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Motion of hot spots in smoothed beams

L. Videau* and C. Rouyer
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We develop a statistical model that describes the motion of a hot spot created by smoothing techniques. We
define clearly the transverse and longitudinal instantaneous velocities of a hot spot and quantify its lifetime.
This relevant parameter is found to be longer than the laser coherence time defined as the inverse of the spec-
trum bandwidth. We apply this model to the most usual smoothing techniques, using a sinusoidal phase
modulation or a random spectrum. We give asymptotic results for hot spot velocities and lifetime for the cases
of one-dimensional smoothing by spectral dispersion, smoothing by longitudinal spectral dispersion, and
smoothing by optical fiber. © 1999 Optical Society of America [S0740-3232(99)02607-1]
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1. INTRODUCTION
Smoothing techniques have been developed for the control
of focal spot shape and hot spot distribution1–3 in inertial
confinement fusion applications. In the direct-drive
scheme, optical smoothing helps to limit hydrodynamic
instabilities by producing a time-integrated uniform focal
spot. Long time contrast below 1% can be obtained with
two-dimensional smoothing by spectral dispersion (2D-
SSD) or smoothing by optical fiber (SOF).4–6 Neverthe-
less, the French Mégajoule Laser7 (LMJ) and the U.S. Na-
tional Ignition Facility8 are designed for the indirect-
drive scheme. The produced laser energy of 1.8 MJ is
focused into a Hohlraum and irradiates the gold inner
wall to be converted into x-rays. Up to now, static meth-
ods of smoothing such as by a kinoform phase plate9 were
considered to be sufficient for indirect drive as opposed
to direct drive, for which the underdense plasma
creates parametric instabilities. These parametric
instabilities—filamentation and Brillouin and Raman
scattering10—are deleterious in that they may be respon-
sible for energy losses as high as 30%. However, it was
found that for indirect drive it is important to slow the
wall expansion by using a gas inside the cavity and then
adding a window to close the cavity. As a consequence,
the laser beam also has to propagate through underdense
plasma, as in the case of direct drive with the previously
described parametric effects. Therefore it is important to
reduce high intensities in space and in time for the LMJ
National Ignition Facility configuration also. The shape
of the focal spot can be optimized with a large circular or
elliptical shape9 to limit the averaged intensity to a value
0740-3232/99/071672-10$15.00 ©
below 1015 W/cm2, but the intensity is still too close to the
instability threshold. Another proposed solution is to use
two polarizations with two independent speckle patterns.
This technique of polarization smoothing11 decreases the
fraction of intensities that are larger than the averaged
intensity, the instantaneous contrast also being reduced,
by a factor 1/A2. A third solution would be to reduce the
interaction time between hot spots (high laser intensities)
and plasma. Smoothing techniques are relevant here in
that they create inside the focal spot many hot spots that
disappear rapidly within a few picoseconds. Although a
low optical contrast is not required for indirect drive, it is
necessary to turn off the hot spots in a short time. The
use of one-dimensional techniques such as one-
dimensional smoothing by spectral dispersion12 (1D-SSD)
or smoothing by longitudinal spectral dispersion (SLSD)
is thus well adapted to this use. It is generally asserted
that hot spots exist during a lifetime that corresponds to
the laser coherence time, which is also the inverse of the
spectral bandwidth.4,5 We shall see that this assumption
is not correct for several smoothed beams.

In this paper we study more precisely the motion of the
local maxima of the intensity distribution (the so-called
hot spots), and we quantify the time decrease of the
space–time correlation function for different optical
smoothing techniques based on a temporal sinusoidal
phase modulation. In Section 2 we present a statistical
model that describes the electromagnetic field around the
focal spot and the hot spot motion. In particular, we use
Adler’s theorem, which implies that the local shape of a
hot spot is proportional to the generalized correlation
1999 Optical Society of America
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function defined in the space and time domains. In Sec-
tion 3 we use the formalism for 1D-SSD, and Section 4
and Section 5 are devoted to SLSD and SOF, respectively.

