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Statistical Distribution of the Convergence Time of
Evolutionary Algorithms for Long-Path Problems

Josselin Garnier and Leila Kallel

_ Abstract—The behavior of a (1+1)-ES process on Rudolph’s  In this way, a single-bit-flip hill climber is first led toward the
binary long k paths is investigated extensively in the asymptotic first string of the path, and then through the whole path. Because

framework with respect to string length {. First, the case ofk = 1< ; ) : :
is addressed. Forx > 1/2, we prove that the longk path is a long ?()frlttileegigr]]tgl,el-lbci’tr-?lisplﬁirlllgcﬁritgelf an intractable search problem

path for the (1 + 1)-ES in the sense that the process follows the L ,
entire path with no shortcuts, resulting in an exponential expected ~ Rudolph [15] presents a generalization of Horn’s long path to
convergence time. Forae < 1/2, the expected convergence time a class of fithess functions calléshg & paths The longk path

is also exponential, but some shortcuts occur in the meantime that p(% ) (wherel — 1 is a multiple ofk) is defined by a recursion
speed up the process. Second, in the case of consténthe statis- .41 respect to the lengttof the strings, withP(k, 1) = {0, 1}

tical distribution of convergence time is calculated, and the influ- . .
ence of population size is investigated for differenfz.+ A)-ES. The as the base path. Given the lohgath P(k, 1), P(k, | + k) is

histogram of the first hitting time of the solution shows an anoma- constructed as follows. A subpasly of P(k, [ + k) is created
lous peak close to zero, which corresponds to an exceptional set ofby taking the pathP(k, {), and by prepending zeros to each
e;/ents_thatspeed up the expected convergence time with a factor ofpgint on P(k, ). A subpathS; of P(k, I + k) is created by
ilnd: glrrlzztn?(z?ieg;eEnscergfcIehsI:eesxcept'ontal set Is that dperf?rm'”g taking P(k, 1) in reverse orderand prepending; ones to each
P =P proves to be more advan ageouspoint on the reversed path. A third path consists oftk — 1
Index Terms—Hitting times, long-path problems, statistical points created l_Jy prepending the following substrings of length
analysis. ’ : k to the last point in the pat#(k, [): 0--- 01, 0--- 011,-- -,
001.--11,and 0% -- 11. The resulting long pathP(k, [ + k)
on strings of lengtli + % is then defined by the concatenation
I. INTRODUCTION of Sy, the “bridge path’B, andS;. Horn’s long path is the long
ONG PATHS are unimodal problems with only one patk path fork = 2.
(in Hammingspace) to the optimum. The length of this As an example, consider the construction of the path
path isexponential A random mutation hill climbecansolve P(3, 7). Starting from P(3,1) = {0, 1}, we obtain the
it, but it takes an exponential time in string length to reach treequence’(3, 4):
solution. The intention of this paper is a further study of the
behavior of evolutionary algorithms (EA's) on long-path prob-

than any population-based(u + A)-ES.

0000, 0001, 0011 01114 11115 11106

-~

lems in order to obtain better insight about possible EA dy- So bridge 51
na_lmics within the class of unimodal fitness functions in Hams . \vhich the pathP(3, 7) is constructed:
ming space.

Long-path problems [10] have been introduced to deal 0000000; 00111107 11111109
with the notion of problem difficulty for optimization algo- 0000001 01111108 1111111y
rithms. Unimodality can involve difficulties for GA's. Isolation 00000113 11101114
(needle-in-a-haystagkdeception, and multimodality [7], [6], 00001114 11100114
[4] are no longer the only properties that make a search difficult. 00011115 111000143

Horn’s long path[10] for the single-bit-flip hill climber is an 00011106 111000014
example of such a fitness function. It is a sequence of strings
with the property that two successive strings are at Hamming So bridge Si.

distance 1 from each other. Thth string in the sequence has 4 ong k paths share the following properties.
fitness value ofi. All strings s which are not in the sequence get
a fitness value ofl! — d)/l, whered is the Hamming distance
between the string and the first string of the sequence, and
denotes the string length.

» The Hamming distance between two consecutive points of
the path is 1.

* A mutation ofi¢ < k bits can only lead to a point which
is ¢ positions away from the original point. To jump over
more thank consecutive positions in the path, all of the
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Experiments demonstrate that a GA with complementary 2) Substitute for each 0 (resp., each 1) a substring with

crossover (a one-point crossover between a string and its
complement) exploits a kind of Royal Road structure [13], [14]
present in the long: path [9]. This results in the occurrence
of many shortcuts and a growth rateldffor the time to reach

the optimum of the long: path. The authors of [9] expect that
complementary crossover approximates one-point crossover
if the latter is used in combination with a sufficiently large
population. However, no conclusion can be drawn about the
asymptotic behavior of the GA.

Rudolph [15] give)(I*+1 /k) as an asymptotic upper bound
of the expected time spent by a{11)-ES (evolution strategy)
with 1 /! mutation rate on a long§ path. For a fixed value of,
this bound is a polynomial of the string length. It shows that,
for large values of, the (1 + 1)-ES is much quicker than the
single-bit-flip hill climber in optimizing the path. The difference
between the two algorithms is that the (1 + 1)-ES can do more
than one bit flip at a time. Note that, in the casekdbeing a
function of, as ink = /I, the upper bound changes to an
uninteresting exponential. So the problem of convergence time
with & = %, > 0 remained unsolved.

In this paper, we restrict to the caselgf mutation and the
exact expected time for convergence is calculated for both fixed
and/-dependenk. The first section illustrates the construction
of the longk path, and introduces some notations. Section I
is devoted to the study of expected convergence timé: fer
[*. Section IV considers the case of constanthe expected
convergence time and its fluctuations are calculated. In light of
these results, differerif: + A)-ES are compared. The influence
of the mutation rate choice is also discussed.

II. THE (k, [)-PATH AND SEARCH ALGORITHM
A. Construction of thél, [) Path
This is done recursively with respectitoLet P(1, [) be the

(1, 7) path. A subpattb, is created by prepending 0 to each 4)

string in pathP(1, 1) and subpatt¥; by prepending to each
string in the reverse of patR(1, {). The(1, [ + 1)-path is ob-
tained by concatenating subpaffisandS;. The(k, {) path can
now be built for anyk as follows.

B. Construction of thék, [) Path
We denote byl the ratio

lengthk consisting of O (resp., 1). This yields a sequence
of 2% strings with lengtil — 1. For L = 3,

0---0< (1)(1)
()...()<
11« 10l
0---0
11 (000
]_...]_<
0---0< L1
0---0.

3) Add to each leaf an ultimate branching that consists al-

ternatively of < (f and < }J. This yields the so-called

skeleton of thék, ) path, which consists &+ strings
with lengthi. This is actually a subsequence extracted
from the(k, I) path as built in [15]. Notice that the strings
labeled{2;j + 1, 2j + 2} are at a distance larger than
forallj =0, --,2 — 1. ForL = 3,

0--0< |
0---0<«
1
1l
0---0<
0
1--1<
1---1< 1
0--0< o
0---0<« 0
1
1.1
1
1--1< g
1---1<
0
1e1<
0---0<« 1
0--0< o

To get the whole path from the skeleton, simply add
bridges between successive pairs of strings of the
skeleton. A bridge consists of — 1 strings which
contain either the sequence of substrings- - - 01x,

%0 -+ 011%, %001 --- 11x, and %01 --- 11x or the
inverse one01 --- 11x, %001 --- 11, %0 - -- 011, and

x0 - -- 01x. This completes the construction of tfie 1)
path with(k + 1)2% — k + 1 strings.

