
16 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 1, APRIL 2000

Statistical Distribution of the Convergence Time of
Evolutionary Algorithms for Long-Path Problems

Josselin Garnier and Leila Kallel

Abstract—The behavior of a (1+1)-ES process on Rudolph’s
binary long paths is investigated extensively in the asymptotic
framework with respect to string length . First, the case of =
is addressed. For 1 2, we prove that the long path is a long
path for the (1 + 1)-ES in the sense that the process follows the
entire path with no shortcuts, resulting in an exponential expected
convergence time. For 1 2, the expected convergence time
is also exponential, but some shortcuts occur in the meantime that
speed up the process. Second, in the case of constant, the statis-
tical distribution of convergence time is calculated, and the influ-
ence of population size is investigated for different( + )-ES. The
histogram of the first hitting time of the solution shows an anoma-
lous peak close to zero, which corresponds to an exceptional set of
events that speed up the expected convergence time with a factor of
2. A direct consequence of this exceptional set is that performing

independent (1+ 1)-ES processes proves to be more advantageous
than any population-based( + )-ES.

Index Terms—Hitting times, long-path problems, statistical
analysis.

I. INTRODUCTION

L ONG PATHS are unimodal problems with only one path
(in Hammingspace) to the optimum. The length of this

path isexponential.1 A random mutation hill climbercansolve
it, but it takes an exponential time in string length to reach the
solution. The intention of this paper is a further study of the
behavior of evolutionary algorithms (EA’s) on long-path prob-
lems in order to obtain better insight about possible EA dy-
namics within the class of unimodal fitness functions in Ham-
ming space.

Long-path problems [10] have been introduced to deal
with the notion of problem difficulty for optimization algo-
rithms. Unimodality can involve difficulties for GA’s. Isolation
(needle-in-a-haystack), deception, and multimodality [7], [6],
[4] are no longer the only properties that make a search difficult.

Horn’s long path[10] for the single-bit-flip hill climber is an
example of such a fitness function. It is a sequence of strings
with the property that two successive strings are at Hamming
distance 1 from each other. Theth string in the sequence has a
fitness value of . All strings which are not in the sequence get
a fitness value of , where is the Hamming distance
between the string and the first string of the sequence, and
denotes the string length.
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1Unless the growth rate is stated explicitly, any asymptotic behavior beyond
a polynomial growth in string length will be calledexponential.

In this way, a single-bit-flip hill climber is first led toward the
first string of the path, and then through the whole path. Because
of its length, Horn’s long path is an intractable search problem
for the single-bit-flip hill climber.

Rudolph [15] presents a generalization of Horn’s long path to
a class of fitness functions calledlong paths. The long path

(where is a multiple of ) is defined by a recursion
with respect to the lengthof the strings, with
as the base path. Given the longpath , is
constructed as follows. A subpath of is created
by taking the path , and by prepending zeros to each
point on . A subpath of is created by
taking in reverse order,and prepending ones to each
point on the reversed path. A third path consists of
points created by prepending the following substrings of length

to the last point in the path : 0 01, 0 011, ,
001 11, and 01 11. The resulting long path
on strings of length is then defined by the concatenation
of , the “bridge path” , and . Horn’s long path is the long

path for .
As an example, consider the construction of the path

. Starting from , we obtain the
sequence :

from which the path is constructed:

Long paths share the following properties.

• The Hamming distance between two consecutive points of
the path is 1.

• A mutation of bits can only lead to a point which
is positions away from the original point. To jump over
more than consecutive positions in the path, all of the
bits of at least one of the blocks ,
for , must be flipped. Such a jump
will be called ashortcut.

• The length of the long path is given by
. Note that, for a fixed string length,

the path becomes shorter with increasing.
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Experiments demonstrate that a GA with complementary
crossover (a one-point crossover between a string and its
complement) exploits a kind of Royal Road structure [13], [14]
present in the long path [9]. This results in the occurrence
of many shortcuts and a growth rate offor the time to reach
the optimum of the long path. The authors of [9] expect that
complementary crossover approximates one-point crossover
if the latter is used in combination with a sufficiently large
population. However, no conclusion can be drawn about the
asymptotic behavior of the GA.

Rudolph [15] gives as an asymptotic upper bound
of the expected time spent by a (11)-ES (evolution strategy)
with mutation rate on a long path. For a fixed value of,
this bound is a polynomial of the string length. It shows that,
for large values of, the (1 + 1)-ES is much quicker than the
single-bit-flip hill climber in optimizing the path. The difference
between the two algorithms is that the (1 + 1)-ES can do more
than one bit flip at a time. Note that, in the case ofbeing a
function of , as in , the upper bound changes to an
uninteresting exponential. So the problem of convergence time
with , remained unsolved.