2. RELEVANT STATISTICAL QUANTITIES
FOR DESCRIBING THE HOT SPOT
MOTION
In the following, the normalized complex electromagnetic
field near the focal spot is denoted by E(x, y, z, t), where
x and y are the transverse spatial variables, z is the lon-
gitudinal one, and t is the time. We normalize the quan-
tities so that the intensity I(x, y, z, t) is simply equal to
uE(x, y, z, t)u2. We then may use Adler’s theorem,13,14

which describes the local behavior of the intensity in the
neighborhood of a local maximum centered at (X, Y, Z, T):

I~X 1 x, Y 1 y, Z 1 z, T 1 t !

5 I~X, Y, Z, T !G~X, Y, Z, T, x, y, z, t !. (1)

G is the normalized four-dimensional correlation function
(FCF) defined by

G~X, T, x, t !
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where X 5 (X, Y, Z) and x 5 (x, y, z). This theorem is
valid when G(X, Y, Z, T, x, y, z, t) @ I0 /I(X, Y, Z, T)
(I0 5 ^uE0(X, Y, Z, T)u2&). Here a statistical average is
denoted by ^.&. The capital letters correspond to the mac-
roscopic variables, since (X, Y, Z, T) is the spatial/
temporal reference point of the initial field. The lower-
case letters (x, y, z, t) are related to microscopic variables,
and we assume that the statistics of the field are locally
stationary for these variables. For the maximum value
of G, 1, the fields are identical, whereas the fields are to-
tally incoherent for a null value. Using Eq. (1), we can
determine the spatial/temporal shape of the intensity in
the neighborhood of a maximum created at a given refer-
ence point (X, Y, Z, T). In particular, we are interested in
monitoring the time evolution of the spatial position of
the maximum of the hot spot. We define the parametric
plot $x(t), y(t), z(t)% as the relative position of the maxi-
mum of intensity for each time t after (t . 0) or before
(t , 0) the maximum is reached:

G~X, Y, Z, T, x~t !, y~t !, z~t !, t !

5 max
x,y,z

@G~X, Y, Z, T, x, y, z, t !#. (3)

We can define the instantaneous velocities of the hot spot
along each spatial direction:

vx~X, Y, Z, T ! 5
dx~t !

dt U
t50

,

vy~X, Y, Z, T ! 5
dy~t !

dt U
t50

,

vz~X, Y, Z, T ! 5
dz~t !

dt U
t50

. (4)

These velocities correspond to the motion of the maxi-
mum of the hot spot and are functions of the macroscopic
variables (X, Y, Z, T) because the field may be nonstation-
ary relatively to the initial reference point. By injecting
the parametric plot $x(t), y(t), z(t)% into the FCF, we de-
fine a new function G, the maximum correlation function
(MCF), which depends only on the time t and the macro-
scopic variables (X, Y, Z, T):

G~X, Y, Z, T, t ! 5 G(X, Y, Z, T, x~t !, y~t !, z~t !, t).

(5)

This function G measures the correlation level between
the initial hot spot maximum at (X, Y, Z, T) and the new
hot spot maximum found in the space domain at a time t
after the initial time T. We can then introduce the hot
spot lifetime t f defined as the full width at half-maximum
(FWHM) of G. t f can be considered the characteristic
time of decrease of the MCF corresponding to the total ex-
tinction of the hot spot. People usually characterize the
extinction time using the coherence time tc , which is the
FWHM of the static correlation function F (SCF):

F~X, Y, Z, T, t ! 5 G~X, Y, Z, T, 0, 0, 0, t !. (6)

However, the SCF evaluates the intensity at a particular
point as a function of time and is therefore related to the
optical contrast. The definition of the MCF implies that
G always has a larger width than SCF. Then these tem-
poral parameters verify the inequality

t f > tc . (7)

If the hot spot turns off in place and does not move, the
SCF is equal to the MCF and the hot spot lifetime is equal
to the coherence time. However, t f can be much longer
than tc if the hot spot moves without turning off. In the
following sections we study different configurations and
compare the MCF with the SCF. At this stage it is also
useful to note that the coherence time is related to the
spectrum bandwidth through the Wiener–Kyntchine
theorem15:

I~v! 5 TF@AF~X, Y, Z, T, t !#, (8)

where TF is the Fourier transform related to t and I(v) is
the spectrum. We assume here that the spectrum has no
spatial dependence; this has been verified in many cases.
We can also find a relation between tc and the FWHM-
spectrum bandwidth Dn for different SCF shapes: tc
5 0.62Dn21 for a Gaussian shape and tc > 0.75Dn21 for
a sinusoidal phase modulation.