-1 Remarks:

L=—. 1
; (1)
Notice thatL should be an integer so that the corresponding
(k, 1) path can exist.
1) Start with the pathP(1, L), which contain2? strings
with length L. As an example, fo£ = 3,

0o 0 000
o< < 1 ool
1< 1 011 2)
0, 010
Lo 0 T 0
PR
0< o 100

1) Although the path takes only a small fraction of the search

space for largd, a process starting at a random point
can get through some strings which are less thdnits
distant from optimum (or from other strings of the path).
This situation is not considered in the following study:
we assume that the process starts on the first string of
the path, and hence focus on studying the likelihood of
k-bit-flip shortcuts.

In the following, only elitist evolution strategies are
studied, but some experiments show that the lack of
elitism of (2, A)-ES can improve the convergence speed
when starting from a random point. A (1, 5)-ES (with
k = 4,1 = 45) takes asshortcutfrom the beginning of the
path toward the global optimum. In fact, once it reaches
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the beginning of the path, the (1, 5)-ES process does not Proof: Ateach timet € N, the probability that a subclass
find at once fitter strings on the path, and falls down mor&” C M/ of mutations occurs iy, - s p¥ . Since the mu-

or less immediately. This situation is repeated a numbgtions are independent and identically distributed, the statistical
of times, which maximizes the chances of hitting thdistribution of the first timel’s.» whenS” occurs is given by
global optimum (at successive visits of the first point of

t
the path). On the other hand, whayi. increases [e.g., v
(1, 30)-ES], the process follows the path. P(Ish>t) = {1~ 2; Pm :
meS
C. The Process(t) ComputingP(Ts» = t) = P(Tsr > t — 1) — P(Tsr > t)
In the following,e; := 0 - -- 0 denotes the first string of the establishes the result. u

pathance; := 1 --- 10 --- 0 denotes the last oné stands for ~ Lemma I1.2:1f I >> 1, then the means of the waiting
the first hitting time of string: by the proces (t). The search times Ts; and T are, respectivelyl/p5'™ =~ el* and
follows a process¥ (¢) starting fromX (0) = e;, and evolves 1/ 3,,cs P 22 1¥/L. N
as a (1+ 1)-ES: at each generatigre N, build some mutated Proof: At each timet € N, the probability that the
string X’(¢) from X (¢) by independently inverting each bit ofshortcutS; occurs is

: NN . :
X (¢) with probability—*. !f X'/(t) I|es.farther in the path than N Ry oy,
X(t), thenX (¢t + 1) = X'(¢); otherwise X (t + 1) = X (¢). Ps,
The last stringz; of the path is therefore the unique absorblngork < 1, we havept = 1=F¢=1 since(1 — 1/n)" — ¢!

state of the Markov chaiik. asn — oo, Which proves the first statement of the lemma. The
In order to characterize the distribution of the mutations use& ’ P )

in the processX (¢), we first introduce some new notation: probability that some shortcut &F occurs is

* Ml{ denotes the set of all possible mutations ({invert, Pél,) — Z pi.

no-inverty) =
» Ml{; denotes the set of mutations that invert exagthjts ) )

(we haveMif = Ul o MU;) If we denote bys} the mutations that invert at least theucces-
« J is the random variable representing the number of bifi/e bits whose labels lie within the intenfgf —1)k-+1, jk+1],

flipped per bitstring with the /I mutation: then we clearly have

. L
N\ l7—q — l—] —k
pj =P/ =5) =G~ 1-171)"". ) Py < PQ =Lk, @)

j=1
To select a mutation from\ 1, first choosej with probability .
p;»]; then chooseg: uniformly in Mif;. The sequence of mu- Further, we introduce the sét of all mutations that invert at
tations of the proces¥ (¢) is independent and identically dis-least the bits at positiorj§j — 1)k + 1, jk + 1], and that do not

tributed with distributiof invert the successivk bits at positiong(n — 1)k + 1, nk + 1]
. for n # j. We have the recurrence
0, .
MU J peMU;
= s . 3 —k —k
Pu ;pf M| 3) PY =17 (1= PLTY).
- 1

o _ SincePS,_k) — 0for{ > 1, we have that
D. Waiting Times of Some Particular Events
. . l

Let S be the family that consists df = (I — 1)/k shortcuts Jlim lkpéq) =1
denoted byS; for j =1, ---, L. The shortcus; is the operator _
that inverts the: bits whose labels lie within the segmé(t — Back to the the familys’, we have
Dk + 1, jk + 1]. k1) < 1o e k7 —1 ) kp®

Similarly, let S’ be the family which consists of all of the liminf I"L™"Fg/ > liminf IFL7°F 5, = lim 7Py = 1.

l—oo 3 o l—oo

shortcuts which invert at least thesuccessive bits whose labels o _ o _
lie within one of the interval§(j — 1)k + 1, jk + 1], j = Combining the latter inequality with (4) yields
1, .-+, L. Yet, itis clear thatS ¢ &’, and&’ actually contains

kr—1p()
many more shortcuts thaf. I"L™"Pg/ — 1, forl>>1

Lemma Il.1: 1) For any fixed;, the waiting timeT’s; for the

T . which completes the proof of the lemma. [ |
shortcutS; obeys a geometric distribution with meayp5*/: b P

Lemma I1.3: The waiting times between two successive
jumps of the procesX (¢) are independent of each other, and
have means bounded byelow and byl above ifl > 1.

Proof: The independence is ensured by the mutation
process, which is completely blind. Furthermore, whatever the
state of X (¢) (except the final poing, of course), there is a
2], is equal to 1 ifz is true and 0 otherwise. string just after it in the long path which differs only fram(z)

P(Ts, =t) = p&™“ (1 - p'/SVlW)t_l ,  foranyt > 1.

J

2) The waiting timeTs: for some shortcut of the familg’
obeys a geometric distribution with meap>> o, pi¥.
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in one bit, so that the probability;...,, that a jump occurs is
always bounded below by

Pump = 171 (1 =171 T el
Furthermore, foy = 1, ---, k—1, there is at most one string in
the long path which is aftek (¢), and which differs fromX (¢)

in exactlyj bits. As a consequence, the next jump¥aft) must

be either a jump to one of these strings or a shortcut of the family
&’. As a consequence, the probability,.,;, that a jump occurs

is always bounded above by

19

* A sequence of independent mutatigps):>1 chosen in

MU\ &', each with probability
p !
M(/t Mgs/.
megS’
A process X,(t) without shortcuts starting from
Xus(0) = e, the first point of the path, defined as

follows: mutationy;+1 introduced here above is applied
to string X,s(¢), and the mutated string is accepted if

it lies farther thanX,,.(¢) in the (k, ) path; otherwise,

k—1 H
. i Xus(t+ 1) = X,5(t). In the following, 7T, stands for
- —1\i=d 0] _ T .
Phump S Y 177 (1-171) 7 4+ Py, the first hitting time of the last string; by the process
y=t Xos-
~ NI R + A sequence of random variabl€E; ) ;> such thafly = 0
. %>2(6_1 +27h) it < and7; = T;_, + o;, where(o;) are independent geo-

metric variables with parametef := 3" o, p):
The bounds op;y,,p, thenimply the bounds on the mean waiting
timetz?jumpr Sincep(izjjump > t) = (1_pjump)t andlE[CZTjump] =
ZZI P(Czjjump 2 t) = 1/pjump- u

The above proof actually shows thatif > 3, the mean
waiting time between two jumps df (¢) is el + O(1).

