
Imaging of a Dissipative Layer in a Random

Medium using a Time Reversal Method

Jean-Pierre Fouque1, Josselin Garnier2, André Nachbin3, and Knut Sølna4
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Summary. In this paper time reversal of acoustic waves in a dissipative random
one-dimensional medium is analyzed. It is shown that time reversal can be used as
an efficient and statistically stable method to image a dissipative layer embedded in
a random scattering medium. The quantities needed to achieve this goal appear as
the solutions of a system of transport equations which are solved by a Monte Carlo
method.

1 Introduction

Time-reversal refocusing for waves propagating in inhomogeneous media have
been recently observed and studied experimentally in various contexts, e.g.
ultrasound, underwater acoustics, see for instance the review [Fin99]. Impor-
tant potential applications have been proposed in various fields, for instance
imaging [PKC02, FMT03] and communication [DTR03]. A time-reversal mir-
ror is, roughly speaking, a device which is capable of receiving a signal in
time, keeping it in memory and sending it back into the medium in the
reversed direction of time. The main effect is the refocusing of the scat-
tered signal after time-reversal in a random medium. Surprisingly, the re-
focused pulse shape only depends on the statistical properties of the random
medium, and not on the particular realization of the medium. The full math-
ematical understanding, meaning both modeling of the physical problem and
derivation of the time-reversal effect, is a complex problem. The study of
the one-dimensional linear case is now well understood [CF97, Sol03, FS03]
as well as the three-dimensional waves in the parabolic or paraxial regime
[BPR02, BPZ02, PRS03]. In this paper we generalize the model considered
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so far by introducing absorption modeled by a linear dissipative term in the
acoustic equations. We show that time-reversal is still efficient in refocusing
waves despite the loss of energy due to absorption.

The paper is organized as follows. In Sections 2-4 we derive integral rep-
resentations of the refocused pulse shapes in terms of reflection coefficients
for the wave modes. Section 5 is devoted to the thorough analysis of time-
reversal experiments in reflection in random and dissipative media. In Section
6 we use a probabilistic interpretation of the limit solution to analyze different
configurations by Monte Carlo (MC) simulations.

2 The Acoustic Model

We consider the acoustic wave equation

1

K

∂p

∂t
+

∂u

∂z
= 0, (1)

ρ
∂u

∂t
+

∂p

∂z
+ σu = 0, (2)

where p is the pressure and u is the velocity, z and t are the space and time
coordinates, respectively, σ is the dissipation of the medium, ρ is the density,
and K is the bulk modulus. The fluctuations of the medium parameters are
described by

ρ =

{

1 + ν(
z

ε2
) if − L < z < 0,

1 if z > 0 or z < −L,
(3)

1

K
=

{

1 + η(
z

ε2
) if − L < z < 0,

1 if z > 0 or z < −L,
(4)

σ =

{

σ(z,
z

ε2
) if − L < z < 0,

0 if z > 0 or z < −L.
(5)

The dimensionless small parameter ε2 characterizes the ratio of the correlation
radius of the fluctuations of the medium and the typical size of the medium.
The fluctuations of the density and the bulk modulus are modeled by the
zero-mean stationary random process (η, ν)(z). The processes η and ν are
assumed to be bounded by a deterministic constant less than 1 and to have
strong ergodic properties. We may think for instance that (η, ν) is a function
of a Markov, stationary, ergodic process on a compact space satisfying the
Fredholm alternative [Pap78]. We can also work with the class of the φ-mixing
processes with φ ∈ L1/2 [Kus84]. The dissipation coefficient is a nonnegative
function. It may vary rapidly at scale ε2, but it may also have slow variations
at scale one. More exactly, we assume that, for any z ∈ [−L, 0], ζ 7→ σ(z, ζ)
is a nonnegative stationary mixing process with mean σ̄(z) = E[σ(z, ζ)]. We
think in particular at the two following configurations.
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1. The dissipation coefficient has a stationary statistical distribution (this
will be our reference framework):

σ(z,
z

ε2
) = σ0(

z

ε2
),

where σ0 is a nonnegative stationary ergodic random process with mean
σ̄0 = E[σ0(ζ)].

2. The dissipation coefficient has a different behavior inside some embedded
layer [z0, z1], −L < z0 < z1 < 0,

σ(z,
z

ε2
) =







σ1(
z

ε2
) if z0 < z < z1,

σ0(
z

ε2
) if z1 ≤ z ≤ 0 or − L ≤ z ≤ z0,

where σ0 and σ1 are two nonnegative stationary ergodic random processes.
We denote by σ̄j their respective means

σ̄j = E[σj(ζ)],

and we assume that σ̄1 6= σ̄0. One goal of the paper is to detect the layer
[z0, z1].

We consider the problem on the finite slab −L ≤ z ≤ 0 where boundary
conditions are imposed at −L and 0 corresponding to a left-going pulse en-
tering the slab from the right at z = 0. We consider an incoming pulse whose
typical wavelength is of order ε, that is to say small compared to the size of
the medium, but large with respect to the correlation length of the random
medium:

fε(t) = f(
t

ε
).

