s j

2!1. We found that for anyuvu.0, the
MI gain is positive and it is given by Eq.~34!. For instance,
if a51, b521, ands15s250, then the MI gain spectrum
is maximal forvopt5A2(A221)1/2A.0.910A and it corre-
sponds to a maximal gain ofGopt5@4(A221)(2A2
11)/(513A2)#A2s3

2.0.686A2s3
2. If a52/3, vopt

.1.274A andGopt.0.245A2s3
2.

B. Analysis of the general caseD0Å0

As discussed in Sec. III B, ifs j50, there is MI for fre-
quencies lying inside a band aroundubu21uD0u, more exactly
betweenv2 andv1 . When one increases the PMD fluctu
tions, this peak disappears, but all frequencies are made
stable. We shall analyze the effects of the different types
fluctuationsSj separately.

C. Fluctuations of S3

Let us first study the effects of fluctuations ofS3 and
considers15s250. Figure 4 plots the MI gain spectrum fo
different values of the GVM meanD0 and deviationss3 and
for a51, b521. In the asymptotic frameworkubu21s3

2

@1, the MI gain is close to 0 up to a term of orders3
22 for

all frequencies. More exactly, for any frequency not t
small v.uAus3

21, we have whenubu21s3
2@1

G~v!5
ubua2A4

2A22bv2
s3

22 . ~43!

This result is consistent with a comparison with the dec
pled Manakov system, which is valid for large fluctuatio
ubu21s3

2@1. Indeed, the decoupled Manakov system fo
normal dispersionb,0 with a[0 andS3[0 is not affected
by MI. That is why one finds that the MI gain goes to 0
s3 goes to infinity.

The MI peak versus the amplitude of the noise is plot
in Fig. 5. ForD050, and more generally for small values o
D0, it appears that the MI peak first grows withs3 and
reaches a maximum for somes30 that depends onD0 anda,
but not on the powerA2. Fora51, b521, andD050, one
finds thats30.0.85. The corresponding optimal frequency
close to 0.91uAu. For deviations larger thans30, the gain and
the optimal frequency decay to 0.

If D0Þ0, then the MI peak is also nonzero in the absen
of fluctuations, given byGopt.2aA2 for D0

2@ubuA2, and
corresponds to an optimal frequencyvopt

2 .b22D0
2

12A2b21. Stronger fluctuations lead to a decrease of
peak gain and of the optimal frequency to 0: for larges3, the
MI gain behaves like in Eq.~43!.

D. Fluctuations of S2

Figure 6 plots the MI gain spectrum for increasing valu
of s2. In the limit ubu21s2

2@1, the MI gain becomes inde
pendent ofb and is given by
6-7
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G~v!52A12a2A2f S s2v

A2A4 12a2A
D , ~44!

wheref is defined by Eq.~41!. This shows that there exists
band of unstable low frequencies. The optimal MI gain
obtained atvopt5(A12a2A)/2s2 and its value isGopt5(1
2a2)A2. Note that the MI peak may become higher than
the homogeneous case, and that in the casea51, the MI
gain spectrum completely vanishes.

E. Fluctuations of S1

In the limit ubu21s1
2@1, the MI gain becomes indepen

dent ofD0. WhenD050, there is no action ofS1, and when
D0Þ0, large fluctuations ofS1 impose the MI gain spectrum
to adopt the shape of the caseD050. Thus the peak tha
exists in the homogeneous medium in the caseD0Þ0 van-
ishes.

VIII. UNIFORM FLUCTUATIONS OF PMD

We can also perform an asymptotic study in the fram
work in which alls j are equal. We may think that this is th

FIG. 4. MI gain vs frequency for a normal dispersionb521,
a51, and different GVM meansD0 and deviationss3. Remember
the MI gain is zero for all frequencies in the absence of PMD.D0

50, s350.
06661
-

case for most experimental configurations. In the case
small fluctuationss j[s!1, the expansions derived in th
above sections are valid. Let us discuss the caseD050. In
the anomalous regime, the MI gain spectrum is given by
~33! for uvu,vc and Eq.~34! for uvu.vc . One can thus
observe that fluctuations of birefringence parameters invo
a broadening of the MI spectrum and a reduction of the
peak. In the normal regime, the MI gain spectrum is given
Eq. ~34! for uvu.vc , which shows that all frequencies ar
made unstable.