Vn e N, Plo; =n)=p7(1 —po)"fl.

Notice thato; obeys the same distribution &% .
* A sequence of independent mutatidpg),>: chosen in
&', each with probability

I1l. ASYMPTOTIC STUDY FOR LARGE! AND k& = [®

MU
P,
This subsection considers the casekof= [I®] and large 72 pMU lues-
values ofl. Recall that the case é&f = O(I) is not interesting = m

because it yields a path length©@f!) and an expected number

. 2 —_—
of trials of no more thar(I*). We then construct a proce&¢) by settingj = 1, then iterating

the following.

1) WhileT;_; <t < 1T;—1,apply mutations,; (fromthe

The main result of the section is given in Proposition 111.1. above sequence) to stricdg(t), and accept the mutated if
It states that the expected convergence time is exponential for it lies farther than¥ (¢) in the path; otherwiseY (t+1) =
k= [19. X(t).

Proposition Ill.1: Assume that = [I¢] for « € (0, 1).3 2) If t = T; — 1, apply mutatiory/,; to string X (¢), and

1) If « < 1/2, then accept the mutated if it lies farther thaf(t) in the path;

otherwise X (t + 1) = X (¢).

3) Indentj — j + 1 and go to step 1).

Let us prove that the law of the proceX¥$¢) is the same as
that of X (¢). Since the selection rule is the same for both pro-
cesses [following a (1 + 1)-ES scheme], we only need to prove
that the mutations of the proces§(t) obey the same distri-
bution as the mutations of (). First, we prove the following
lemma.

The estimates which are used in the proof are basicaIIyLemmfﬂ”'z: If (T3)i>0 is the sequence of random variables
Lemmas I1.1-11.3. We will also show that shortcuts speed (> described here above and

the convergence only in the case< 1/2. If o > 1/2, the path
is entirely visited before any shortcut is likely to happen.

A. Main Results

1
lim ——— ln E[T] = 1.
1 1o In(l) n E[T] ®)

2) If « > 1/2, then

lim

fin gy E[T] = 1. (6)

G(n) =P(n € {T}};20) = > P(T; = n),
i>0

B. Proof of Proposition I11.1 then, for alln € N*, we haveG(n) = p°.

We now give an equivalent construction of the proc&gs). Proof. Let us denote by the generating function af;
Recall that, for the procesk(t) (defined in Section 1I-C), the and by® the generating function of the sequer¢&(n),n =
mutations are chosen iif according to the distributioW” 0,1,---}
defined by (3). We introduce the following.

F(z)= Z Z2"P(o1 = n),

n>0

O(z) = Z 2"G(n).

3[z] is the integer part of a real number n>0
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Applying [8, Theorem 2, ch. 11I-4] establishes thits charac- of the skeleton (see Section 1I-B), that is, at leagt := 2%

terized by the equation strings. Furthermore, the waiting times between two jumps are
statistically independent, and have means bounded beldw by
O(z) =14 F(2)0(2). ) Hence,
One can then check that the choice E[T,.] > 2L, (9)

G(n) =p", forn > 1andG(0) = 1 Let us denote by; the waiting times for the successive jumps

involves®(z) = [1— (1—p”)2]/(1 — ») which fulfills (7) since ©f the processx(¢). We have

F(z) =p2/[1 - (1 — p?)z], which characterizes the function N, 2
G(n). u <E 7 E[-21+ > E[RIE[
Let (7,,) be the sequence of mutations®f We now prove Lol zl: ‘ Z 2 ; (el

that the distribution off,, ) is the same as that ¢f.,, ):
Since the variables; are exponential with mean bounded from

P, = 1) =P(n € {T}}j>1, i = 1) above byel,
+Pn ¢ {5} j>1, o, = 1)

E[T2,] < 2(cl)®NZ. (10)
—P(n € {T},20P 0 = ) o] < 2070
P(n ¢ {T;};>1)P(u1 = 1) By applying a standard large deviations principle for the sum
Mu of independent random variables, we get the following proposi-
” HES tion.
Z Pt Proposition 111.3: For anyé > 0, there exists some; > 0
mes’ such that
MZ/t
Z v s P (Tws < (1 = 6)INy) < exp(—csINY) (12)
meSs’
Using the fact thap” = 37,5 py,', we obtain the desired P(Tuws > (1+ 8)elNy) < exp(—cselNy).  (12)
result: - -
MZ/t Proof: Apply [16, Theorem 3-8]. =
P, =p) = : If we consider the convergence tirfieof the processY (),

The mutation distributions ok (t) and X (¢) are identical; the expectation of" is written as

hence, the processes(t) and X (¢) obey the same law. In the E[T] =E s Es/[T/Tws < Ts/|P(G1)
following, we study the convergence tirfieof the process( (¢).
Within this frameworkZ’ss = 73, which shows thaf’,, and +Eusbs [T/Ts < Ts]P(G2) (13)

T are independent. We can split all of the possible ways to gghereE,, is the expectation with respect to the distribution of

frome; to ey into two complementary groups: the sequencéu,,),>1, andEs is the expectation with respect
1) GliTys < Ts to the distribution of the sequenge;, T;),>1. In the following,
2) G2:Tys > Ts. the notatiorE stands fok .. E s-. We will now estimate the four
In the following, to improve the readability of the text, we ofteterms on the right-hand side of this equality.
consider the asymptotic exponential laws of the waiting times2) Estimate of P(Gy) = 1 — P(Ga): P(G1) =
studied above, rather than the exact geometrical laws. IndeBd/’.s < Ts/). Lemmas Il.1 and 1.2 establish that
if 70 is a random variable with geometric distribution and med®(Zss > t) = exp(—LI~*t) for any t. SinceT,,, and
to > 1, then for any positive real, we have Tsr are independent, we then have
P(ro > 7to) = (1 — 1/tg)™™ ~ exp(—71) P(GL) = P(Ts > Tuy) = E {exp—LﬁUs} .19

since(1l — z/n)* — exp(—z) asn — oo. Note, however,
that the proof and conclusions would follow in the same manner « Casek = [[%], « < 1/2: We decompose the expectation
using the exact geometrical law. with respect to the everft,; > IN7/2:

1) Study of the Procesk,,;: On the one hand, the process

Xl,,g visits at most every string of the whole path (that is, at mogt [exp _ikwﬂ
= (k+1)2F — k+1 strings, wherd. = (I—1)/k), and the l
Waltlng times between two jumps have means bounded above _ E Tys < = ZNIS P(T,, < EZNIS
by el. Thus, l 2
L LT > = s > 1 s
E[Tws] < elNy ~ elk2”. (8) + E |exp— I Tyws > lNl Pl Tys > 3 IN;
On the other hand, since no shortcut from the fansihhap- s IN7L
pens forX s, the process must visit at least one over two strings <P <Tw8 < 9 Ny ) + eXp(‘ ok
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Equation (11) then implies that the first term on th&ubstituting into (18) establishes that
right-hand side is smaller than the second one, so that