3 Propagator Formulation

In this section we first express the scattering problem as a two point boundary
value problem in the frequency domain, and then rewrite it as an initial value
problem in terms of the propagator. This study follows the lines of the analysis
carried out in Ref. [AKP91].

3.1 Mode Propagation in the Frequency Domain

We consider the random acoustic equation (1-2) and take the scaled time
Fourier transform

ûε(ω, z) =
1

2πε

∫

u(t, z)e−
iωt

ε dt, p̂ε(ω, z) =
1

2πε

∫

p(t, z)e−
iωt

ε dt,

so that the system reduces to a set of ordinary differential equations:
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∂ûε

∂z
+

iω

ε

(

1 + η(
z

ε2
)
)

p̂ε = 0,

∂p̂ε

∂z
+

iω

ε

(

1 + ν(
z

ε2
)
)

ûε + σûε = 0.

We decompose the wave into right-going modes aε and left-going modes bε

aε(ω, z) =
1

2
(p̂ε (ω, z) + ûε (ω, z)) e

iωz
ε , (6)

bε(ω, z) =
1

2
(p̂ε (ω, z)− ûε (ω, z)) e−

iωz
ε , (7)

which satisfy the linear equation

∂

∂z

(

aε

bε

)

(ω, z) = Qε(ω, z)

(

aε

bε

)

(ω, z), (8)

where the complex 2 × 2 matrix Qε is given by:

Qε(ω, z) =
iω

2

(

−mε(z) −nε(z)e
2iωz

ε

nε(z)e−
2iωz

ε mε(z)

)

+
σε(z)

2

(

−1 e
2iωz

ε

−e−
2iωz

ε 1

)

, (9)

with

m(z) = η(z) + ν(z), n(z) = η(z) − ν(z), (10)

mε(z) =
1

ε
m(

z

ε2
), nε(z) =

1

ε
n(

z

ε2
), σε(z) = σ(z,

z

ε2
). (11)

3.2 Boundary Values

We assume that a left-going pulse is incoming from the right and is scattered
into a reflected wave at z = 0 and a transmitted wave at z = −L (see Figure
1). The incoming pulse shape is given by the pressure function f(t/ε) where

-

−L 0 z

�

(utr, ptr)(t)

-
0

�

(uinc, pinc)(t)

-

(uref , pref )(t)

Fig. 1. Scattering problem.

f is assumed to be a L1 function compactly supported in the Fourier domain:

uinc(t, z = 0) = −
∫

f̂(ω)e
iωt

ε dω, pinc(t, z = 0) =

∫

f̂(ω)e
iωt

ε dω,
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where f̂ is the standard Fourier transform

f̂(ω) =
1

2π

∫

f(t)e−iωtdt.

We also impose a radiation condition at −L corresponding to the absence
of right-going wave at the left hand-side of the slab [−L, 0]. The two-point
boundary value problem consisting of the system (8) for z ∈ [−L, 0] together
with the conditions:

bε(ω, z = 0) = f̂(ω), aε(ω, z = −L) = 0

is then well-posed.

3.3 Propagator

It is convenient to transform the two-point boundary value problem into an
initial value problem by introducing the propagator Y ε(ω,−L, z) which is a
complex 2 × 2 matrix solution of

∂Y ε

∂z
(ω,−L, z) = Qε(ω, z)Y ε(ω,−L, z), Y ε(ω,−L, z = −L) = IdC2 ,

such that

Y ε(ω,−L, z)

(

aε(ω,−L)
bε(ω,−L)

)

=

(

aε(ω, z)
bε(ω, z)

)

.

The propagator matrix Y ε has the form

Y ε(ω,−L, z) =

(

aε
1(ω, z) aε

2(ω, z)
bε
1(ω, z) bε

2(ω, z)

)

,

where the column vector (aε
1, b

ε
1)

T , resp. (aε
2, b

ε
2)

T , is solution of equation (8)
with the initial conditions:

aε
1(ω, z = −L) = 1, bε

1(ω, z = −L) = 0, (12)

aε
2(ω, z = −L) = 0, bε

2(ω, z = −L) = 1, (13)

respectively. We can now define the transmission and reflection coefficients
T ε(ω,−L, z) and Rε(ω,−L, z), respectively, for a slab [−L, z] by (see also
Figure 2):

Y ε(ω,−L, z)

(

0
T ε(ω,−L, z)

)

=

(

Rε(ω,−L, z)
1

)

. (14)

In terms of the propagator entries they are given given by:

Rε(ω,−L, z) =
aε
2

bε
2

(ω, z), T ε(ω,−L, z) =
1

bε
2

(ω, z), (15)
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-

−L 0z

�
T ε(−L, z)

-
0

�
1

-
Rε(−L, z)