3. HOT SPOT MOTION FOR ONE-
DIMENSIONAL SMOOTHING BY SPECTRAL
DISPERSION
A. Principles
The 1D-SSD12 is an efficient technique for creating time-
varying speckle patterns, although it cannot provide a low
contrast (the contrast typically stays higher than 20%).



1674 J. Opt. Soc. Am. A/Vol. 16, No. 7 /July 1999 Videau et al.
The standard implementation is shown in Fig. 1. An in-
cident monochromatic beam is spectrally broadened by a
sinusoidal phase modulator with a frequency modulation
nmod and a modulation depth m. The generated spectral
bandwidth (FWHM) is then equal to 2mnmod . In the fol-
lowing, we call Tmod the modulation period, which is the
inverse of nmod . By use of a grating, the spectrum is fur-
ther dispersed onto a random-phase plate.16 The grating
induces an angular dispersion along the transverse direc-
tion (x, in the following) with a resulting time delay Td .
The RPP consists of many elements that impose random
phase shifts of 0 or p. The independent beamlets gener-
ated by the phase elements interfere in the focal plane
and create a speckle pattern. Because of the grating,

Fig. 1. Standard implementation of 1D-SSD.
each frequency focuses at a different point in the focus
plane along the dispersion direction. As a result, the
speckle pattern moves in time very quickly according to
the spectral bandwidth. The asymptotic contrast for an
optimized configuration, Tdnmod 5 1, is approximately
1/A2m 1 1. Introducing the number of color cycles Nc
defined as the ratio between Td and Tmod , the asymptotic
contrast is obtained as soon as Nc is equal to 1. This
value is therefore called the critical dispersion.

B. Hot Spot Motion with a Sinusoidal Phase Modulation
In this subsection we consider a pure sinusoidal phase
modulation f(t) 5 m sin(2pnmodt). In Appendix A we
give a theoretical result for the FCF in the 1D-SSD con-
figuration [Eq. (A3)]. In Fig. 2 we present the FCF at
time t 5 1.4 ps for a case corresponding to the LMJ con-
figuration, with a square near-field beam and a focus
length f0 equal to 8 m, the width D of the beam before fo-
cusing is 0.91 m. The modulation depth m is 10 and the
frequency modulation nmod is 10 GHz. We assume also
that the time delay Td is the inverse of nmod . These val-
ues correspond to a spectral bandwidth of 200 GHz cen-
tered at l0 5 351 nm. The initial reference point is the
Fig. 2. FCF for 1D-SSD with a sinusoidal phase modulation at t 5 1.4 ps. In this case m 5 10, nmod 5 10 GHz, l0 5 351 nm, Td
5 100 ps, D 5 0.91 m, f0 5 8 m. The initial time T is Tmod /2, and the initial point reference is the focus: (X, Y, Z) 5 (0, 0, 0). For
t 5 0, the hot spot is centered at z 5 x 5 0.
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center of the focal volume, and the initial time T is 50 ps,
which is the half-period of one modulation.

In Fig. 2 we show the motion of the maximum of the
FCF along the longitudinal direction: The hot spot
moves and does not turn off in place. The longitudinal
velocity is ;0.088 of the light velocity c; there is no mo-
tion in the transverse direction. In Fig. 3 we have plot-
ted the MCF and the SCF. We observe a difference be-
tween these functions, the width of the MCF always being
larger than that of the SCF. The coherence time tc is 3.5
ps, and the hot spot lifetime t f is equal to 5.5 ps, which is
longer than tc by a factor of 1.55. At roughly 3 ps, the
MCF presents a break corresponding to the correlation
with a newly appearing hot spot. Nevertheless this
breakpoint corresponds to a low value of the correlation
where the validity of Adler’s theorem (Section 2) is not
very accurate.