E[T/Ts > Twa] > E[Two] (1— =) . (20)
IN?L !
P(Gy) <2expl| — o7k
A Combining (17) and (20), we obtain
-1
l =00 lh_glo o n(2) In E[T/Ts > T,] = 1. (21)
* Casek = [I*], « > 1/2: Applying Jensen’s inequality to  4) Expectation ofl” under G2: In the worst case, the fol-
(14), lowing sequence of events (happening dften ensures that the
IEIT process reachesy, whatever the intermediate event: shortcut
P(Gy) > exp<— [ '“’S]> . S, then&,, etc., untilSy,. Hence,
L
From (8) we get E[1/Ts < Tws) < E[Ts/Tsr < Tusl + > E[T5,] . (22)
j=1

Note that the expectations in the second term on the right-hand
side of the above inequality are no longer conditional. Indeed,
The fact thatLel k2% /IF ~ 612211“‘/11“ < 1thenimplies afterthe firstshortcut happens (firstterm), the subsequent events
can be described as independent exponential variables, and in
el298 particular, independent &fs:.
P(G2) <1 —exp <_T> Lemma lIl.4: Let 7, be a random variable with exponential
distribution and mearty. Then

Lelk2L>

P(Gy) > exp<— "

22l
R (16) Elro/70 < 7]
) T l—e(r+1)
3) Expectation of under@1: Under@1,Ts > T, thus, =tof | ), wheref(r)=——71———.
to 1—e7
T =T, and
Proof: Write
E[T/Ts: > Tws] =E[Ts/Tsr > Tos] T
<E[Ts] < N (17) | eas
_ [E[TO[I‘FO<‘F] _ Jo to
. Elro/10 < 7] = =
* We now restrict ourselves to the cdse- [I¢], « > 1/2: P(ro <7) / = e—s/to ds
o to
ElTwslry, >, .
E[T/Ts > Tys] = sy, .| and compute the integrals. ]

P(Tsf > TwS)

> B [TusPs (T > To)l. Combining the fact thaff is uniformly bounded by 1 and

Lemma 1.2, (22) now reads

SinceT’s: obeys an exponential distribution, we h&e (Ts > E[T/Ts < T,.] < E[Te] + eLl* < e(1/L + L)I* 23
Tys) = exp(—Tws/E[Ts]), so that T/Ts w] S B[]+ oLl < o1/ @3
In the best case, we need only one shortcut of the fa&filo

E[T/TS/ > Tws] 2 E |:Tws exp <— Tws >:| . (18) reaCth:
E[Ts]
ET/Ts < Tys| 2 BlTs [Ts < Tl 24
Further, using the fact that— ¢=# < p A 1, and the bounds on T/Ts ] [T /T ] (24)
E[Z.s] andE[T2,] of (8) and (10), we have First, applying Lemma lI1.4 to the right term of the latter in-
equality, and then using the fact that) > (¢/4) A(1/2) (with
E {Tws <1 ~exp <_ Los ))} t = Ty /E[Ts]), we get
ETs] T
< PE [Twsbr,, <peiry1] + E [Twsln,. > e 17.1] E[Ts /Ts < Tws] > E[Ts]E [ f <[E[;S ]ﬂ
< PE[Tus] +E [T2,]"* P(Ts > pE[Ts])!/? e | Lo 1
> JE | =22 A=
< E[Tus)(p + 2P(Lis > pE[Ts])?). (19) > ElTs] [4[E[T5f1 4 2}
a T.: E[Ts
By (12) and the fact thatV;, < E[T,,,]/l ~ 172", we have =E { 1 A [25 ]} )

P(T,s > pE[Ts/]/l) — 0 at an exponential rate ds— oc.
Hence, if we choosp = 1/1in (19), then we get that » We now restrict ourselves to the cdse- [[*], @ < 1/2:

Tos 1 T, E[Ts] T
I — — < -E[T,.]. = —
E |: ws <1 exp< E[T5/]>>:| = llE[ ws] E |: 4 A 9 :| E |: 4 [ITws<2E[Ts/1:|
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+ [E[TS']P(TLUS > 2E[T%/]) 3) Notg a_Iso that the cri'FicaI_vaIuec = 1/2 holds true in
2 the limit [ — oo, but is slightly different for large, but
> [1s] (1= P(Tys < 2E[Ts1])). finite . Indeed, comparing the different expressions, we
2 get that the transition between the two regimes occurs
Sincea < 1/2, we haveE[Ts/] < N7; then, by (11), wheni®e In(l) = 1'% In(2), i.e., for
I . 1 Inln/—Inln2
P(Tws < ZE[TS/]) S P <Tws < 5 Nf) S e*Cl/ZU\‘l i Qe = 5 — —2 Il
Hence, in the asymptotic framewotk— o), we have which converges to the value 1/2 at raieln [/lnl.
1 .
E[T/Ts < Tus] > E[Ts] <1 3 _) ' (25) IV. ASYMPTOTIC BEHAVIOR FORLARGE [ AND FIXED k
l This section is devoted to the case of a fixed valué: af
Combining (23) and (25), i = [1%], then fora < 1/2, the asymptotic framework >> 1. The main result is stated in
Section IV-A, and claims that the expected first hitting time is
lim 1 In E[I/Ts < Tws] = 1. (26) el**+1 /k In(l/k). This re;ult is not an estimate, but the domi-
I=o0 1 In(l) nant term of the expansion &7’ with respect td. We then

give, with the same order of precision, the complete probability
density of7". It shows that, although the normalized variance of
T goes to 0 ag — oo, the decay rate is so slow that the vari-

5) Global Expectation of: If « < 1/2, then we substitute
(15), (17), and (26) into (13):

E[7] = EwsEs [T/ T, < Ts'] P(G) ance actually remains of order 1 for a large band of values of
~ ~—— o~ [. We also exhibit a class of exceptional realizations of proba-
Selrme2t ot <2exp- =222 bility £/~* where the process hits the final string much quicker
+ EwsEs [T/Tsr < Tws] P(Go). _thar_1 the expected_ value[T’]. After studying this set of_ rgal-
~ ~— izations, we describe how we can take advantage of it in Sec-

~UES ~1

tion IV-E. The influence of mutation probability is investigated
Here,A; ~ B; meandn 4,/In B; — 1 asl —. The first term in Section IV-F. Finally, Section IV-G compares different pop-
on the right-hand side goes to 0 as- oo, which proves the ulation-based evolution strategies behavior.
first point of the proposition.

If « > 1/2, then we substitute (16), (21), and (23) into (13)A. Main Results

Let us consider the first hitting tim& of the process\ (¢)

E[T] = EusEs [TLT“’S <Ts] ;P(G_/l) (defined in Section II-C).