Fig. 2. Reflection and transmission coefficients.

and the reflection coefficient satisfies the closed form nonlinear Riccati differ-
ential equation:

∂Rε

∂z
= −iωmε(z)Rε − iω

2
e−

2iωz
ε nε(z)(Rε)2 − iω

2
e

2iωz
ε nε(z)

−σε(z)Rε +
σε(z)

2

(

e
2iωz

ε + e−
2iωz

ε (Rε)2
)

, (16)

with the initial condition at z = −L: Rε(ω,−L, z = −L) = 0. The reflected
wave at time t, denoted by (uref , pref ), is a right-going wave whose pressure
field admits the following integral representation in terms of the reflection
coefficient:

pref (t, z = 0) =

∫

f̂(ω)Rε(ω,−L, 0)e
iωt
ε dω. (17)

Remark: We can give a rapid comment on the role of dissipation. The

vectors satisfy ∂z

(

|aε
j |2 − |bε

j |2
)

= −σε(z)
∣

∣aε
je

−iωz/ε − bε
je

iωz/ε
∣

∣

2
and thus

|aε
2|2(z) + 1 ≤ |bε

2|2(z). By Eq. (15) this implies the relation expressing the
dissipation of energy

|Rε|2 + |T ε|2 ≤ 1. (18)

A strict inequality means that some energy is lost during the scattering of
the wave by the random dissipative slab. Eq. (18) also implies the uniform
boundedness of the reflection coefficient.

4 Time Reversal

In the first step of the time reversal procedure, the time-reversal mirror (TRM)
is used as a passive device to record the reflected signal at z = 0 up to a certain
time. It turns out that as ε → 0 the interesting asymptotic regime arises when
the signal is recorded up to a large time of order 1 which we denote by t1 with
t1 > 0. Thus, the recorded signal is of the form

prec(t) = pref (t)Gt1 (t),

where the the support of the cut-off function Gt1 is included in [0, t1] and pref

is given by (17). In the second step the TRM is used as an active device: it
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time reverses the recorded signal and sends it back into the medium. Observe
that the part of the wave which came in last will go out first. It also changes
the sign of the recorded velocity so as to generate a pure left-going wave.
Thus, the time-reversed pressure wave sent back into the medium is given by:

pinc(TR)(t, z = 0) = prec(t1 − t)

=
1

ε

∫ ∫

e
iω(t1−t)

ε p̂ε
ref (ω′)Ĝt1 (

ω − ω′

ε
)dω′dω,

where TR stands for “Time Reversal” and Ĝt1 is the Fourier transform of Gt1 .
Using the fact that pinc(TR) is real valued, we can also write:

pinc(TR)(t, z = 0) =
1

ε

∫ ∫

e
iω(t−t1)

ε p̂ε
ref (ω′)Ĝt1(

ω − ω′

ε
)dω′dω.

This new incoming signal re-propagates into the same medium and generates
a new reflected signal which we observe at the time t2 +εt, that is, around the
time t2 in the scale of the initial pulse. In terms of the reflection coefficients
Rε the observed reflected signal is given by

pref(TR)(t2 + εt, z = 0) =

∫

p̂ε
inc(TR)(ω)Rε(ω,−L, 0)e

iωt2
ε

+iωtdω.

Substituting the expression of p̂ε
inc(TR) into this equation yields the following

representation of the reflected signal:

pref(TR)(t2 + εt, z = 0) =
1

ε

∫ ∫

eiωte
iω(t2−t1)

ε f̂(ω′)Ĝt1(
ω − ω′

ε
)

×Rε(ω,−L, 0)Rε(ω′,−L, 0)dω′dω.

Motivated by the scaled argument of Ĝt1 we get by the change of variable
ω′ = ω − εh:

pref(TR)(t2 + εt, z = 0) =

∫ ∫

eiωte
iω(t2−t1)

ε f̂(ω − εh)Ĝt1(h)

×Rε(ω,−L, 0)Rε(ω − εh,−L, 0)dh dω. (19)

The rapid phase exp(iω(t2 − t1)/ε) averages out this integral except when
t2 = t1. This means that refocusing can be observed only at the time t2 = t1.
The precise description of the refocused pulse will be carried out in the next
section.

5 The Refocused Pulse

The refocused pulse observed at z = 0 and at time t1 + εt is given by
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pref(TR)(t1 + εt) =

∫ ∫

eiωteiεht/2f̂(ω − εh/2)Ĝt1(h)

×Rε(ω + εh/2,−L, 0)Rε(ω − εh/2,−L, 0)dh dω. (20)

This section is devoted to the proof of the convergence of the refocused pulse
shape to a deterministic shape as ε → 0.

5.1 Tightness

We first address the tightness of the process.

Lemma 1. The refocused pulse
(

(pε
ref(TR)(t1 + εt))−∞<t<∞

)

ε>0
is a tight

(i.e. weakly compact) family in the space of continuous trajectories equipped
with the sup norm.