C. Calculations of Velocities and Hot Spot Lifetime
In Subsection 3.B we showed a hot spot moving in the for-
ward direction without transverse components. In fact,
the motion for 1D-SSD depends strongly on the initial
time T. In particular, we have a backward motion if T is
null and an almost transverse one when T is equal to 0.25
Tmod or 0.75 Tmod . Finally, we have a combination of
transverse and longitudinal motions for other values of T.
In Appendix B we obtain theoretical results for the in-
stantaneous velocities and hot spot lifetime by developing
Eq. (2), assuming the initial point as the focus point:
(X, Y, Z) 5 (0, 0, 0). The averaged velocity vx along the
dispersion direction is

vx~0, 0, 0, T !

5 c

3R latC4 sinS 2p
T
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D F 1
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(9)

where

Fig. 3. Comparison of the MCF and the SCF. Dotted curve,
MCF; solid curve, SCF. The parameters are the same as in Fig.
2.
R lat 5
r0
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, R long 5
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The coefficients Cj and C depend on Nc , the number of
color cycles being equal to the ratio Td /Tmod . We get

C~u ! 5 C2 2 6C4
2 1 cos~2pu !2~C3 1 6C4

2!.

The expressions of the functions Cj are

C1 5
cos~pNc!

~pNc!
2 2
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3 1

1

3

sin~pNc!

pNc
;

C2 5 1 2
sin~2pNc!

2pNc
;

C3 5 2
sin~2pNc!

2pNc
2 2

sin~pNc!
2

~pNc!
2 ;

C4 5
sin~pNc!

~pNc!
2 2

cos~pNc!

~pNc!
.

The velocity along the transverse direction y is null. We
obtain the expression of the longitudinal velocity vz :

vz~0, 0, 0, T !

5 c
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(11)

Given that both velocities depend on the initial time T,
the instantaneous velocities vary during the modulation
period. Furthermore, they depend strongly on the num-
ber of color cycles because of the functions Cj . For a
large value of Nc (large meaning greater than 2), the func-
tions C1 , C3 , and C4 are close to 0, whereas the function
C2 has an almost constant value of 1. The transverse ve-
locity becomes null and the longitudinal one is given by
the asymptotic expression

vz~0, 0, 0, T ! 5 c
R long

2

p2

45
1 R long

2

5 c
1

1 1
p2

45 S zc

z0
D 2 . (12)

Actually, all characteristic quantities become indepen-
dent of T when Nc @ 1, because the field in the focal spot
results from the superposition of many different beamlets
that correspond to different times, so that this time inte-
gration averages the local dependence to 0. Using Eqs.
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(9) and (11), in Fig. 4 we have plotted the transverse and
the longitudinal velocities as a function of the initial time
T. The laser parameters are the same as in the case
shown in Subsection 3.B. In particular, at T 5 Tmod/2,
we find that vz 5 0.08c and vx 5 0, which is in good
agreement with the values found in Subsection 3.B. In
these conditions the motion is essentially in the forward
or the backward longitudinal direction, because vz is
much larger than vx .

By expanding the expressions of G(t) and F(t) with re-
spect to t, we can estimate the ratio t f /tc , where t f is the
hot spot lifetime [i.e., the width of G(t)] and tc is the co-
herence time (i.e., the width of F(t)):

t f /tc 5 AD0~T !/D~T !, (13)

where the expressions of D(T) and D0(T) are given in Ap-
pendix B. Figure 5 presents the ratio plotted as a func-
tion of T for the case in Fig. 4.

The ratio depends on time and is maximal for T
5 0.25Tmod , a case that corresponds to a purely trans-
verse motion. For any initial time T, the hot spot life-
time is longer than the coherence time, with a maximum
ratio of 1.62. At half-period, the asymptotic relation

Fig. 4. Transverse velocity vx (solid curve) and longitudinal ve-
locity vz (dotted curve) as a function of the initial time T with
Nc 5 1.

Fig. 5. Ratio between the hot spot lifetime and the coherence
time as a function of the initial time T.
gives a ratio of 1.48, which is close to the 1.55 value found
in Subsection 3.B. So the asymptotic relations are in
good agreement with the calculated ones in term of in-
stantaneous velocities and ratio between the hot spot life-
time and the coherence time. We have assumed here
only that the hot spot was initially at the center of the fo-
cal volume and that the phase modulation was a pure
sinusoidal modulation. In the following subsection we
study the effect of an incoherent spectrum.