A ~1 Proposition 1V.1: The expectation of the first hitting tinig
+EuwsEs [T/Ts < Tyws] P(G2) . for largel is
~ ~ ——
Lell—api® ezt ype elk+1
E[T] =~ ————~ 27)
The first term on the right-hand side is equivalengto *: (=eo ki In(l/k)
. I E[T] which means thaE[T] x (el**!/k In(1/k))~! converges to 1
limin o n(2) = 1. asl goes to infinity.
Proof: See Section IV-B. [ |
More exactly, the first term is bounded bé;z—agl‘*" [by (17)], The following proposition gives more detail about the statis-
while the second term is bounded W3—(¥2ll_a: tical distribution of the first hlttlng timd’".

Proposition 1V.2: 1) The normalized variance @fgoes to 0

In E[T 1 2—a 2713—a .
limsupni[] <1+ limsup n(el" + 177 =1 asl — oo
I—oo 1172 In(2) I—o0 1= 1n(2)
E[T?] — E[T]?
Combining these results proves the second point of the propo- V(T) = TOE[M P 0.
sition.
Remarks: 2) Asl — oo, the statistical distribution df’ can be repre-

1) Note that, forx > 1/2, the waiting time for one shortcut S€nted at the first order a#*T, whereT is a random variable

occurrence [(23) under G2] is much longer than the upp@fth density:
bound of the expected convergence time when following

the entire path. This is not enough, however, to describ@T(T) = Z Z / /
the effective behavior of the process, as indicated below. m=1 ng,-,nm=l 0 0
2) A direct consequence of (15) and (16) is that shortcuts ";L:_'fj;;;;}"
speed up the convergence in the case.of 1/2 only. m B
Otherwise, forae > 1/2, the process will reach; by % H e — €N g = AL - AT,

following the whole path before any shortcut occurs. i=1
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* Applying S, to stringn®j, with 5 < N;/4, yields the
stringn®N;/2 — j + 1.
Furthermore, since the waiting timé$;, are independent and

Let us discussvhenthe process enterst§ (the complementary
of Ml)
« If no shortcut ofS’ occurs, then it will take an exponen-
r tially long time.
03 b « If neitherS; norS, occurs, then the process must still visit
10 10 10 an exponentially large number of strings, which takes an
L exponentially long time.
e If S occurs, but notS;, then we may distinguish two

5 identically distributed, we have for any fixed,

: 1
: P(Tsjo <TSI’...’TSjO*l’TSjOJrU""TSL):E.
=

<

-

Fig. 1. Normalized variance of the variabilewhich, at the first order only,

depends on the ratib = (I — 1)/k. situations.
1) If one of theS,;, j > 3, occurs beforeS,, then

andL = (I —1)/k. the process must still visit an exponentially large

Proof: See Section IV-B. ] number of strings, which takes an exponentially

Inthe above expression of density( ), the integern stands long time.

for the number of shortcuts which are necessary to reach the 2) The only situation that could produce a nonexpo-
final string,7;,j = 1, - - -, m are the times between two short- nentially large time is tha$; is the first shortcut of
cuts, anch;, j = 1, - - -, m are the ranges of the corresponding the family S’ to occur. Then the process jumps at
shortcuts, as explained in Section IV-B. the end part of\;, and will soon entes 1.

By integratingrpf(f) andﬁpf(f) with respect ta-, we can This latter event, which we denote By therefore provides
compute the normalized variance’5f It then appears that thea probability1/L to enterM, (this is the probability thas,
relative fluctuations with respect to the mean stay of order 1 foecurs before the oth&;). We will see that the contribution of
a large band of values éf although it decays to 0, as shown b)ﬁ is negligible because its probability is too small to be taken
Fig. 1, where the normalized variance is plotted. into account.

The probability densities ¢f for typical and relevant values  The only probable way to entgvfs is indeed tha$; occurs.
of the parameterg and! are plotted in Fig. 2. The theoret-The accesstime t1¢, hence, obeys an exponential distribution
ical histograms of” present an anomalous peak close to zerwith meancl* (Lemmas I1.1 and 11.2). It will be denoted in the
This corresponds to outliers which are not at all artifacts of tffellowing by el
theory. This leftmost peak in the histogram Bfcorresponds
to the event(};: shortcutS; is the first to occur (i.e., before P(r1 > 7) = exp(—7).

Sz, - -+, St). The peak disappears when the first térm= 1)

in the expression of(t) is omitted. The everf2; results in a
smaller convergence time than average. This exceptional se
realizations is studied carefully in Section IV-E.

Let us now study the poinivherethe process entersfs.
gr?m the above discussion, this point depends on the shortcuts
of . .
5. J = 2, which may occur beforé; .
If S» occurs beforesy, then the process enteid,: thus, the
B. Proofs of Propositions IV.1 and IV.2 process has probability 1/2 to entet, in this way. That is why

, i the contribution of the everst can be neglected.
The(k, 1) path can be decomposed in the following manner: If 5, does not occur beforg, , butSs does, then the process

_ . entersMs.

My ={0--- 004} U {brldges}, More generally, ifS;, ¢ < 7 — 1, do not occur before;,
My ={1---11-- Tk --x} U {bridges} but S; does, then the process entev$;. Let us denote this
Mz ={1---10+--01--- 1T x---x} U {bridges} particularj by N;. Since the waiting times for the shortcufs

. obey independent exponential distributions with me&n we
: : have
Mp_1={1---10---0---0---01--- 1%} U {bridges}
Mp={1---10---0---0---00---0x}. PNy =j/m=71)=P(r}, ---, Tj{,l > T,T]/' <7/m=r7)
i i =(1—¢T)e U,
Note thatM; contains about one half of all of the strings of the
path, and more generallj; contains about a proportidT’ e can then iterate the above arguments. We find that we need
of all of the strings of the path. The long path also presents som&]o it A times, wheré\ is the first time thad 7" | N, reaches
remarkable symmetries: L, which means that the process entéfs..
» Applying &; to stringn?j, with j < N;/2, yields the As a consequence, still denotidg = (I — 1)/k, we can
stringn®N; — 5 + 1. describe the first hitting timé& as follows.
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Fig. 2. Theoretical histograms of the random varidblier (a) k = 2 andl = 101, (b)k = 3 andl = 100, (c)k = 4 and! = 101, and (d)k = 2 and! = 1001.

For large [, the first hitting timel” obeys the distribution of The closed-form expression of the probability densityZof
given in Proposition 1V.2 can then be deduced directly from the
T = I*T (28) definition of T
Roughly speaking, from (28), we expect thaf7] =
whereT is defined in the following way. Consider a sequencd“E[Z], from (31) thatE[T] ~ E[M]E[r;] = E[M[], and
of independent and identically distributed real-valuefom (30) thatE[M;] ~ L/E[N,]. However, the distribu-

random variablest;, ; = 1,2, --- with exponential tions of My, andr; are joint sinceM;, depends or(};);,

density p(r) = l,s0e~". Consider also a sequenceWhose distribution depends dm;);. Therefore, the assertion

of independent integer-valued random variabley;, “E[1]~E[ML]E[n]"is notso obvious, and actually itis false

j = 1,2, ---, whose distributions depend om;. More insome sense. Furthermore, the statistical distributial,ofs

exactly P(N; = n/7; = 7) = p-(n), where POV, = ) = /oo (o) dr = 1 @2
j=n)= ; p(7)p- (N T—n(n+1).

pr(n) = e_("_l)T(l —e "), n=12,---. (29 i . . o o
A noticeable feature which will appear crucial in the following is

thatE[N;] = +oo. It will prevent us from applying the standard
theorems of the probability theory (strong law of large numbers
and central limit theorem), and it will give rise to anomalous be-
haviors forA{, and the other relevant quantities. The asymptotic
behaviors of the variable®/;, and7 are given by the following
propositions.