Proof. We must show that, for any δ > 0, there exists a compact subset K of
the space of continuous bounded functions such that:

sup
ε>0

P(pε
ref(TR)(t1 + ε·) ∈ K) ≥ 1 − δ

On the one hand the dissipation relation (18) yields that |Rε| ≤ 1 and
pε

ref(TR)(t1 + εt) is uniformly bounded by:

|pε
ref(TR)(t1 + εt)| ≤

∫

|f̂(ω)|dω ×
∫

|Ĝt1(h)|dh (21)

On the other hand the modulus of continuity

M ε(δ) = sup
|s1−s2|≤δ

|pε
ref(TR)(t1 + εs1) − pε

ref(TR)(t1 + εs2)|

is bounded by

M ε(δ) ≤
∫

sup
|s1−s2|≤δ

|1 − exp(iω(s1 − s2))||f̂ (ω)|dω ×
∫

|Ĝt1(h)|dh

which goes to zero as δ goes to zero uniformly with respect to ε.

5.2 Convergence of the Finite-dimensional Distributions

The uniform boundedness (21) implies that the finite-dimensional distribu-
tions of the process pε

ref(TR)(t1 + ·) will be characterized by the moments

E[pε
ref(TR)(t1 + εs1)

p1 . . . pε
ref(TR)(t1 + εsk)pk ] (22)

for every real numbers s1 < . . . < sk and every integers p1, . . . , pk.
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First Moment

Let us first address the first moment. Using the representation (20) the ex-
pectation of pε

ref(TR)(t1 + εt) reads:

E[pref(TR)(t1 + εt)] =

∫ ∫

eiωteiεht/2f̂(ω − εh/2)Ĝt1(h)

×E[Rε(ω + εh/2,−L, 0)Rε(ω − εh/2,−L, 0)]dh dω. (23)

As shown by (23), the statistical distribution of the refocused pulse will de-
pend on the frequency autocorrelation function of the reflection coefficient.
We denote:

Uε
1,1(ω, h, z) = Rε(ω +

εh

2
,−L, z)Rε(ω − εh

2
,−L, z),

and we extend the approach developed in [AKP91]. It is necessary to consider
a family of moments so as to get a closed system of equations. We introduce
for q, p ∈ N

Uε
q,p(ω, h, z) =

(

Rε(ω +
εh

2
,−L, z)

)q (

Rε(ω − εh

2
,−L, z)

)p

. (24)

Using the Riccati equation (16) satisfied by Rε, we deduce

∂Uε
q,p

∂z
= iω(p − q)mεUε

q,p + ie
2iωz

ε
ω

2

(

−qnεeihzUε
q−1,p + pnεe−ihzUε

q,p+1

)

+ie−
2iωz

ε
ω

2

(

pnεeihzUε
q,p−1 − qnεe−ihzUε

q+1,p

)

−(p + q)σεUε
q,p + e

2iωz
ε

σε

2

(

qeihzUε
q−1,p + pe−ihzUε

q,p+1

)

+e−
2iωz

ε
σε

2

(

peihzUε
q,p−1 + qe−ihzUε

q+1,p

)

, (25)

starting from Uε
q,p(ω, h, z = −L) = 10(q)10(p), where 10(q) = 1 if q = 0 and

0 otherwise. Taking a shifted scaled Fourier transform with respect to h

V ε
q,p(ω, τ, z) =

1

2π

∫

eih(τ−(q+p)z)Uε
q,p(ω, h, z)dh, (26)

we get

∂V ε
q,p

∂z
= −(q + p)

∂V ε
q,p

∂τ
+ iω(p− q)mεV ε

q,p + i
ω

2
e

2iωz
ε nε

(

−qV ε
q−1,p + pV ε

q,p+1

)

+ie−
2iωz

ε
ω

2
nε

(

pV ε
q,p−1 − qV ε

q+1,p

)

− (p + q)σεV ε
q,p

+e
2iωz

ε
σε

2

(

qV ε
q−1,p + pV ε

q,p+1

)

+ e−
2iωz

ε
σε

2

(

pV ε
q,p−1 + qV ε

q+1,p

)

, (27)
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starting from V ε
q,p(ω, τ, z = −L) = δ0(τ)10(q)10(p). A diffusion-approximation

theorem [AKP91, Section 3] establishes that the processes V ε
q,p converge to

diffusion processes as ε → 0. In particular the expectations E[V ε
p,p(ω, τ, z)],

p ∈ N, converge to Wp(ω, τ, z) which obey the closed system of transport
equations:

∂Wp

∂z
+ 2p

∂Wp

∂τ
= (LωW )p − 2σ̄(z)pWp, (28)

(Lωφ)p =
1

2
αnω2p2 (φp+1 + φp−1 − 2φp) , (29)

starting from Wp(ω, τ, z = −L) = δ0(τ)10(p). The parameters αm and αn are
the integrated covariances of the processes m and n:

αm =

∫ ∞

0

E[m(0)m(z)]dz, αn =

∫ ∞

0

E[n(0)n(z)]dz. (30)

We then get the limit of the autocorrelation function of the reflection coeffi-
cient:

E

[

Rε(ω +
εh

2
,−L, 0)Rε(ω − εh

2
,−L, 0)

]

ε→0−→
∫

W1(ω, τ, 0)e−ihτdτ. (31)

The quantity W1(ω, τ, 0) is obtained through the system of transport equa-
tions (28). Substituting this limit into Eq. (23) yields

E[pref(TR)(t1 + εt)]
ε→0−→

∫ ∫ ∫

eiωte−ihτ f̂(ω)Ĝt1(h)W1(ω, τ, 0)dhdτdω

=

∫ ∫

eiωtf̂(ω)Gt1(τ)W1(ω, τ, 0)dτdω. (32)

Remark. The existence and uniqueness of the solution z 7→ W·(·, ·, z) to
the transport equations (28) can be rigorously established in the space
C([−L, 0],S′

H) where S′
H is the space of distributions introduced in [PW94] to

study an analogous system without absorption. S′
H can be identified as the

dual of the space SH of the test functions λ = (λp(ω, τ))p∈N,ω∈R,τ∈R, where
the λp’s are infinitely differentiable in ω and τ and are rapidly decaying as
functions of ω, τ , and p.

Higher Order Moments

Let us now consider the general moment (22). Using the representation (20)
for each factor pε

ref(TR)(t1 + εsj), these moments can be written as multiple

integrals over p =
∑k

j=1 pj frequencies:

E





k
∏

j=1

pε
ref(TR)(t1 + εsj)

pj



 =

∫

...

∫

E









∏

1 ≤ j ≤ k

1 ≤ l ≤ pj

Uε
1,1(ωj,l, hj,l, 0)
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×
∏

1 ≤ j ≤ k

1 ≤ l ≤ pj

f̂(ωj,l)e
iωj,lsj eiεhj,lsj/2Ĝt1(hj,l)dωj,ldhj,l.

The important quantity is E

[

∏

j,l U
ε
1,1(ωj,l, hj,l, 0)

]

. Our problem is now to

find the limit, as ε goes to 0, of these moments for k distinct frequencies. This
limit will be deduced from the study of the convergence of the distribution of
(Uε

q1,p1
(ω1, h1, z), . . . , Uε

qk,pk
(ωk, hk, z)) which results once again from the ap-

plication of a diffusion-approximation theorem. Introducing V ε as in Eq. (26)
it is found that (V ε

q1,p1
(ω1, τ1, z), . . . , V ε

qk,pk
(ωk, τk, z)) converges as ε → 0 to

a diffusion process. In particular,

vp1,...,pk
(ω1, ..., ωk, τ1, ..., τk, z) := lim

ε→0
E





∏

j

V ε
pj ,pj

(ωj , τj , z)





is solution of

∂vp1,...,pk

∂z
+ 2

∑

j

pj
∂vp1,...,pk

∂τj
=

∑

j

Lωj
vp1,...,pk

− 2σ̄(z)





∑

j

pj



 vp1,...,pk
,

vp1,...,pk
(ω1, ..., ωk, τ1, ..., τk, z = −L) =

∏

j

δ0(τj)10(pj).

Using the families of processes W introduced in Eq. (28) defined for every
frequency ω, a direct calculation shows that

∏

j Wpj
(ωj , τj) satisfies the above

system, so that we have

vp1,...,pk
(ω1, ..., ωk, τ1, ..., τk, z) =

∏

j

Wpj
(ωj , τj , z),

and consequently,

E

[

pε
ref(TR)(t1 + εs1)

p1 . . . pε
ref(TR)(t1 + εsk)pk

]

ε→0−→
∫

...
∫

∏

1 ≤ j ≤ k

1 ≤ l ≤ pj

W1(ωj,l, τj,l, 0)
∏

1 ≤ j ≤ k

1 ≤ l ≤ pj

f̂(ωj,l)e
iωj,lsj Gt1(τj,l)dωj,ldτj,l

=
∏

1≤j≤k

(

∫

W1(ω, τ, 0)f̂(ω)eiωsj Gt1(τ)dωdτ
)pj

.

This shows the convergence of the finite-dimensional distributions of (pε
ref(TR)(t1+

εs))s∈(−∞,∞) to the ones of the deterministic function

∫

W1(ω, τ, 0)f̂(ω)eiωsGt1(τ)dωdτ.
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5.3 Convergence of the Refocused Pulse

We have just proved the tightness of the process pref(TR)(t1 + ε·) as well as
the convergence of its finite-dimensional distributions. Accordingly this proves
the following theorem.