In the case of large fluctuationss j[s@1, we found that
the values ofb andD0 play no role, while the value ofa has
only a small quantitative influence. The asymptotic MI ga
does not depend onS1, but only onS2 andS3. Qualitatively,
one can say that for large fluctuations of the birefringen
parametersubu21s2@1, the MI spectrum is progressivel
concentrated at low frequencies, and that there is a MI p
~of order A2) at some low optimal frequency@of order
A/(A2s)#:

FIG. 5. MI peak vs PMD deviationss3 for a normal dispersion
b521, a51, and different GVM meansD0.

FIG. 6. MI gain vs frequency for a normal dispersionb521,
a51, GVM meanD050, and different standard deviations ofS2.
Remember the MI gain is zero for all frequencies in the absenc
PMD. D050, s j50.
6-8
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G~v!.2A2f S sv

2A D .

Figure 7 plots the MI spectra of various configurations
increasing values of the standard deviationss15s25s3. As
can be seen, for large birefringence fluctuations the MI sp
trum is concentrated at low frequencies.

IX. NUMERICAL SIMULATIONS
OF THE MODULATIONAL INSTABILITY

In this section, we present an example of the compari
of the predictions of the effective system for mean intensi
with the direct numerical simulations of the stochastic Ma
kov system. We performed numerical simulations of the s
tem ~3! with a randomly varying birefringenceS3(z). The
simulations were done using the split-step Fourier met
and the discrete value of the deviations3 is sdis5s3 /Adz,
wheredz is thez step. The initial state is

u15v15ee2 ivt1eeivt, ~45!

FIG. 7. MI gain vs frequency for an anomalous dispersionb
51 ~a! and normal dispersionb521 ~b!, GVM meanD050, a
51, and different standard deviations ofSj . Here we assumes1

5s25s3.
06661
r

c-

n
s
-
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d

with e51024. The number of points in the time domain wa
256 and thez step was a small fraction of the propagatio
length (dz5L/2000).

The results of the numerical simulations in theanomalous
dispersion regime are presented in Fig. 8. Theory~solid
curve! predicts a decrease in the gain and an extension of
MI gain spectral width with respect to the unperturbed ca
s350 ~dashed curve!. As can be seen, good agreement w
obtained between theoretical predictions and numer
simulations~stars!.

The results for thenormaldispersion regime are shown i
Fig. 9. Here the theory predicts an extension of the spec
width of the MI gain, and instability for all modulation fre
quencies. These predictions are confirmed by numer
simulations. The gain values agree well with theoretical
timates. With decreasingD0, we observed a reduction to zer
of the spectral width of the deterministic MI gain and th
growth of the spectral width of the gain due to the rando
modulations of fiber. In the limit case ofD050, the gain
originates entirely from the randomness of the birefring
medium.

An evolution of the spectral intensity of the sel
modulated quasicontinuous wave field along the propaga
distance is presented in Fig. 10 for the case of the nor
group velocity dispersion. One can see that in the ini
stage of evolution, the exponential gain growth is accom
nied by some oscillations, whereas the asymptotic value
the MI gain~for z.10) is in good agreement with the theo
retical prediction~dashed line!.

FIG. 8. Gain curve forb51, D052, A51, and s350.25.
Stars: numerics; solid curve: linear stability analysis; dashed cu
deterministic MI gain.

FIG. 9. MI gain curves forb521, A51, ands350.25. In the
pictures~a! and ~b! D0 is equal to 3 and 0.5, respectively.
6-9
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X. CONCLUSION

In conclusion, we investigated the evolution of the M
gain spectrum in optical fibers in the presence of linear r
dom birefringence. We included in the model both a rand
variation of the absolute value of the birefringence as wel
a random coupling between the two fiber axes. Using a lin
stability analysis and random process theory, we obtained
the white-noise model of fluctuations of birefringence a s
tem of equations for the second moments. We proved
the MI gain can be obtained as the maximal eigenvalue
constant effective matrix. On the one hand, we were abl
derive analytical expressions for the MI gain in the limit
either small or large standard deviationss j of the birefrin-
gence noise process. On the other hand, for arbitrary va
of s j , the spectral domains of MI gain could be easily co
puted from our analysis by using commonly available so
ware such asMAPLE. We considered both the anomalous a
normal dispersion regimes of propagation of continuo
beams in fibers. For the anomalous dispersion regime,
predicted an extension of the spectral width of the main g
curve. In other words, we found that in the presence of r
dom birefringence, an intense continuous wave in
anomalous dispersion regime will be unstable with respec
relatively high frequency modulations, which otherwi
would not lead to MI in a constant birefringence fiber. O
the other hand, in the normal dispersion regime, MI gain
predicted, in principle, for all modulations through pha
matching mediated through the random frequency conten
the birefringence variations. We have also distinguished
tween two types of variations of birefringence, depending
whether they involve a reduction or an enhancement of
MI peak. Indeed, as a general conclusion, we obtained
even when the deterministic case is completely stable, b
fringence randomness may lead to polarization MI.