In this paper, we restrict to the case of mutation and the
exact expected time for convergence is calculated for both fixed
and -dependent . The first section illustrates the construction
of the long path, and introduces some notations. Section III
is devoted to the study of expected convergence time for

. Section IV considers the case of constant: the expected
convergence time and its fluctuations are calculated. In light of
these results, different -ES are compared. The influence
of the mutation rate choice is also discussed.

II. THE -PATH AND SEARCH ALGORITHM

A. Construction of the Path

This is done recursively with respect to. Let be the
path. A subpath is created by prepending 0 to each

string in path and subpath by prepending to each
string in the reverse of path . The -path is ob-
tained by concatenating subpathsand . The path can
now be built for any as follows.

B. Construction of the Path

We denote by the ratio

(1)

Notice that should be an integer so that the corresponding
path can exist.

1) Start with the path , which contains strings
with length . As an example, for ,

2) Substitute for each 0 (resp., each 1) a substring with
length consisting of 0 (resp., 1). This yields a sequence
of strings with length . For ,

3) Add to each leaf an ultimate branching that consists al-
ternatively of and . This yields the so-called
skeleton of the path, which consists of strings
with length . This is actually a subsequence extracted
from the path as built in [15]. Notice that the strings
labeled are at a distance larger than
for all . For ,

4) To get the whole path from the skeleton, simply add
bridges between successive pairs of strings of the
skeleton. A bridge consists of strings which
contain either the sequence of substrings ,

, , and or the
inverse one , , , and

. This completes the construction of the
path with strings.

Remarks:

1) Although the path takes only a small fraction of the search
space for large, a process starting at a random point
can get through some strings which are less than-bits
distant from optimum (or from other strings of the path).
This situation is not considered in the following study:
we assume that the process starts on the first string of
the path, and hence focus on studying the likelihood of

-bit-flip shortcuts.
2) In the following, only elitist evolution strategies are

studied, but some experiments show that the lack of
elitism of -ES can improve the convergence speed
when starting from a random point. A (1, 5)-ES (with

, ) takes ashortcutfrom the beginning of the
path toward the global optimum. In fact, once it reaches
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the beginning of the path, the (1, 5)-ES process does not
find at once fitter strings on the path, and falls down more
or less immediately. This situation is repeated a number
of times, which maximizes the chances of hitting the
global optimum (at successive visits of the first point of
the path). On the other hand, when increases [e.g.,
(1, 30)-ES], the process follows the path.

C. The Process

In the following, denotes the first string of the
path and denotes the last one.stands for
the first hitting time of string by the process . The search
follows a process starting from , and evolves
as a (1 1)-ES: at each generation , build some mutated
string from by independently inverting each bit of

with probability . If lies farther in the path than
, then ; otherwise, .

The last string of the path is therefore the unique absorbing
state of the Markov chain .

In order to characterize the distribution of the mutations used
in the process , we first introduce some new notation:

• denotes the set of all possible mutations ({invert,
no-invert} )

• denotes the set of mutations that invert exactlybits
(we have )

• is the random variable representing the number of bits
flipped per bitstring with the mutation:

(2)

To select a mutation from , first choose with probability
; then choose uniformly in . The sequence of mu-

tations of the process is independent and identically dis-
tributed with distribution2

(3)

D. Waiting Times of Some Particular Events

Let be the family that consists of shortcuts
denoted by for . The shortcut is the operator
that inverts the bits whose labels lie within the segment

.
Similarly, let be the family which consists of all of the

shortcuts which invert at least thesuccessive bits whose labels
lie within one of the intervals ,

. Yet, it is clear that , and actually contains
many more shortcuts than.

Lemma II.1: 1) For any fixed , the waiting time for the
shortcut obeys a geometric distribution with mean :

for any

2) The waiting time for some shortcut of the family
obeys a geometric distribution with mean .

2 is equal to 1 ifx is true and 0 otherwise.

Proof: At each time , the probability that a subclass
of mutations occurs is . Since the mu-

tations are independent and identically distributed, the statistical
distribution of the first time when occurs is given by

Computing
establishes the result.