Theorem 1. The refocused signal
(

pref(TR)(t1 + εt)
)

t∈(−∞,∞)
converges in

probability as ε → 0 to the deterministic function

Pref(TR)(t) =

∫

Λ(ω, τ)f̂(ω)eiωtGt1(τ)dωdτ, (33)

where Λ(ω, τ) = W1(ω, τ, 0) is the density given by the system (28). We can
also write that

Pref(TR)(t) = (f(− ·) ∗ KTR(·)) (t). (34)

The Fourier transform of the refocusing kernel KTR is given by

K̂TR(ω) =

∫

Gt1(τ)Λ(ω, τ)dτ. (35)

We can give a probabilistic representation of the density Λ in terms of
a jump Markov process. Let us introduce the process (Xt)t≥−L with state
space N and infinitesimal generator Lω given by (29). When the jump process
reaches the state x ∈ N

∗, a random clock with exponential distribution and
parameter x2αnω2 starts running. When the clock strikes, the process jumps
to x±1 with probability 1/2. Finally, 0 is an absorbing state. The representa-
tion of a system of transport equations in terms of a canonical Markov process
was first introduced in [AKP91], and it turns out that we can extend this idea
to the system (28) by means of a Feynman-Kac formula. We get
∫ τ1

τ0

Wp(ω, τ, 0)dτ = EX−L=p

[

1R

0
−L

2Xsds∈[τ0,τ1]
1X0=0e

−
R

0
−L

2σ̄(−L−s)Xsds
]

,

(36)
where EX−L=p stands for the expectation over the distribution of the jump
process starting from X−L = p.

In the particular case of a constant mean dissipation, σ̄(z) = σ̄0, the
probabilistic interpretation of the densities Wp reads:

Wp(ω, τ, 0)dτ = EX−L=p

[

1R 0
−L

2Xsds∈[τ,τ+dτ ]1X0=0e
−2σ̄0

R 0
−L

Xsds
]

.

We can then note that the argument of the exponential is deterministic be-

cause the value of the integral
∫ 0

−L
Xsds is constrained to be equal to τ/2. As

a result,
Wp(ω, τ, 0) = W (0)

p (ω, τ, 0)e−σ̄0τ , (37)

where W
(0)
p is the solution of the transport equations (28) in absence of dis-

sipation. We can also verify directly that (37) is indeed a solution of the
transport equations (28) with σ̄(z) = σ̄0.
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6 Application to the Detection of a Dissipative Layer

In this section we prove that time reversal can be used as an efficient and sta-
tistically stable method to image a dissipative layer embedded in a randomly
scattering medium. We consider the same configuration as the one studied in
the previous section. We compute explicitly the refocusing kernel, we show
that it contains information about the presence of an embedded dissipative
layer, and we show also how this information can be extracted.

-

6

z0 0 zz1

σ̄(z)

σ̄0

σ̄1

Fig. 3. Profile of the mean dissipation.

6.1 Constant Mean Dissipation

Here we consider the case of a half space and we assume that there is no
embedded layer. The mean dissipation is constant σ̄(z) ≡ σ̄0. In this config-
uration we can compute explicitly the solution for the system of transport
equations by using (37) and the explicit solution computed in [AKP91] in
absence of dissipation:

Wp(ω, τ, 0) =
∂

∂τ

[(

αnω2τ

4 + αnω2τ

)p

1[0,∞)(τ)

]

e−σ̄0τ . (38)

We thus get a closed form expression for the density in case of constant mean
dissipation:

Λ0(ω, τ) =
4αnω2

(4 + αnω2τ)
2 e−σ̄0τ . (39)

Let us further assume that we record everything at the mirror, so that
Gt1 ≡ 1. In these conditions

K̂TR(ω) = 1 − 4σ̄0

αnω2
exp

(

4σ̄0

αnω2

)

Ei

(

4σ̄0

αnω2

)

,

where Ei is the exponential integral function Ei(x) =
∫ ∞

1 exp(−xt)/tdt. The
Fourier transform of this refocusing kernel is plotted in Fig. 4. Note that
σ̄0 = 0 implies that K̂TR(ω) = 1. This case is of course expected: the pulse
is completely scattered back by the random half-space due to Anderson lo-
calization [Pap71], and we send back everything that is recorded, so we get
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a perfect refocusing as a result of the time-reversibility of the wave equation.
In presence of dissipation, the refocusing kernel looks like a high-pass filter.
This can be explained by simple arguments based on the fact that the localiza-
tion length decays with increasing frequencies [Pap71]. Thus, high-frequencies
(above the cut-off frequency ωc = 2

√

σ̄0/αn) are well recovered, because they
are very quickly scattered back by the localization effect and they spend a
short time in the random dissipative half-space. On the contrary, low frequen-
cies are highly dissipated, because they penetrate deeper and spend a longer
time in the medium before being scattered back.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

ω / ω
c

K

Fig. 4. Fourier transform of the refocusing kernel for a random half space with a
constant mean dissipation. Here Gt1 ≡ 1 and ωc = 2

p

σ̄0/αn.