Proposition 1V.3: The sequence of normalized random vari-
ables(ln L/L)M converges in mean, ih? and in probability
My asL — oo to 1, which means that, for arfy> 0,

T = 31 Lo
Jz::l T (31) lnLL E[M) Loy

If we denote by, the first exit time

Mp=inf{m>1,> N;>L (30)

=1

then the random variabl& is defined by
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In L 2 L—oo ¢ *170
<T> E[M}7] =1 :I(L—l)—i—F*g::OF (L-1)
hl L L—oo A
P < I My, — 1‘ 2 5) — 0. whereF*°(L) = I(L) = I >¢. Denoting byH; ()) the Laplace

» transform of the serieB[M_],
Proposition 1V.4: For anyg = 1, 2, we have

H () = f: E[Mp]e M,

E[T9]

E [M]] Lo (33) L=0
Combining these propositions yields the statement of Propodie then get
tion IV.1 (¢ = 1) and the first point of Proposition IV.gy = 2). R Y o
In the following, we will first study the statistical distribution of Hi(\) = -t e NEO)HL(N)
the variableM[, and prove Proposition IV.3. The study of the
distribution ofT" then proves Proposition 1V.4. from which we deduce that

-

C. Proof of Proposition V.3 H(\) = ¢ 1

ey Zor 2[ln |
We aim at studying the statistical distribution of the stopping AL = emAF(A)) =0t A [In Al
time M7, as defined by (30). We will use a Tauberian theoremapplying Lemma IV.5, we then get
Lemma IV.5: If u(z) > 0 is monotone and

L
/ C_Amu(x) dx ~ )\_”L()\_l) L—+oo In
0 A0 Let us now deal with the fluctuations:
whereL is slowly varying [which means thdt(sz)/L(s) — 1 oo
ass — oo for anyz > 0], then E [M2?] = Z m2(P(Sp—1 < L) = P(S,, < L))
1 m=1
w(x) ~ o (). o0
r—+400 F(p) _ Z (2m + l)F*m(L _ 1)

Proof: This is precisely [3, vol. 2, ch. XllI-5, Theorem m=0

4].

Let us denote bys,,, the partial sums Denoting by Hy(L) := 3.,,—mF™"(L) and by Hy(A) its

Laplace transform, we have
Sm=>_Nj. Hy(L —1) = F % Hy(L — 1) + E[M]
j=1

o o ~ which implies
We can then express the statistical distribution of the variable
My, in terms ofS,,,: - - - e

P(M;, =m) =P(S;—1 <L) —P(S,, < L).

: . _ and, consequently,
Furthermore, we introducé’, the repartition function of the

random variableVy : () = e _ 1
Fln)=P(N, <n)=1— — ST AL = e A E))2 Amor X )2
n)= 15n)= —
n+1 Still applying Lemma IV.5, we get
whose Laplace transform is )
. 2 . L7 35)
F(\) :=E[e 1] B [M7] L—4oo (In L)2’ (

=14+ (M —1)In(1—e?).

SinceP(S,, < L) = F*™(L), where the star stands for convo Pility of the variable(n L/L)My, to 1:
lution, we can express the mean of the varialdlg as follows:
°(

oo

E(ML] =" m(P(Sm-1 < L) =P(S,, < L))

= Z P(S,, <L) = 52
m= In L In L
ad E [M? —2E[M 1
_ F*m(L 1) [ L] < 7 ) [ L] 7, +
= — 0

Combining (34) with (35), we obtain the convergence in proba-
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Fig. 3. Mean of the random variable ;, as a function of_ (solid line). The @
dashed line plots the cunée — L/In L. 0.007 ————————————— L=1000 -
T r
0.5 - N 1
1 50.005F -
1 = r ]
L 4
12 3
= - 1 ]
$ 045 4 & : ]
E i 1 20.003F E
3 { & : ]
s [ J
Z r 1 = .
= 04 . F ]
g I 1 0.001 | 3
J L ]

0.35 R | | ] 0 100 200 300
1 1 1 { I | 1 1 1 i1 ) 1 1 1 1 1l M
10' 10° 10’

(b)

Fig. 5. Theoretical histogram of the random variablég for (a) L = 100
Fig. 4. Normalized variancE[M? — E[M]?]*/2/E[M] of the random and (b)L = 1000.
variableM;, as a function ofL.

_ ) ) o manyX;, and becomes independent of the realization of the first
This result is asymptotic, that is, it holds true for larie  particular vy, - - , N,. However, the convergence rate is very
However, precisely analyzing the convergencghf, itappears gjgw (Iogarlthm|c) and all the slower gsbecomes large.
that the convergence rate is very slow (logarithmic). If we deal  proof: For simplicity, we prove the result far = 1. The

with values ofL which are of order 100 or 1000, it is then necesaxtension to an arbitranyis straightforward. By the definition
sary to be very careful when using Proposition IV.3. The megj a, |

E[M] actually behaves as/1u L even for—relatively—small
values ofL, as shown by Figs. 3 and 4. However, the relative 1
fluctuations with respect to the mean stay of order 1 for a Iarg%,( = m/N, = n) Z Nj<l-n< Z N;
band of values of, and vanish only fo >> 10° (Figs. 3 and
4). In Fig. 5 we have plotted the computed histograms of the
variable M, for different values ofl.

Lemma IV.6: Letp € {1, 2}, ¢ € N*, andyy, ---, ¥, be
continuous functions fronN* into Rt satisfying0 < a <
;(-) £ b < oc. Then

= [F"(ML_n =m—1/N, = n)
which establishes that

E[MPy1(N,)] = E [(1 + M, ) ¢1(N1)]

E [Mfz/)l(Nl) i wq(Nq)]

B —1| — 0. whereN; obeys the same distribution &f; , but is independent
E[M7]E[p1(N1)] - E[thg(Ng)] Lo of M. Thus,
This resultis not surprising. Indeed for—relatively—snia|l oo
My andNy, ---, N, are correlated. But it is large, them\/y, E [MZ4p1(Ny)] Z 1/}1 n)E[(1 + Mp_,)"].

gets large too, so that the statistical distribution®f involves

n=1
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We finally apply Lebesgue’s theorem:

0.9F

1 p b 1 N

. P — - +
i (M) Bl = 3 vt g

= E[¢1(N1)] m g o07f

P ;

2 o6f

D. Proof of Proposition 1V.4 ‘E‘ 05k

By Proposition V.2, we can compuleT’] by integrating the
densityp=(t) multiplied byt. Since

0.4

03, . .o e 0

/ (1l —e ) dr = _r (36) 10" 10° 10° 10°
o n(n+1) /
-~ —nT —T 2” + 1
/0 e (I—e)dr = n2(n +1)2 @37 Fig. 6. Normalized variances of the variablBandM; (L = (I — 1)/k).
we get .
E. A Class of Exceptional Events
ET] — g i I We now go back to a very interesting point, which consists
(1] = Z Z et <LSRa et of the anomalous peak close to 0 in the histogram of the first
m:rln"l’ i mn =1 . hitting time 7". We can describe the corresponding set of real-
o 2n; +1 H 1 izations 6hortcutS; happens first which give rise to a very
— ni(n; +1)? o nj(n; +1) quick convergence of the process.