Lemma II.2: If , then the means of the waiting
times and are, respectively, and

.
Proof: At each time , the probability that the

shortcut occurs is

For , we have since
as , which proves the first statement of the lemma. The
probability that some shortcut of occurs is

If we denote by the mutations that invert at least thesucces-
sive bits whose labels lie within the interval ,
then we clearly have

(4)

Further, we introduce the set of all mutations that invert at
least the bits at positions , and that do not
invert the successivebits at positions
for . We have the recurrence

Since for , we have that

Back to the the family , we have

Combining the latter inequality with (4) yields

for

which completes the proof of the lemma.
Lemma II.3: The waiting times between two successive

jumps of the process are independent of each other, and
have means bounded bybelow and by above if .

Proof: The independence is ensured by the mutation
process, which is completely blind. Furthermore, whatever the
state of (except the final point , of course), there is a
string just after it in the long path which differs only from
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in one bit, so that the probability that a jump occurs is
always bounded below by

Furthermore, for , there is at most one string in
the long path which is after , and which differs from
in exactly bits. As a consequence, the next jump of must
be either a jump to one of these strings or a shortcut of the family

. As a consequence, the probability that a jump occurs
is always bounded above by

The bounds on then imply the bounds on the mean waiting
time , since and

.
The above proof actually shows that if , the mean

waiting time between two jumps of is .

III. A SYMPTOTICSTUDY FOR LARGE AND

This subsection considers the case of and large
values of . Recall that the case of is not interesting
because it yields a path length of and an expected number
of trials of no more than .

A. Main Results

The main result of the section is given in Proposition III.1.
It states that the expected convergence time is exponential for

.
Proposition III.1: Assume that for .3

1) If , then

(5)

2) If , then

(6)

The estimates which are used in the proof are basically
Lemmas II.1–II.3. We will also show that shortcuts speed up
the convergence only in the case . If , the path
is entirely visited before any shortcut is likely to happen.

B. Proof of Proposition III.1

We now give an equivalent construction of the process .
Recall that, for the process (defined in Section II-C), the
mutations are chosen in according to the distribution
defined by (3). We introduce the following.

3[x] is the integer part of a real numberx.

• A sequence of independent mutations chosen in
, each with probability

• A process without shortcuts starting from
, the first point of the path, defined as

follows: mutation introduced here above is applied
to string , and the mutated string is accepted if
it lies farther than in the path; otherwise,

. In the following, stands for
the first hitting time of the last string by the process

.
• A sequence of random variables such that

and , where are independent geo-
metric variables with parameter :

Notice that obeys the same distribution as .
• A sequence of independent mutations chosen in

, each with probability

We then construct a process by setting , then iterating
the following.

1) While , apply mutation (from the
above sequence) to string , and accept the mutated if
it lies farther than in the path; otherwise,

.
2) If , apply mutation to string , and

accept the mutated if it lies farther than in the path;
otherwise, .

3) Indent and go to step 1).
Let us prove that the law of the process is the same as

that of . Since the selection rule is the same for both pro-
cesses [following a (1 + 1)-ES scheme], we only need to prove
that the mutations of the process obey the same distri-
bution as the mutations of . First, we prove the following
lemma.

Lemma III.2: If is the sequence of random variables
as described here above and

then, for all , we have .
Proof: Let us denote by the generating function of

and by the generating function of the sequence
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Applying [8, Theorem 2, ch. III-4] establishes thatis charac-
terized by the equation

(7)

One can then check that the choice

for and

involves which fulfills (7) since
, which characterizes the function

.
Let be the sequence of mutations of. We now prove

that the distribution of is the same as that of :

Using the fact that , we obtain the desired
result:

The mutation distributions of and are identical;
hence, the processes and obey the same law. In the
following, we study the convergence timeof the process .
Within this framework, , which shows that and

are independent. We can split all of the possible ways to go
from to into two complementary groups:

1) G1:
2) G2: .

In the following, to improve the readability of the text, we often
consider the asymptotic exponential laws of the waiting times
studied above, rather than the exact geometrical laws. Indeed,
if is a random variable with geometric distribution and mean

, then for any positive real, we have

since as . Note, however,
that the proof and conclusions would follow in the same manner
using the exact geometrical law.

1) Study of the Process : On the one hand, the process
visits at most every string of the whole path (that is, at most

strings, where ), and the
waiting times between two jumps have means bounded above
by . Thus,

(8)

On the other hand, since no shortcut from the familyhap-
pens for , the process must visit at least one over two strings

of the skeleton (see Section II-B), that is, at least
strings. Furthermore, the waiting times between two jumps are
statistically independent, and have means bounded below by.
Hence,

(9)

Let us denote by the waiting times for the successive jumps
of the process . We have

Since the variables are exponential with mean bounded from
above by ,

(10)

By applying a standard large deviations principle for the sum
of independent random variables, we get the following proposi-
tion.