D. Effect of an Incoherent Spectrum
In Subsections 3.B and 3.C we have studied the case of a
sinusoidal phase modulation, which is basic laser technol-
ogy. Here we assume that the different frequencies in
the spectrum are incoherent while the spectral intensity
is the same. This field is written as

Ẽ~n! 5 E E~t !exp~2ipnt !dt 5 (
n52`

1`

exp~iwn!Jn~m !

3 d~n 2 nnmod!, (14)

where w j are random phases and Jn are Bessel functions.
The spectrum is incoherent, but the spectral intensity is
the same as with sinusoidal modulations. There is then
almost no motion of the hot spot, and the hot spot lifetime
is reduced to a value very close to the coherence time.
The effect of the incoherent spectrum is to inhibit any
temporal correlation that is due to a deterministic rela-
tion such as a sinusoidal phase modulation. This means
that to limit hot spot motions it is relevant to use a
random-phase modulation and avoid a pure sinusoidal
one.

4. HOT SPOT MOTION FOR SMOOTHING
BY LONGITUDINAL SPECTRAL
DISPERSION
A. Principles
In LMJ design, the focusing is performed by a grating
that directly disperses the third harmonic,17 and the
beam shape is square. This configuration offers many
advantages, such as color separation and an improvement
of the frequency-conversion efficiency. Furthermore, the
grating provides a focal length that depends on the fre-
quency v18:

f~v! 5
v 1 v0

v0
f0 , (15)

where f0 is the focal length for the central frequency v0 .
The grating is tailored so that more than 90% of the en-
ergy is focused in the central spot.17 The grating is then
equivalent to a chromatic lens, and its transmission
function19,20 T is in the paraxial approximation:

T~x, y, z, v! 5 expF2i
k0~x2 1 y2!

2 f~v! G
' expF2i

k0~x2 1 y2!

2 f0
S 1 2

v

v0
D G . (16)

We can introduce the maximal time delay Td between the
edge and the center of the beam given by the relation
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Td 5
k0

2 f0v0
@~D/2!2 1 ~D/2!2# 5

D2

4f0c
. (17)

Each frequency in the spectrum focuses at a particular
point along the z axis (Fig. 6). Two different frequencies
create independent speckle patterns if the difference be-
tween their focal lengths is larger than the longitudinal
speckle dimension. In fact, smoothing by longitudinal
spectral dispersion (SLSD) belongs to the 1D-SSD cat-
egory but with a spectral dispersion along the longitudi-
nal instead of the transverse direction.

Fig. 6. Standard implementation of a focusing grating.
B. Hot Spot Motion with a Sinusoidal Phase
Modulation
We studied the case presented in Subsection 3.B, that
with a pure sinusoidal phase modulation. We assume
that the time delay is defined by Eq. (17), Td 5 86 ps.
For this technique there is only a longitudinal motion in
the forward or backward direction owing to the absence of
a transverse dispersion. In the case of Fig. 7 the motion
is backward, with an instantaneous velocity equal to vz
5 20.112c. In Fig. 8 we have plotted the MCF and the
SCF for T 5 0. The width of the MCF is larger than that
of the SCF, the ratio t f /tc being 5.32. Actually, this mo-
tion depends on the sinusoidal phase modulation, which
still exists locally in the focal volume. The use of an in-
coherent spectrum such as the one in Subsection 3.D lim-
its the motion and decreases the hot spot lifetime. In-
deed, the results for 1D-SSD with an incoherent spectrum
are the same for SLSD, in which case the difference be-
tween t f and tc is also drastically reduced.

C. Calculations of Velocities and Hot Spot Lifetime
We obtained asymptotic results by developing the same
calculations presented in Appendix B and in Subsection
Fig. 7. FCF for SLSD with a sinusoidal phase modulation at t 5 1.4 ps. In this case m 5 10, nmod 5 10 GHz, l0 5 351 nm, Td
5 86 ps, D 5 0.91 m, f0 5 8 m. The initial time T is null and the initial point reference is the focus: (X, Y, Z) 5 (0, 0, 0). For
t 5 0, the hot spot is centered at z 5 x 5 0.
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3.C for 1D-SSD. In particular, we obtained a simplified
expression of Eq. (A3):

g~r, z, t, T !