6.2 Thin Dissipative Layer

We consider here a configuration where a thin layer with mean dissipation σ̄1

lying in [z0, z1] is embedded into a half plane with constant mean dissipation
σ̄0 (see Figure 3). The layer is thin in the sense that z0 − z1 → 0, but its
dissipation coefficient is high so that σ̄1(z0 − z1) → λ. We will discuss the
domain of validity of this limit in the next section. First, we solve the system
of transport equations (28) from −∞ to z0, so that we get the stationary
solution (38):

Wp(ω, τ, z = z0) =
∂

∂τ

[(

αnω2τ

4 + αnω2τ

)p

1[0,∞)(τ)

]

e−σ̄0τ .

Second, we solve the system across the layer from z0 to z1. The layer is very
thin, so that the Markov process does not jump. As a result, we get

Wp(ω, τ, z = z1) =
∂

∂τ

[(

αnω2τ

4 + αnω2τ

)p

1[0,∞)(τ)

]

e−σ̄0τ−2λp.

Third, we solve the system from z1 to 0 with the initial condition given by
Wp(ω, τ, z = z1). Using the probabilistic interpretation of the solution of the



Imaging of a Dissipative Layer in a Random Medium 15

system transport equations, we obtain that the density Λ(ω, τ) = W1(ω, τ, z =
0) is

Λ(ω, τ) = EXz1=1

[

WX0(ω, τ − 2

∫ 0

z1

Xsds, z1)

]

This expression would be equal to the stationary solution (38) if the mul-
tiplicative factor exp(−2λX0) was absent. We then expand this factor as
1 − (1 − exp(−2λX0)) so that we obtain

Λ(ω, τ) = Λ0(ω, τ) − EXz1=1

[

W̃
(0)
X0

(

ω, τ − 2

∫ 0

z1

Xsds

)

(

1 − e−2λX0
)

]

e−σ̄0τ ,

(40)
where the expectation E1 is taken with respect to the distribution of the jump
Markov process Xz starting from Xz1 = 1, and

W̃ (0)
p (ω, τ) =







δ0(τ) if p = 0,

4pαnω2 (αnω2τ)p−1

(4 + αnω2τ)p+1
1[0,∞)(τ) otherwise .

(41)

Let us have a look at the expectation in the right-hand side of Eq. (40). If X0 =
0, then the second term inside the expectation is zero. If X0 ≥ 1, then Xz ≥ 1
for all z ∈ [z1, 0] because 0 is an absorbing state. This means that only the
paths which never reach zero can contribute to the value of the expectation.

These paths satisfy
∫ 0

z1
Xsds ≥ |z1|. Furthermore, W̃

(0)
p (ω, τ) = 0 for τ <

0. This shows that the expectation is zero for any τ < 2|z1|. Accordingly,
the density Λ is indistinguishable from the density Λ0 corresponding to a
constant mean dissipation for any τ ≤ 2|z1|. When τ crosses this critical
value corresponding to a round trip form the surface to the layer, a density
jump occurs. Indeed a set of paths suddenly contributes to the expectation in
the right-hand side of Eq. (40). This is the set of paths where no jump occurs
(i.e. Xz = 1 for all z ∈ [z1, 0]). The density then jumps from

Λ(ω, τ = 2|z1|−) = Λ0(ω, 2|z1|)

to

Λ(ω, τ = 2|z1|+) = Λ0(ω, 2|z1|)
−W̃

(0)
1 (ω, 0)

(

1 − e−2λ
)

P1 (no jump before 0) e−σ̄0τ

= Λ0(ω, 2|z1|) [1 − ∆Λ] ,

where the relative amplitude of the jump is

∆Λ =
(

1 − e−2λ
)

(

1 +
αnω2

2
|z1|

)2

e−αnω2|z1|. (42)

Summary: in order to detect the depth and the dissipation strength of the
layer from a measured density Λ, one can plot the ratio of the measured density
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Λ over Λ0. The ratio is 1 up to τ = 2|z1|. A density jump occurs at 2|z1|. The
amplitude of the jump is (42) and allows us to recover the dissipation strength
λ.

We have carried out MC simulations of the jump Markov process X to
compute Λ from the expression (40). The results for several sets of parameters
are plotted in Fig. 5 where it can be checked that the jump of the density can
be clearly detected. The computation of each density profile requires N = 106

simulations.
Remark. We can estimate the confidence interval for the MC simulations.

Indeed the quantity to be estimated is roughly speaking the probability of a
rare event p ≃ 10−2 − 10−1. In such a case the relative error of a standard
MC method is about 1/

√
Np which is of the order of a few percents.

(a)
0 5 10 15 20
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0.1

0.15

0.2

0.25
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)
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λ=0.1
λ=1
λ=1000

(b)
0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

τ

Λ
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Λ

0(τ
)

λ=0
λ=0.1
λ=1
λ=1000

Fig. 5. Picture a: Density τ 7→ Λ(ω, τ ). Picture b: Ratio of the densities τ 7→

Λ(ω, τ )/Λ0(ω, τ ). Here we assume αnω2 = 1, z0 = 1.