Proposition III.3: For any , there exists some
such that

(11)

(12)

Proof: Apply [16, Theorem 3-8].
If we consider the convergence timeof the process ,

the expectation of is written as

(13)

where is the expectation with respect to the distribution of
the sequence , and is the expectation with respect
to the distribution of the sequence . In the following,
the notation stands for . We will now estimate the four
terms on the right-hand side of this equality.

2) Estimate of :
. Lemmas II.1 and II.2 establish that

for any . Since and
are independent, we then have

(14)

• Case , : We decompose the expectation
with respect to the event :
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Equation (11) then implies that the first term on the
right-hand side is smaller than the second one, so that

(15)

• Case : Applying Jensen’s inequality to
(14),

From (8) we get

The fact that then implies

(16)

3) Expectation of under : Under , ; thus,
and

(17)

• We now restrict ourselves to the case , :

Since obeys an exponential distribution, we have
, so that

(18)

Further, using the fact that , and the bounds on
and of (8) and (10), we have

(19)

By (12) and the fact that , we have
at an exponential rate as .

Hence, if we choose in (19), then we get that

Substituting into (18) establishes that

(20)

Combining (17) and (20), we obtain

(21)

4) Expectation of under : In the worst case, the fol-
lowing sequence of events (happening after) ensures that the
process reaches , whatever the intermediate event: shortcut

, then , etc., until . Hence,

(22)

Note that the expectations in the second term on the right-hand
side of the above inequality are no longer conditional. Indeed,
after the first shortcut happens (first term), the subsequent events
can be described as independent exponential variables, and in
particular, independent of .

Lemma III.4: Let be a random variable with exponential
distribution and mean . Then

where

Proof: Write

and compute the integrals.
Combining the fact that is uniformly bounded by 1 and

Lemma II.2, (22) now reads

(23)

In the best case, we need only one shortcut of the familyto
reach :

(24)

First, applying Lemma III.4 to the right term of the latter in-
equality, and then using the fact that (with

), we get

• We now restrict ourselves to the case , :
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Since , we have ; then, by (11),

Hence, in the asymptotic framework , we have

(25)

Combining (23) and (25), if , then for ,

(26)

5) Global Expectation of : If , then we substitute
(15), (17), and (26) into (13):

Here, means as . The first term
on the right-hand side goes to 0 as , which proves the
first point of the proposition.

If , then we substitute (16), (21), and (23) into (13):

The first term on the right-hand side is equivalent to :

More exactly, the first term is bounded by [by (17)],
while the second term is bounded by :

Combining these results proves the second point of the propo-
sition.

Remarks:

1) Note that, for , the waiting time for one shortcut
occurrence [(23) under G2] is much longer than the upper
bound of the expected convergence time when following
the entire path. This is not enough, however, to describe
the effective behavior of the process, as indicated below.

2) A direct consequence of (15) and (16) is that shortcuts
speed up the convergence in the case of only.
Otherwise, for , the process will reach by
following the whole path before any shortcut occurs.

3) Note also that the critical value holds true in
the limit , but is slightly different for large, but
finite . Indeed, comparing the different expressions, we
get that the transition between the two regimes occurs
when , i.e., for

which converges to the value 1/2 at rate .

IV. A SYMPTOTICBEHAVIOR FORLARGE AND FIXED

This section is devoted to the case of a fixed value ofin
the asymptotic framework . The main result is stated in
Section IV-A, and claims that the expected first hitting time is

. This result is not an estimate, but the domi-
nant term of the expansion of with respect to . We then
give, with the same order of precision, the complete probability
density of . It shows that, although the normalized variance of

goes to 0 as , the decay rate is so slow that the vari-
ance actually remains of order 1 for a large band of values of
. We also exhibit a class of exceptional realizations of proba-

bility where the process hits the final string much quicker
than the expected value . After studying this set of real-
izations, we describe how we can take advantage of it in Sec-
tion IV-E. The influence of mutation probability is investigated
in Section IV-F. Finally, Section IV-G compares different pop-
ulation-based evolution strategies behavior.

A. Main Results

Let us consider the first hitting time of the process
(defined in Section II-C).

Proposition IV.1: The expectation of the first hitting time
for large is

(27)

which means that converges to 1
as goes to infinity.