5 GS x
2

,
y
2

,
z
2

, T 1
t
2

, 2
x
2

, 2
y
2

, 2
z
2

, T 2
t
2 D

} U E E
D~0, 1 !

exp@i~A 1 D !#d2uU2

, (18)

where

A 5 p
u • r

r0
2 p2

z

4z0
u • u,

D 5 2m sinS p
t 2 z/c

Tmod
D cosS 2p

T
Tmod

2 pNcu • uD ,

with Nc 5 Td /Tmod , Td given by Eq. (17).
We find that the transverse velocities vx and vy are al-

ways null, and the expression of the longitudinal velocity
vz is

vz~0, 0, 0, T !

5 c
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~D1 1 D2! 1

R long
2

4p2 ~D3 1 D4 1 D5!
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where the Dj depend on Nc and T.

D1 5 cosS 2pT
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Fig. 8. Comparison of the MCF and the SCF. Dotted curve,
MCF; solid curve, SCF. The parameters are the same as in Fig.
7.
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E
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For a large value of Nc, the functions Cs and Ss are null
and the longitudinal velocity vz becomes

vz~0, 0, 0, T ! 5 c
R long

2

p2

45
1 R long

2

5 c
1

1 1
p2

45 S zc

z0
D 2 , (20)

which is the same expression as Eq. (12) for 1D-SSD.
In Fig. 9 using Eq. (19), we have plotted the longitudi-

nal velocity as a function of initial time T, with Nc equal
to 1. For T 5 0 we find a velocity equal to 20.112c,
which corresponds to the value found in subsection 4.2.
vz oscillates between 0.105c and 20.125c with the period
of the phase modulator. With this technique we can not
apply the same approach as with 1D-SSD for evaluating
the lifetime. Indeed, the shape of the MCF can not be fit-
ted by a Gaussian function (Fig. 8), because the MCF pre-
sents an anomalous break (at t 5 2 ps in Fig. 8), which
strongly enhances its FWHM. We then have to compute
the MCF numerically by using the complete formula of
the FCF defined in Eq. (18). In Fig. 10 we have plotted

Fig. 9. Longitudinal velocity vz as a function of the initial time
T with Nc 5 1, using Eq. (19). The parameters are as in Fig. 7.
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the ratio between t f and tc for the case presented in Fig.
7. The hot spot lifetime is always longer than the coher-
ence time, with a maximum value of eight times the co-
herence time. In this case the hot spot does not turn off
in place but propagates.

5. HOT SPOT MOTION FOR SMOOTHING
BY OPTICAL FIBER
A. Principles
Smoothing by optical fiber4,5 (SOF) is used to obtain a low
contrast (,10%) when one-dimensional techniques such
as 1D-SSD or SLSD are not efficient. In this method a
time-incoherent pulse is injected into a long multimode
optical fiber and excites many optical modes that propa-
gate at different angles (Fig. 11). At the output of the fi-
ber the modes are independent because of the random
phases encountered in the fiber, and their overlap pro-
duces a speckle pattern. Furthermore, the spatial modes
have a specific propagation time in the core of the fiber
that is due to the different angles of propagation, the
maximum time delay being Td 5 Lu2/2nc, where L is the
length of the fiber, u is the maximal incident angle, and n
is the fiber index.

Generally, the time delay is chosen of the same order as
the pulse duration, which is typically 1 ns or above. For
asymptotic contrast and the speckle motion, the shape
and the width of the spectrum are then the only relevant
parameters, and a sinusoidal phase modulation provides
the same kind of behavior as an incoherent spectrum with
the same spectral bandwidth.

B. Statistical Results
The hot spot motion for SOF is very close to the 1D-SSD
or the SLSD case when an incoherent spectrum is used.

Fig. 10. Ratio between t f and tc as a function of the initial time
T with Nc 5 1 obtained by computing the FCF [Eq. (18)]. The
parameters are the same as in Fig. 7.

Fig. 11. Standard implementation of SOF.
By the same method as in Section 3, we can show that the
motion occurs only along the z axis with an instantaneous
velocity given by

vz 5
c

1 1
p2

96 S zc

z0
D 2 . (21)

zc and z0 are defined by Eq. (10). Equation (21) differs
from Eqs. (12) and (20) by an adimensional constant 96/45
that originates from geometrical considerations. The
field at the output of the fiber has a circular shape,
whereas the near-field beam is assumed to be square in
the 1D-SSD configuration. zc corresponds to the laser co-
herence length and z0 to the Rayleigh parameter.