Proposition IV.7: There exists a set of realizatiofs with

The sum ovei containsn terms. The firstn— 1 terms are equal Probability
by simple permutation of the index. Only the last dne= m)

differs. We can therefore rewrite the long expression as P() =~ kIt (38)
— 2N +1 such that the conditional distribution of the first hitting time
E[T]=E |(My, - 1) =~ : : e - k—17..
Ni(Ni+1) given{2; is an exponential distribution with me&al*~ -~ k:

E 2Ny, +1
Nat, (N, + 1)) P (T > 2el* " kr /) = exp(—7),  forany real.
The second term of the right-hand side is uniformly bounded, (39)

while the first term converges M, —1|E[2NV; +1/N1 (N1 +

1)] by Lemma IV.6. Since the second expectation is equal to 1 Proposition V.7 shav_vf that _the_expectedQCc_)nvergence time
) under$?, is equal tad2el*~+ k&, which is roughlyi“ times shorter
we get the result in the cage= 1. The case = 2 can be dealt

oy inGel*+1 /L . iti
with the same way since the expectatigi’?] can be expressed thanthe gk_)bal expecteq tinel™*" /1 In(i/k)) by Propo_smon .
, IV.1. A noticeable fact is then that the convergence time with
in terms of the processe¥; and M1, as

N = O(l) processes will bé& times shorter than the expected
SN2 + 3N, + 1 _time for a single process with very high probability becau_se it
W} is then highly probable that at least one of fKigorocesses will
(N1 +1) realize the favorable eveftt; : shortcutS; occurs first. We quan-
+2F |:(ML —1) 2N, +1 2Ny, +1 } tify this statement in the following corollary.
Ni(N1+1) Ny (N, +1) Corollary IV.8: Assume that we deal with a set &f pro-
2N +1 2Ny +1 cesses which evolve independently. Thel i large, denoting
Ni(Ny +1) No(N2+1)| ¢ = NE/I, there exists a set of realizatiofts, with probability

E[T? =E [(ML —1)

+E {(M, — 1) (Mg, —2)

. P(Qy) ~ 1—¢° (40)

l—oo

3N, + 3Ny, +1
Nj%l (NJWL + 1)2

The result can be interpreted as follows. The statistical disti¢ch that the conditional expectation of the infimdfrof the
bution of the first hitting timel’ depends on the fluctuations offi'St hitting times of thelV processes is

My, andr;. Both are correlated, but for larde we deal with a
large M, and consequently, with the sum of a large number of
7,. By the strong law of large numbers, the fluctuations of this
sum goes to 0, so that the fluctuationgobnly become depen- wheref(c) = (Ei(c) — v — ln ¢/e® — 1), v is the Euler con-
dent on those of/}, (see Fig. 6). stanty ~ 0.57, and Ei is the exponential integral function [1, p.

L

E[T/Qn] ~ 2e flelP 1k (41)

— 00
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The probability of the complementary set is
P () = (1—P(Mp1 =1))¥ = (1 - L)V =F e

wherec = Nk/I. The global first hitting time is the minimum
of the first hitting times corresponding to each process:

fic)

T= inf T,
‘ N

1=1, -

2 2

where thél; are independent and identically distributed random
variables defined as in (28)—(31). Furthermore, given, the
statistical distribution of” is

T=inf T;
i€l
wherel = {i =1, ---, N such thatM,_, = 1} andT; are in-
dependent and identically distributed random variables defined

. » o as (39). We have
228] (see Fig. 7). More exactly, the conditional distribution of

Fig. 7. Functiore — f(c).

T givenQy is P =j/0n) =PIl =j/|I| = 1)
_ P =)
T ~ —2eF 1k 1n<1_Z> (42) X N
Imee ¢ PEND)

whereZ is a [0, 1]-valued random process with dengity) = i'=1

lco, e™*(1 —e™1)7h For any;’, the probability thatl| is equal toj’ is the proba-

1) Proof of Proposition IV.7:We still represent the statis- bility that j’ of the V processes satisfy/;, ; = 1, and that the
tical distribution of the first hitting timé” as (28)—(31). In this other ones satisf§/y, ; > 1. SinceP(My ; = 1) = L1, this
framework, we define the sét; as the set of the realizationsimplies
which fulfill the conditionM, = 1:

.

P(| =j') = CHL 7 (1 - L7HN-7.

1= 1My b=z 1} For N = ¢L andL >> 1, the binomial distribution becomes

Since the distribution oV, is given by (32), the probability of €duivalent to a Poisson distribution:
this set is simplyP(£2;) = L~L. Given{;, the processY(¢)

j/
obeys the following evolution: beforg”r, it evolves without P(I|=5)=¢* c—”
shortcut, and arrives at the string;; at timeel*7,, by shortcut 7
81, the process jumps at strimg (k +1)2% — k+1—4; finally, and, consequently,
the process goes to the final string. Furthermore, the statistical e
distribution of r; given © is the statistical distribution of; P(I] = j/Qn) = — c for j > 1.
givenra, ---, 71, > 71, where ther; are independent random | 1—ecjt T
variables with exponential distributions and means 1: Thus
P(T1>T/Ql):P(TQ’..-,TL>T1>T) P(th/QN):ZPﬂﬂ:j,EZt ViEI/Q]\r)
P(re, -+, 70 > 11) i>1
L—1 i
oo oo e ¢ o’ .
/T dr e </T drs 6—72) =Y P> )
= ! Jjzl
o0 oo L—1
/0 drye”™ </ dry 6_72> SinceP(Ty > 2el*tk7/Q) = exp(—7), we get, by sum-
n ming,
_ C_LT. 9
b1 _exp(ee™) — 1
The result of the proposition then follows readily. P(T 2 2" kr fQiv) = ec—1

2) Proof of Corollary 1V.8: We adopt the same notations a
(28)—(31). We add a subscript= 1, ---, N to each quantity,
which stands for the labels of thé independent processes. Th
setQy is then defined as

Srhe interested reader can then check that this is exactly the sta-
éistical distribution of the random variable defined by (42).