Proof: See Section IV-B.
The following proposition gives more detail about the statis-

tical distribution of the first hitting time .
Proposition IV.2: 1) The normalized variance of goes to 0

as :

2) As , the statistical distribution of can be repre-
sented at the first order as , where is a random variable
with density:
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Fig. 1. Normalized variance of the variableT which, at the first order only,
depends on the ratioL = (l � 1)=k.

and .
Proof: See Section IV-B.

In the above expression of density , the integer stands
for the number of shortcuts which are necessary to reach the
final string, , are the times between two short-
cuts, and , are the ranges of the corresponding
shortcuts, as explained in Section IV-B.

By integrating and with respect to , we can
compute the normalized variance of. It then appears that the
relative fluctuations with respect to the mean stay of order 1 for
a large band of values of, although it decays to 0, as shown by
Fig. 1, where the normalized variance is plotted.

The probability densities of for typical and relevant values
of the parameters and are plotted in Fig. 2. The theoret-
ical histograms of present an anomalous peak close to zero.
This corresponds to outliers which are not at all artifacts of the
theory. This leftmost peak in the histogram ofcorresponds
to the event : shortcut is the first to occur (i.e., before

). The peak disappears when the first term
in the expression of is omitted. The event results in a
smaller convergence time than average. This exceptional set of
realizations is studied carefully in Section IV-E.

B. Proofs of Propositions IV.1 and IV.2

The path can be decomposed in the following manner:

...
...

Note that contains about one half of all of the strings of the
path, and more generally, contains about a proportion
of all of the strings of the path. The long path also presents some
remarkable symmetries:

• Applying to string , with , yields the
string .

• Applying to string , with , yields the
string .

Furthermore, since the waiting times are independent and
identically distributed, we have for any fixed,

Let us discusswhenthe process enters (the complementary
of ).

• If no shortcut of occurs, then it will take an exponen-
tially long time.

• If neither nor occurs, then the process must still visit
an exponentially large number of strings, which takes an
exponentially long time.

• If occurs, but not , then we may distinguish two
situations.

1) If one of the , occurs before , then
the process must still visit an exponentially large
number of strings, which takes an exponentially
long time.

2) The only situation that could produce a nonexpo-
nentially large time is that is the first shortcut of
the family to occur. Then the process jumps at
the end part of , and will soon enter .

This latter event, which we denote by, therefore provides
a probability to enter (this is the probability that
occurs before the other ). We will see that the contribution of

is negligible because its probability is too small to be taken
into account.

The only probable way to enter is indeed that occurs.
The access time to , hence, obeys an exponential distribution
with mean (Lemmas II.1 and II.2). It will be denoted in the
following by :

Let us now study the pointwhere the process enters .
From the above discussion, this point depends on the shortcuts

, which may occur before .
If occurs before , then the process enters : thus, the

process has probability 1/2 to enter in this way. That is why
the contribution of the event can be neglected.

If does not occur before , but does, then the process
enters .

More generally, if , , do not occur before ,
but does, then the process enters . Let us denote this
particular by . Since the waiting times for the shortcuts
obey independent exponential distributions with mean, we
have

We can then iterate the above arguments. We find that we need
to do it times, where is the first time that reaches

, which means that the process enters .
As a consequence, still denoting , we can

describe the first hitting time as follows.
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(a) (b)

(c) (d)

Fig. 2. Theoretical histograms of the random variableT for (a)k = 2 andl = 101, (b)k = 3 andl = 100, (c)k = 4 andl = 101, and (d)k = 2 andl = 1001.

For large , the first hitting time obeys the distribution of

(28)

where is defined in the following way. Consider a sequence
of independent and identically distributed real-valued
random variables , with exponential
density: . Consider also a sequence
of independent integer-valued random variables ,

, whose distributions depend on . More
exactly, , where

(29)

If we denote by the first exit time

(30)

then the random variable is defined by

(31)

The closed-form expression of the probability density of
given in Proposition IV.2 can then be deduced directly from the
definition of .

Roughly speaking, from (28), we expect that
, from (31) that , and

from (30) that . However, the distribu-
tions of and are joint since depends on ,
whose distribution depends on . Therefore, the assertion
“ ” is not so obvious, and actually it is false
in some sense. Furthermore, the statistical distribution ofis

(32)

A noticeable feature which will appear crucial in the following is
that . It will prevent us from applying the standard
theorems of the probability theory (strong law of large numbers
and central limit theorem), and it will give rise to anomalous be-
haviors for and the other relevant quantities. The asymptotic
behaviors of the variables and are given by the following
propositions.