If zc is much larger than z0 , the hot spot tube is filled
by a single pulse. The hot spot turns off because of
smoothing, the lifetime being close to the coherence time.
The velocity given by Eq. (21) becomes small compared
with the light velocity.

However if zc is now lower than z0 , a temporal coher-
ent pulse illuminates only a small section of the hot spot
tube. This section of longitudinal width z0 propagates
with a velocity close to the light velocity [Eq. (21)]. The
propagation distance is then the Rayleigh dimension, the
hot spot lifetime being the propagation time of the section
up to the ‘‘end’’ of the speckle. In this condition, we find
that the hot spot lifetime is equal to t f 5 z0 /c. In fact,
the hot spot motion for SOF is essentially related to the
interplay between the diffraction and the longitudinal co-
herence length of the laser, and the exact expression of
t f /tc computed by the same method as in Subsection 3.C
is

t f

tc
5 F1 1

96

p2 S z0

zc
D 2G1/2

. (22)

The same arguments can be applied to the 1D-SSD con-
figuration if the time delay is longer than the modulation
period (Nc @ 1).

6. CONCLUSIONS
We have developed a statistical approach for studying hot
spot motion with use of all the smoothing techniques.
Section 2 introduces new definitions such as the four-
dimensional correlation function (FCF) and the maximum
correlation function (MCF). The FCF allows us to de-
scribe temporally and spatially the shape of a local maxi-
mum of intensity (i.e., a hot spot). In particular, we can
evaluate the instantaneous velocities in the transverse
and longitudinal directions. Furthermore, the MCF
gives at each time the correlation of the hot spot with the
initial hot spot. The decrease of the MCF is given by the
hot spot lifetime, which measures the correlation in the
moving reference frame of the maximum of intensity. It
is important to compare this parameter with the coher-
ence time, which is the inverse of the spectrum band-
width. Indeed, we have shown in Sections 3 and 4 that t f
can be longer than tc for smoothing techniques such as
1D-SSD and SLSD when sinusoidal phase modulation is
used. This means that the hot spot moves in time with-
out turning off immediately. In some conditions this be-
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havior may enhance the parametric instabilities whose
growth is much more important at the maximum of inten-
sity. Thus a knowledge of the velocities and the hot spot
lifetime is important for evaluating the influence of laser
intensity on the plasma. Furthermore, we have shown
that the SOF technique presents no increase in correla-
tion that is due to a sinusoidal phase modulation. Only
the interplay of diffraction and laser coherence length is
relevant in this case.

APPENDIX A
In this appendix we present the computation of the FCF
defined by Eq. (A1) for 1D-SSD and SLSD:

G~x1 , y1 , z1 , t1 , x2 , y2 , z2 , t2!

5
u^E~x1 , y1 , z1 , t1!E* ~x2 , y2 , z2 , t2!&u2

^I~x1 , y1 , z1 , t1!&^I~x2 , y2 , z2 , t2!&
. (A1)

The effect of the first grating used for 1D-SSD is to induce
a time delay Td along the x axis so that the field after the
grating becomes E0(x, y, z, t 1 Tdx/D), where E0 is the
initial field and D is the width of the beam. We assume
that E0 depends only on the time and is a plane wave in
the spatial domain. The random phase plate placed just
before the focusing component has a transmission func-
tion of the form

M~x, y ! 5 (
n,m51

N

exp~iwn,m!S~x 2 na !S~ y 2 na !,

(A2)

where wn,m are independent random phases and S is the
geometrical shape of one element with a width equal to a.
N is the number of elements along one direction. To sim-
plify the computations, we assume that S is Gaussian in
shape. This parameter is relevant only for the envelope
of the focused beam and not for the hot spot shape. Fi-
nally, we introduce the focusing grating as a chromatic
lens with a transmission function T(x, y, v)
5 exp@2i(x2 1 y2)k0/2 f(v)#, where f(v) is given by Eq.
(15). The propagation is taken care of with a Fourier
transform formalism.19,20 If we assume that N → 1`,
we can replace the discrete sums by continuous integrals,
which yields the FCF expression,

G~x1 , y1 , z1 , t1 , x2 , y2 , z2 , t2! } U E EẼ0~v1!Ẽ0* ~v2!