In a particular case, we checked the analytical predicti
based on the linear stability analysis by means of numer
simulations of the full stochastic system of coupled modifi

FIG. 10. Evolution of the mean intensity spectrum~in ln scale!
along the fiber~a!. Optimal gain of the mean intensity spectrum
the distance propagationz ~b!. The dashed line corresponds to th
estimated growth rate. The averaging has been realized over
realizations. The parameters areb521, A51, s350.25, andD0

50.5 @as in Fig. 9~b!#.
06661
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NLS equations. We found good agreement between theo
ical predictions and the results of numerical simulatio
From the present analysis, we may expect that a similar
tension of the MI domain will be observed in a dispersio
managed optical transmission line, where fibers with op
site signs of dispersion are concatenated to combine a
path-average dispersion with a relatively high local disp
sion. We plan to investigate this case in future work.
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APPENDIX A: EXPLICIT FORMS OF THE MATRICES M

AND M̃

We present here the explicit forms of the matricesM and
M̃ which appear in Eqs.~31! and ~32!, respectively:

M522~s1
21s2

21s3
2!v2Id101S M11 M12

M21 M22
D ,

where Id10 is the 10310 identity matrix.M11 is the 434
matrix,

M1152v2S s3
2 0 s1

2 s2
2

0 s3
2 s2

2 s1
2

s1
2 s2

2 s3
2 0

s2
2 s1

2 0 s3
2

D .

M12 is the 436 matrix,

M125S 2bv2 0 0 0 0 0

2Av 0 0 2C 0 0

0 0 0 0 0 2bv2

0 0 2C 0 0 2Bv

D .

M21 is the 634 matrix,

M215S Av bv2 0 0

0 0 0 0

C 0 0 0

0 0 C 0

0 0 0 0

0 0 Bv bv2

D .

M22 is the 636 matrix,

00
6-10
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M225S 2s3
2v2 C 0 0 0 2~s1

22s2
2!v2

0 2~s1
22s3

2!v2 bv2 bv2 22s2
2v2 0

0 Bv 2~s2
22s3

2!v2 2s1
2v2 bv2 0

0 Av 2s1
2v2 2~s2

22s3
2!v2 bv2 0

C 22s2
2v2 Av Bv 2~s1

22s3
2!v2 C

2~s1
22s2

2!v2 C 0 0 0 2s3
2v2

D
with Bv52B22bv2, Av52A22bv2, andC52aAB.

N522vD01
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

2 , P52vD0S 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

D ,

R5S 2s3
2v2 C 0 0 0 ~s1

21s2
2!v2

0 22~s1
21s3

2!v2 bv2 bv2 2s2
2v2 0

0 Bv 22~s2
21s3

2!v2 22s1
2v2 bv2 0

0 Av 22s1
2v2 22~s2

21s3
2!v2 bv2 0

2C 2s2
2v2 Av Bv 22~s1

21s3
2!v2 C

2~s1
21s2

2!v2 2C 0 0 0 2s3
2v2

D .
n
a

ie

t
on-
en
APPENDIX B: EXPANSIONS OF THE EIGENVALUES
OF A PERTURBED MATRIX

In this appendix, we attempt to sketch out the derivatio
of the expansions of the MI gain with respect to the sm
parameterubus2. The method is general and can be appl
to the following framework. Let us assume thatM0 is a d
3d matrix whose eigenvalues are denoted byl l

0 , l
51, . . . ,d. Let us consider the matrixMªM01«M1 and the
associated eigenvalues (l l

«) l 51, . . . ,d , where« is a small pa-
rameter andM1 is anotherd3d matrix.

Proposition.Let us fix somel 51, . . . ,d. If the matrixM0

@the (i , j )th minor of a matrixM is the matrix obtained by
removing thei th row and thej th column ofM# satisfies

D0ª(
i 51

d

det„minor~M02l l
0I d! i i …Þ0,

then the eigenvaluel l
« can be expanded as powers of« as

l l
«5l l

01«l l
11o~«!,
06661
s
ll
d

where the corrective terml l
1 is given by

l l
15

1

D0
(

i , j 51

d

~21! i 1 jdet„minor~M02l l
0I d! i j …Mi j

1 .

Proof. We first remember that the ‘‘det’’ mapping tha
associates to every matrix its standard determinant is c
tinuously differentiable and its partial derivatives are giv
by

] det~M !