Proposition IV.3: The sequence of normalized random vari-
ables converges in mean, in and in probability
as to 1, which means that, for any ,
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Proposition IV.4: For any , we have

(33)

Combining these propositions yields the statement of Proposi-
tion IV.1 and the first point of Proposition IV.2 .
In the following, we will first study the statistical distribution of
the variable and prove Proposition IV.3. The study of the
distribution of then proves Proposition IV.4.

C. Proof of Proposition IV.3

We aim at studying the statistical distribution of the stopping
time as defined by (30). We will use a Tauberian theorem.

Lemma IV.5: If is monotone and

where is slowly varying [which means that
as for any ], then

Proof: This is precisely [3, vol. 2, ch. XIII-5, Theorem
4].

Let us denote by the partial sums

We can then express the statistical distribution of the variable
in terms of :

Furthermore, we introduce , the repartition function of the
random variable :

whose Laplace transform is

Since , where the star stands for convo-
lution, we can express the mean of the variable as follows:

where . Denoting by the Laplace
transform of the series ,

we then get

from which we deduce that

Applying Lemma IV.5, we then get

(34)

Let us now deal with the fluctuations:

Denoting by and by its
Laplace transform, we have

which implies

and, consequently,

Still applying Lemma IV.5, we get

(35)

Combining (34) with (35), we obtain the convergence in proba-
bility of the variable to 1:
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Fig. 3. Mean of the random variableM as a function ofL (solid line). The
dashed line plots the curveL 7! L=lnL.

Fig. 4. Normalized variance [M � [M ] ] = [M ] of the random
variableM as a function ofL.

This result is asymptotic, that is, it holds true for large.
However, precisely analyzing the convergence of, it appears
that the convergence rate is very slow (logarithmic). If we deal
with values of which are of order 100 or 1000, it is then neces-
sary to be very careful when using Proposition IV.3. The mean

actually behaves as even for—relatively—small
values of , as shown by Figs. 3 and 4. However, the relative
fluctuations with respect to the mean stay of order 1 for a large
band of values of , and vanish only for (Figs. 3 and
4). In Fig. 5 we have plotted the computed histograms of the
variable for different values of .

Lemma IV.6: Let , , and be
continuous functions from into satisfying

. Then

This result is not surprising. Indeed for—relatively—small,
and are correlated. But if is large, then

gets large too, so that the statistical distribution of involves

(a)

(b)

Fig. 5. Theoretical histogram of the random variablesM for (a)L = 100
and (b)L = 1000.

many , and becomes independent of the realization of the first
particular . However, the convergence rate is very
slow (logarithmic), and all the slower asbecomes large.

Proof: For simplicity, we prove the result for . The
extension to an arbitrary is straightforward. By the definition
of ,

which establishes that

where obeys the same distribution of , but is independent
of . Thus,
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We finally apply Lebesgue’s theorem:

D. Proof of Proposition IV.4

By Proposition IV.2, we can compute by integrating the
density multiplied by . Since

(36)

(37)

we get

The sum over contains terms. The first terms are equal
by simple permutation of the index. Only the last one
differs. We can therefore rewrite the long expression as

The second term of the right-hand side is uniformly bounded,
while the first term converges to

by Lemma IV.6. Since the second expectation is equal to 1,
we get the result in the case . The case can be dealt
with the same way since the expectation can be expressed
in terms of the processes and as

The result can be interpreted as follows. The statistical distri-
bution of the first hitting time depends on the fluctuations of

and . Both are correlated, but for large, we deal with a
large , and consequently, with the sum of a large number of

. By the strong law of large numbers, the fluctuations of this
sum goes to 0, so that the fluctuations ofonly become depen-
dent on those of (see Fig. 6).

Fig. 6. Normalized variances of the variablesT andM (L = (l � 1)=k).

E. A Class of Exceptional Events

We now go back to a very interesting point, which consists
of the anomalous peak close to 0 in the histogram of the first
hitting time . We can describe the corresponding set of real-
izations (shortcut happens first) which give rise to a very
quick convergence of the process.

Proposition IV.7: There exists a set of realizations with
probability

(38)

such that the conditional distribution of the first hitting time
given is an exponential distribution with mean :

for any real

(39)

Proposition IV.7 shows that the expected convergence time
under is equal to , which is roughly times shorter
than the global expected time by Proposition
IV.1. A noticeable fact is then that the convergence time with

processes will be times shorter than the expected
time for a single process with very high probability because it
is then highly probable that at least one of theprocesses will
realize the favorable event : shortcut occurs first. We quan-
tify this statement in the following corollary.