3 expF iv2S t2 2
z2

c D 2 iv1S t1 2
z1

c D G
3 px~1; 2 !py~1; 2 !dv1dv2U2

, (A3)

where Ẽ0(v) 5 *E0(t)exp(ivt)dt and } means ‘‘is propor-
tional to.’’
pu~1; 2 ! 5 p~u1 , z1 , v1 , u2 , z2 , v2!

5
1
D

expS i
dg2f0

2k0udhu D
3 E

2D/21dgf0 /k0dh

D/21dgf0 /k0dh

expF2i
k0dh
2 f0

s2Gds, (A4)

where u means x or y, dg 5 (v1 2 v2)Td
u/D 2 (u1

2 u2)k0 /f0 , and dh 5 z1 2 z2 /f0 2 (v1 2 v2)/v0 . Td
u

is the time delay along the transverse direction u (x or y),
and v0 is the central frequency.

APPENDIX B
Here we compute the asymptotic developments of Eq.
(A3) for the case of 1D-SSD when a pure sinusoidal phase
modulation is used. Note that the lens in this configura-
tion is standard so that the focal length does not depend
on v. Furthermore we assume that the initial hot spot is
centered in the focal volume: (X, Y, Z) 5 (0, 0, 0). In
these conditions, we have a simplified expression of Eq.
(A3):

g~r, z, t, T !

5 GS x
2

,
y
2

,
z
2

, T 1
t
2

, 2
x
2

, 2
y
2

, 2
z
2

, T 2
t
2 D

} U EE
D~0, 1 !

exp@i~A 1 B !#d2uU2

, (B1)

with r 5 (x, y), u 5 (u1 , u2), r0 5 2pf/k0D, z0
5 k0r0

2/2.

A 5 A~u! 5 p
u • r

r0
2 p2

z
4z0

u • u,

B 5 B~u! 5 2m sinS p
t 2 z/c

Tmod
D

3 cosS 2p
T

Tmod
1 pNcu1D .

D(0, 1) represents the integration domain and is the
unity square, which is the shape of the near-field beam.
The derivative functions of g are proportional to

]g

]z
} EE

D~0, 1 !

cos~A 1 B !d2u 3 EE
D~0, 1 !

F]~A 1 B !

]z G
3 sin~A 1 B !d2u 2 EE

D~0, 1 !

3 sin~A 1 B !d2u 3 EE
D~0, 1 !

F]~A 1 B !

]z G
3 cos~A 1 B !d2u,
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]g

]r j
} EE

D~0, 1 !

cos~A 1 B !d2u 3 EE
D~0, 1 !

uj

3 sin~A 1 B !d2u 2 EE
D~0, 1 !

3 sin~A 1 B !d2u 3 EE
D~0, 1 !

uj

3 cos~A 1 B !d2u.

The maximum of the hot spot is the point (r, z), where
the three derivatives functions of g with respect to r1 , r2 ,
and z vanish. We assume from now on that t ! Tmod in
order to evaluate the instantaneous velocities, and we de-
velop cosines and sines at first order near (r, z, t)
5 (0, 0, 0). After some developments we find the posi-
tion of the intensity maximum:

x~t ! 5 vxt 1 O~t2!; y~t ! 5 0, z~t ! 5 vzt 1 O~t2!,

where vx and vz are given, respectively, by Eq. (9) and Eq.
(11). By injecting the previous results into Eq. (B1), we
find the maximum correlation function G:

G~t, T ! 5 1 2 2p 2m2
t2

Tmod
2 D~T ! 1 OS m4

t4

Tmod
4 D , (B2)

with

D~T ! 5

1

45
CS T

Tmod
D 2 cosS 2p

T

Tmod
D 2

C1

1

45
1 2

R long

p
cosS 2p

T

Tmod
DC1 1

R long
2

p2 CS T

Tmod
D .

Finally, we compute the static correlation function F:

F~t, T ! 5 1 2 2p2m2
t2

Tmod
2 D0~T ! 1 OS m4

t4

Tmod
4 D , (B3)

with D0(T) 5 C2 1 cos@2p(T/Tmod)#2C3 .
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