F. Optimization of the Mutation Probability

Qn = ot M= 1 In the following, we investigate the influence of(for sto-
NZ ety T chasticc/l mutation) on the time to convergence of the (1 +
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1)-ES process on lonig-path problems. This shows that the best In the case of g1 + A)-ES, the string resulting from the

mutation rate i /1. first shortcut immediately colonizes the population. But the ex-
Proposition IV.9: Let us assume that the mutation probabilitpected time for a shortcut and for any improvement gétsnes
is c/l. smaller; hence, the expected first hitting timévizimes smaller

1) For largel, the first hitting timeZ}, obeys the statistical than that of a single process. Hence, the number of evaluations
distribution of e®~1d—*T}, whereZ; is as described in remains the same, and there is no advantage to increasing

Section IV. In particular, its mean is Consider now &y + A)-ES with A = ay, starting at string
¢;. Due to elitism, theu parents are always on the path. If a
d lk—l—l . . 21
E[T3] e (43) shortcut occurs, it takes a time of ordel,_; I/(k«) [so less

thania~* In(p)] for the string resulting from the shortcut to
_ ) dominate the population. It is then very unlikely that another
2) The best choice fof is d = k. shortcut (exponential distribution) happens within this time, and
Proof: The same arguments as for the cdse 1 yield the happens first. An upper bound of this probability is given in the
result. The only difference comes from the fact that the waitirfgllowing. Suppose a shortcut different frafa happens for one
timesTs, for the shortcutsS; obey different distributions. In- of the. parents. The probability that the short&ythappens for
deed, for each instant, the probability that the shorguiccurs  one of the remainingu — 1) parents, within a timéa~* 1n(;)

oo dF Kln(l/k)’

IS (even if it happens after another contaminating shortcut), is
. d\F A\ F o ! | p—1
P = <7> <1_7> i P e 1<) g p (g )
i=1--p—1 [e% v
so that the statistical distribution @f; is given by ~1—exp —71“ a_lkln(“ ).
T

P (Ts, > etd~*1*r) = (1 _ pél?)e( T ~ exp(—7) If £ = 2andu = O(l), this probability is 1 ag goes to infinity;
’ ! hence, the eveni?; happens before the first shortcut colonizes

which proves thafl’s, obeys an exponential distribution withthe population. However, this is not the probability of the event
meanctd—*1*. The remainder of the proof is then exactly thé:, but an upper bound does not necessarily happen first).

same as for the cage= 1. m And, as explained abovg,independent processes are obviously
more advantageous, even in this case.
G. Discussion and Comparison of Different Algorithms If & > 3, then the probability tends to zerolegoes to infinity

f{)erven if » = O(l)]. Hence, allp individuals follow the first

In this subsection, we discuss the asymptotic behavior .
! . . . ._unlucky shortcut, and lose any chance of realizing the eent
largel and fixedk of different evolution strategies. The main . ;
-+ A)-ES only speeds the convergence with a factok af

result is that all population-based evolution strategies are | £s : L L
efficient than a (+ 1)-ES. Moreover, the best strategy to minc S of thg number of ggneranons, and implies no gain in the
- . . . mber of fithess evaluations.
imize the time to convergence is to run several independent
+4 1)-ES processes simultaneously.
This latter result has already been stated in Section IV-E:
Corollary V.8 shows that, withel/k independent processes This paper investigates the behavior of at{1l)-ES process
(¢ > 1) evolving simultaneously, the first hitting time (ofusing thel/! bit-flipping mutation on Rudolph’s long paths
the fastest process) is abaiit! with very high probability in the asymptotic framework:> 1. Both cases of variable and
(1 — 7). Recall that, with one process(t), the first hitting fixed % values are addressed.
time is about/**!/In(l) (Proposition IV.1). Independent First, for k = I, we prove that the expected convergence
processes are therefore very advantageous, and much ntione is exponential. Shortcuts speed up the convergence only
rapid than one process in terms of the number of generatioiise < 1/2. Otherwise (ifae > 1/2), the process reaches the
as well as in terms of the number of fithess evaluations. solution by following the whole path before any shortcut occurs.
Consider, now, a number of processes that communicate toSecond, in the case of a fixed valuggthe expected first hit-
gether by exchanging the best-so-far string, as in the case ding time 7 is equal tocl*** /% In(I/k) (at the first order with
(14 X)-ES. Expected first hitting time is necessarily longer tharespect td). The normalized variance @f goes to 0 a$ — oo
that of N processes evolving independently. This is due to tla a very slow rate. Further, the study of the statistical distribu-
fact that the order of shortcut occurrence determines the conuin of convergence timé shows an anomalous peak close to
gence time (as explained in Section 1V-B). More precisely, theero, corresponding to the evestitortcutS; happens firstThis
only way to get a different order of convergence time is that tlevent happens with probabilitsi !, and yields a convergence
event{2; happens for some parent: the shortSutis then the time that is a factor of* smaller than the expected valGr).
first shortcut to occur. Exchanging the best so-far string forc@herefore, the best strategy for taking advantage of this distri-
the N processes to achieve shortcuts at the same order ambation is to performO({) independent (& 1)-ES processes,
the familiesS;. In fact, the string resulting from the first shortcutso that one of these processes is very likely to realize the ex-
contaminates, more or less quickly, the other processes becaigggtional event. On the other hand, population-based processes
of the selection pressure. limit diversity in shortcut occurrence, drifting all individuals to

V. SUMMARY AND CONCLUSION
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blindly follow the first occurring shortcut. This implies the same
number of evaluations as with a {11)-ES.

Finally, expected convergence time distribution is given for
any mutation rate/l, d > 0. As expected, the smallest conver- [2]
gence time is obtained with/y/! mutation probability. 3]

A number of interesting issues are raised by the results of this
paper on thdong k-path problem. (4]

* Forfixedk, independent parallel (1 + 1)-ES processes per-
form considerably better with no migration than they per- [5]
form with migration of fit individuals between the pro-
cesses. Equivalently, increasing the population size de{s]
creases the convergence speed in the number of evalua-
tions and generations compared to independet{}ES
processes. [8]

« EA dynamics can be very sensitive to rare events related
to the exploration properties of the¢! mutation (for fixed
k, shortcuts yield a very big variance in convergence
time). This phenomenon is confirmed by experimental
work [12], which demonstrates that exceptional propertie
of operators sometimes reflect EA behavior more accu-
rately than average typical properties do. However, EA
dynamics are no longer sensitive to shortcutsifor /7, 1]
resulting in a convergence behavior that is predictable.

« This study provides upper bounds on the complexity ofl12]
simple search procedures Irdimensional spaces, for
largel values, as detailed below.

If we combine the complexity results of this paper with somel13]
previous results, we conclude that the convergence time of mu-
tation-only hill climbers ranges from a linear (one-max) to an
exponential (longk-path) rate in terms of. In the one-max  [14]
case, convergence in the number of fithess evaluations is quicker
with the 1-bit-flip mutation than it is with theé /! mutation [5], [15]
whereas the opposite happens for the Igrgath problem. On
the other hand, random walks directed by both mutations require
the same numbers of fithess evaluations to hit a target point gfe]
the search space [5].

Note, finally, that another important result follows from this
study, as it answers the question: Is there a long path fora (1
1)-ES? Indeed, inthe case= [* anda > 1/2, the evolutionary
process follows the path, and the convergence time is exponen-
tial. As for other algorithms, one can still wonder whether such

(1]

(17]
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To sum up, long paths (and more generaltgntrolled
pathg provide an example of smooth and unimodal Iandscapes
on which the EA convergence time can be very long ar
predictable. An interesting but currently unanswered questi
is: Can real-world problems present such a long-path strt
ture? Note that there exist physical systems (spin glass [.
which evolve very slowly toward an equilibrium state, throug
successive unstable states (the glass of medieval cathed
for example, is now reaching its final equilibrium state, mor
crystalline and fragile, after 400 years of slow decay).
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