Corollary IV.8: Assume that we deal with a set of pro-
cesses which evolve independently. Then, ifis large, denoting

, there exists a set of realizations with probability

(40)

such that the conditional expectation of the infimumof the
first hitting times of the processes is

(41)

where , is the Euler con-
stant , and Ei is the exponential integral function [1, p.
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Fig. 7. Functionc 7! f(c).

228] (see Fig. 7). More exactly, the conditional distribution of
given is

(42)

where is a [0, 1]-valued random process with density
.

1) Proof of Proposition IV.7:We still represent the statis-
tical distribution of the first hitting time as (28)–(31). In this
framework, we define the set as the set of the realizations
which fulfill the condition :

Since the distribution of is given by (32), the probability of
this set is simply . Given , the process
obeys the following evolution: before , it evolves without
shortcut, and arrives at the string ; at time , by shortcut

, the process jumps at string ; finally,
the process goes to the final string. Furthermore, the statistical
distribution of given is the statistical distribution of
given , where the are independent random
variables with exponential distributions and means 1:

The result of the proposition then follows readily.
2) Proof of Corollary IV.8: We adopt the same notations as

(28)–(31). We add a subscript to each quantity,
which stands for the labels of the independent processes. The
set is then defined as

The probability of the complementary set is

where . The global first hitting time is the minimum
of the first hitting times corresponding to each process:

where the are independent and identically distributed random
variables defined as in (28)–(31). Furthermore, given, the
statistical distribution of is

where such that and are in-
dependent and identically distributed random variables defined
as (39). We have

For any , the probability that is equal to is the proba-
bility that of the processes satisfy , and that the
other ones satisfy . Since , this
implies

For and , the binomial distribution becomes
equivalent to a Poisson distribution:

and, consequently,

for

Thus,

Since , we get, by sum-
ming,

The interested reader can then check that this is exactly the sta-
tistical distribution of the random variable defined by (42).

F. Optimization of the Mutation Probability

In the following, we investigate the influence of(for sto-
chastic mutation) on the time to convergence of the (1 +
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1)-ES process on long-path problems. This shows that the best
mutation rate is .

Proposition IV.9: Let us assume that the mutation probability
is .

1) For large , the first hitting time obeys the statistical
distribution of , where is as described in
Section IV. In particular, its mean is

(43)

2) The best choice for is .
Proof: The same arguments as for the case yield the

result. The only difference comes from the fact that the waiting
times for the shortcuts obey different distributions. In-
deed, for each instant, the probability that the shortcutoccurs
is

so that the statistical distribution of is given by

which proves that obeys an exponential distribution with
mean . The remainder of the proof is then exactly the
same as for the case .

G. Discussion and Comparison of Different Algorithms

In this subsection, we discuss the asymptotic behavior for
large and fixed of different evolution strategies. The main
result is that all population-based evolution strategies are less
efficient than a (1 1)-ES. Moreover, the best strategy to min-
imize the time to convergence is to run several independent (1
+ 1)-ES processes simultaneously.

This latter result has already been stated in Section IV-E:
Corollary IV.8 shows that, with independent processes

evolving simultaneously, the first hitting time (of
the fastest process) is about with very high probability

. Recall that, with one process , the first hitting
time is about (Proposition IV.1). Independent
processes are therefore very advantageous, and much more
rapid than one process in terms of the number of generations,
as well as in terms of the number of fitness evaluations.

Consider, now, a number of processes that communicate to-
gether by exchanging the best-so-far string, as in the case of a

-ES. Expected first hitting time is necessarily longer than
that of processes evolving independently. This is due to the
fact that the order of shortcut occurrence determines the conver-
gence time (as explained in Section IV-B). More precisely, the
only way to get a different order of convergence time is that the
event happens for some parent: the shortcutis then the
first shortcut to occur. Exchanging the best so-far string forces
the processes to achieve shortcuts at the same order among
the families . In fact, the string resulting from the first shortcut
contaminates, more or less quickly, the other processes because
of the selection pressure.

In the case of a -ES, the string resulting from the
first shortcut immediately colonizes the population. But the ex-
pected time for a shortcut and for any improvement getstimes
smaller; hence, the expected first hitting time istimes smaller
than that of a single process. Hence, the number of evaluations
remains the same, and there is no advantage to increasing.