6.3 Thick Dissipative Layer

We revisit the previous configuration without assuming that the layer is thin.
Accordingly we consider a configuration where a layer with mean dissipation
σ̄1 lying in [z0, z1] is embedded into a half plane with mean dissipation σ̄0.
We proceed as above and establish that

Λ(ω, τ) = EXz0=1

{

WX0

(

ω, τ − 2

∫ 0

z0

Xsds, z0

)

× exp

(

2(σ̄0 − σ̄1)

∫ 0

z0−z1

Xsds

)}

e−σ̄0τ

= Λ0(ω, τ) − EXz0=1

{

W̃
(0)
X0

(

ω, τ − 2

∫ 0

z0

Xsds

)

×
[

1 − exp

(

2(σ̄0 − σ̄1)

∫ 0

z0−z1

Xsds

)]}

e−σ̄0τ . (43)
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If Xz0−z1 = 0, then Xz = 0 for all z ∈ [z0 − z1, 0] and the second term inside
the expectation is zero. If Xz0−z1 ≥ 1, then Xz ≥ 1 for all z ∈ [z0, z0 − z1], so

that 2
∫ 0

z0
Xsds ≥ 2|z1|. The fact that W̃

(0)
p (ω, τ) is zero for τ < 0 then shows

that the first term inside the expectation is zero if τ ≤ 2|z1|. Accordingly
Λ(ω, τ) = Λ0(ω, τ) for τ ≤ 2|z1|.

There is a jump of the derivative of the density at τ = 2|z1|. Indeed, for
τ just above 2|z1| a path contributes to the value of the expectation that
appears in the right-hand side of Eq. (43), namely the path where Xz = 1 for
all z ∈ [z0, z0 − z1] and a jump from state 1 to state 0 occurs at z0 + τ/2.
Accordingly, the derivative goes from

Λ′(ω, τ = 2|z1|−) = Λ′
0(ω, 2|z1|)

= − αnω2

(2 + αnω2|z1|)3
(

αnω2 + σ̄0(2 + αnω2|z1|)
)

e−2σ̄0|z1|

to

Λ′(ω, τ = 2|z1|+) = Λ′
0(ω, 2|z1|) −

1

4
(σ̄1 − σ̄0)αnω2e−αnω2|z1|e−2σ̄0|z1|

= Λ′
0(ω, 2|z1|) [1 + ∆Λ′] ,

where the relative amplitude of the jump is

∆Λ′ =
σ̄1 − σ̄0

4

(2 + αnω2|z1|)3
αnω2 + σ̄0(2 + αnω2|z1|)

e−αnω2|z1|. (44)

There is a second jump in the derivative of Λ at τ = 2|z0|. Indeed the mecha-
nism described just above fails precisely when τ become larger than τ = 2|z0|,
because the jump of the Markov process at z0 + τ/2 > 0 has no influence.

Summary: in order to detect the depth, the thickness, and the dissipation
coefficient of the layer from a measured density Λ, one can plot the ratio of
the measured density Λ over Λ0. The ratio is 1 up to τ = 2|z1|. The position
of the first jump in the derivative of the density is 2|z1|, the position of the
second jump is 2|z0|. The amplitude of the first jump is (44) and allows us to
recover σ̄1. Note that we need to know the background dissipation σ̄0 to get
σ̄1, as we detect the difference σ̄1 − σ̄0.

We have carried out Monte Carlo simulations of the jump Markov process
X to compute Λ from the expression (43). The results for several sets of
parameters are plotted in Fig. 6. Each density profile requires 107 simulations.
It can be checked that the first jump of the derivative density can be clearly
detected. It may be more difficult to detect the second jump if the dissipative
layer is very thick. Note that the case where the thickness of the layer is very
small z1 − z0 = 0.1 is very similar to the approximation of a thin layer with
λ = 0.1 presented in Fig. 5.

The thin layer approximation developed in Section 6.2 can now be dis-
cussed more quantitatively. The interpretation in terms of the jump Markov
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Fig. 6. Picture a: Density τ 7→ Λ(ω, τ ). Picture b: Ratio of the densities τ 7→

Λ(ω, τ )/Λ0(ω, τ ). Here we assume αnω2 = 1, z1 = 1, σ̄0 = 0, σ̄1 = 1, and the
thickness of the layer z1 − z0 goes from 0 (absence of dissipative layer) to 1.

is helpful for this discussion. Considering expression (43), it can be seen that
the approximation holds true if the event “the process jumps between z0 − z1

and 0” is negligible. The brackets [.] in the right-hand side of Eq. (43) then
simplifies into [1−exp(2(σ̄0−σ̄1)(z1−z0)X0)] and we recover precisely Eq. (40).
This event is negligible if αnω2|z1 − z0| ≪ 1 and this condition turns out to
be the criterion for the validity of the thin layer approximation.
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