]Mi j
5~21! i 1 j det„minor~M ! i j ….

Let us now consider the function

Q:HR2 → R

~l,«! ° det~M01«M12lI d!.

This function is continuously differentiable and we have
6-11
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]Q

]l
52(

i 51

d

det„minor~M01«M12lI d! i i …,

]Q

]«
5 (

i , j 51

d

~21! i 1 j det„minor~M01«M12lI d! i j …Mi j
1 .

On the one hand, we havef (l l
0,0)50. On the other hand, we

have @]Q(l,«)/]l#u(l
0
l ,0)5D0, which is nonzero by as

sumption. Consequently, by applying the implicit functio
theorem we get that there exists«0.0 and a functionl
PC 1

„(2«0 ,«0),R… such that

l~0!5l l
0andQ„l~«!,«…50 ;«P~2«0 ,«0!.

Moreover this function is continuously differentiable and
pt

P.

F.

06661
]l~«!

]«
52

]Q

]«
„l~«!,«…

]Q

]l
„l~«!,«…

.

Consequently, applying Taylor’s formula,

l~«!5l~0!1«
]l~«!

]« U
«50

1o~«!

5l0
l 2

]Q

]«
~l0

l ,0!

]Q

]l
~l0

l ,0!

«1o~«!,

which completes the proof of the proposition.
k,

-
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@4# L. A. Ostrowski, Zh. Éksp. Teor. Fiz.51, 1189 ~1966! @Sov.

Phys. JETP24, 797 ~1967!#.
@5# G. P. Agrawal,Nonlinear Fiber Optics, 2nd ed.~Academic,

New York, 1995!.
@6# F. Matera, A. Mecozzi, M. Romagnoli, and M. Settembre, O

Lett. 18, 1499~1993!.
@7# F. Kh. Abdullaev, Pisma Zh. Tekh. Fiz.20, 25 ~1994! @Tech.

Phys. Lett.20, 636 ~1994!#.
@8# N. J. Smith and N. J. Doran, Opt. Lett.21, 570 ~1996!.
@9# F. Kh. Abdullaev, S. A. Darmanyan, S. Bishoff, and M.

So”rensen, J. Opt. Soc. Am. B14, 27 ~1997!.
@10# F. Kh. Abdullaev, S. A. Darmanyan, A. Kobyakov, and

Lederer, Phys. Lett. A220, 271 ~1996!.
@11# M. Karlsson, J. Opt. Soc. Am. B15, 2269~1998!.
@12# S. Trillo and S. Wabnitz, J. Opt. Soc. Am. B6, 238 ~1989!.
@13# S. Wabnitz, Phys. Rev. A38, 2018~1988!.
@14# S. C. Rashleigh and R. Ulrich, Opt. Lett.3, 60 ~1978!.
@15# C. R. Menyuk, IEEE J. Quantum Electron.25, 2674~1989!.
.

@16# L. F. Mollenauer, K. Smith, J. P. Gordon, and C. R. Menyu
Opt. Lett.14, 1219~1989!.

@17# P. K. Wai, C. R. Menyuk, and H. H. Chen, Opt. Lett.16, 1231
~1991!.

@18# C. De Angelis, F. Materi, and S. Wabnitz, Opt. Lett.17, 850
~1992!.

@19# C. R. Menyuk and P. K. A. Wai, J. Opt. Soc. Am. B11, 1288
~1994!; P. K. A. Wai and C. R. Menyuk, J. Lightwave Tech
nol. 14, 148 ~1996!.

@20# T. I. Lakoba and D. J. Kaup, Phys. Rev. E56, 6147~1997!.
@21# S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N

Bergano, J. Lightwave Technol.10, 28 ~1992!.
@22# M. Midrio, J. Opt. Soc. Am. B17, 169 ~1999!.
@23# Y. S. Kivshar and V. V. Konotop, Kvant. Elektron.~Moscow!

17, 1599~1990!.
@24# N. F. Smyth and A. H. Pincombe, Phys. Rev. E57, 7231

~1998!.
@25# Y. Chen and H. A. Haus, Opt. Lett.25, 290 ~2000!.
@26# J. E. Rothenberg, Phys. Rev. A42, 682 ~1990!.
@27# P. Drummond, Opt. Commun.78, 137 ~1990!.
@28# V. I. Klyatzkin, Stochastic Differential Equations and Wave

in Random Media~Nauka, Moscow, 1980!.
@29# MAPLE V, Waterloo Maple Software, Ontario, Canada.
6-12