Consider now a -ES with , starting at string
. Due to elitism, the parents are always on the path. If a

shortcut occurs, it takes a time of order [so less
than ] for the string resulting from the shortcut to
dominate the population. It is then very unlikely that another
shortcut (exponential distribution) happens within this time, and
happens first. An upper bound of this probability is given in the
following. Suppose a shortcut different from happens for one
of the parents. The probability that the shortcuthappens for
one of the remaining parents, within a time
(even if it happens after another contaminating shortcut), is

If and , this probability is 1 asgoes to infinity;
hence, the event happens before the first shortcut colonizes
the population. However, this is not the probability of the event

, but an upper bound ( does not necessarily happen first).
And, as explained above,independent processes are obviously
more advantageous, even in this case.

If , then the probability tends to zero asgoes to infinity
[even if ]. Hence, all individuals follow the first
unlucky shortcut, and lose any chance of realizing the event.

-ES only speeds the convergence with a factor ofin
terms of the number of generations, and implies no gain in the
number of fitness evaluations.

V. SUMMARY AND CONCLUSION

This paper investigates the behavior of a (11)-ES process
using the bit-flipping mutation on Rudolph’s long paths
in the asymptotic framework . Both cases of variable and
fixed values are addressed.

First, for , we prove that the expected convergence
time is exponential. Shortcuts speed up the convergence only
if . Otherwise (if ), the process reaches the
solution by following the whole path before any shortcut occurs.

Second, in the case of a fixed value of, the expected first hit-
ting time is equal to (at the first order with
respect to). The normalized variance of goes to 0 as
at a very slow rate. Further, the study of the statistical distribu-
tion of convergence time shows an anomalous peak close to
zero, corresponding to the eventshortcut happens first. This
event happens with probability , and yields a convergence
time that is a factor of smaller than the expected value .
Therefore, the best strategy for taking advantage of this distri-
bution is to perform independent (1 1)-ES processes,
so that one of these processes is very likely to realize the ex-
ceptional event. On the other hand, population-based processes
limit diversity in shortcut occurrence, drifting all individuals to
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blindly follow the first occurring shortcut. This implies the same
number of evaluations as with a (11)-ES.

Finally, expected convergence time distribution is given for
any mutation rate , . As expected, the smallest conver-
gence time is obtained with a mutation probability.

A number of interesting issues are raised by the results of this
paper on thelong -pathproblem.

• For fixed , independent parallel (1 + 1)-ES processes per-
form considerably better with no migration than they per-
form with migration of fit individuals between the pro-
cesses. Equivalently, increasing the population size de-
creases the convergence speed in the number of evalua-
tions and generations compared to independent (11)-ES
processes.

• EA dynamics can be very sensitive to rare events related
to the exploration properties of the mutation (for fixed

, shortcuts yield a very big variance in convergence
time). This phenomenon is confirmed by experimental
work [12], which demonstrates that exceptional properties
of operators sometimes reflect EA behavior more accu-
rately than average typical properties do. However, EA
dynamics are no longer sensitive to shortcuts for ,
resulting in a convergence behavior that is predictable.

• This study provides upper bounds on the complexity of
simple search procedures in-dimensional spaces, for
large values, as detailed below.

If we combine the complexity results of this paper with some
previous results, we conclude that the convergence time of mu-
tation-only hill climbers ranges from a linear (one-max) to an
exponential (long -path) rate in terms of. In the one-max
case, convergence in the number of fitness evaluations is quicker
with the 1-bit-flip mutation than it is with the mutation [5],
whereas the opposite happens for the long-path problem. On
the other hand, random walks directed by both mutations require
the same numbers of fitness evaluations to hit a target point of
the search space [5].

Note, finally, that another important result follows from this
study, as it answers the question: Is there a long path for a (1
1)-ES? Indeed, in the case and , the evolutionary
process follows the path, and the convergence time is exponen-
tial. As for other algorithms, one can still wonder whether such
a long path exists. Yet, the notion of “following a path” has to
be defined for population-based algorithms. Partial answers to
these questions are given in [11], where acontrolled pathfit-
ness function is constructed so that the crossover and mutation
evolutionary algorithms empirically follow apaththat has been
arbitrarily chosen in the search space.

To sum up, long paths (and more generally,controlled
paths) provide an example of smooth and unimodal landscapes
on which the EA convergence time can be very long and
predictable. An interesting but currently unanswered question
is: Can real-world problems present such a long-path struc-
ture? Note that there exist physical systems (spin glass [2])
which evolve very slowly toward an equilibrium state, through
successive unstable states (the glass of medieval cathedrals,
for example, is now reaching its final equilibrium state, more
crystalline and fragile, after 400 years of slow decay).
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