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e-mail: Antonio.Picozzi@u-bourgogne.fr
2Laboratoire de Probabilités et Modèles Aléatoires, UMR-CNRS 7599,
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Abstract. This article is composed of two parts. The first part is aimed at providing an
overview on the kinetic description of random nonlinear waves considering the one-dimen-
sional nonlinear Schrödinger (NLS) equation as a representative model of optical wave
propagation. We expose, in particular, the key problem of achieving a closure of the infi-
nite hierarchy of moment equations for the random field. The hierarchy is closed at the
first order when the statistics of the random wave is non-stationary or when the response
time of the nonlinearity is non-instantaneous, which, respectively, leads to the Vlasov
kinetic equation and the weak-Langmuir turbulence equation. When the amount of non-
stationary statistics is comparable to the amount of non-instantaneous nonlinearity, we
derive a generalized Vlasov–Langmuir equation that provides a unified formulation of the
Vlasov and Langmuir approaches. On the other hand, when the statistics of the random
wave is stationary and the nonlinear response instantaneous, the closure of the hierarchy of
moment equations requires a second-order perturbation expansion procedure, which leads
to the Hasselmann (or wave turbulence) kinetic equation. Contrarily to the Vlasov and
Langmuir equations, the Hasselmann equation is irreversible, a feature which is expressed
by a H -theorem of entropy growth that describes wave thermalization toward the thermo-
dynamic equilibrium distribution, i.e. the Rayleigh–Jeans (RJ) spectrum. In the second part
of the paper, we discuss a process of anomalous thermalization by considering the exam-
ple of the scalar NLS equation whose integrability is broken by the presence of third-order
dispersion. The anomalous thermalization is characterized by an irreversible evolution of
the wave toward an equilibrium state of a fundamental different nature than the conven-
tional RJ equilibrium state. The wave turbulence kinetic equation reveals that the anom-
alous thermalization is due to the existence of a local invariant in frequency space Jω,
which originates in degenerate resonances of the system. In contrast to integral invariants
that lead to a generalized RJ distribution, here, it is the local nature of the invariant Jω
that makes the new equilibrium states fundamentally different than the usual RJ equilib-
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rium states. We study in detail the anomalous thermalization by means of numerical sim-
ulations of the NLS equation and of the wave turbulence equation by using an improved
criterion of applicability of the kinetic theory. The spectrum of the field is shown to exhibit
an intriguing asymmetric deformation, which is characterized by the unexpected emergence
of a constant spectral pedestal in the long-term evolution of the field. It turns out that the
local invariant Jω explains all the essential properties of the anomalous thermalization of
the wave.

Mathematics Subject Classification (2000) 74A25, 76Fxx, 78A10.

Keywords. kinetic wave theory, nonlinear random waves, thermalization,
nonlinear optics.

1. Introduction

The description of random nonlinear waves is a fundamental question related to
the vast issue of fully developed turbulence, which still constitutes a longstand-
ing unsolved problem. In the particular context of optics, a ‘random wave’ usu-
ally refers to ‘natural light’, i.e. ‘non-laser light’ [1]. The study of the coherence,
i.e. the statistical properties of random optical waves propagating in a nonlin-
ear medium have been analyzed since the advent of nonlinear optics in 1960s,
because of the natural poor degree of coherence of laser sources available at that
time. However, it is only recently that the dynamics of incoherent nonlinear opti-
cal waves received a renewed interest. The main motive for this renewal of inter-
est is essentially due to the first experimental demonstration of incoherent solitons
in photorefractive crystals [2,3]. The incoherent soliton consists of a phenomenon
of self-trapping of incoherent light in a medium characterized by a non-instanta-
neous [4–15] or instantaneous [16–23] nonlinear response. The remarkable simplic-
ity of experiments performed in photorefractive media has allowed for a fruitful
investigation of the dynamics of incoherent nonlinear waves [11], as witnessed by
several important achievements, such as, e.g., the modulational instability of inco-
herent optical waves [12,13,23]. A notable progress has been also accomplished
by exploiting the analogy with nonlinear plasma phenomena, such as, e.g., the
Landau damping [14] or the bump-on-tail instability [15]. Actually, it is in the con-
text of plasma physics that random phase solitons and incoherent modulational
instability were identified in the framework of pioneering studies of Vlasov-like
kinetic equations [24–27].1

Several theoretical approaches have been developed to provide a description
of incoherent optical solitons [11]. The most established methods are the mutual
coherence function approach [8], the self-consistent multimode theory [9], the
coherent density method [10], and the Wigner transform approach [14]. It was

1Note that, despite their analogous self-consistent mathematical structure, the Vlasov-like kinetic
wave equation is quite different from the original Vlasov equation, which is known to describe
the evolution of the distribution function in a collisionless plasma when the electromagnetic field
is determined self-consistently by the charge and current densities through the Maxwell equations.
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shown that these four methods are in fact equivalent [28,29] and the choice of the
most suitable representation rather depends on the nature of the physical problem
to be investigated. It should be underlined that these theoretical approaches find
their origins in Vlasov-like kinetic equations, whose self-consistent mathematical
structure is the key property underlying the existence of incoherent soliton solu-
tions [14,24–26].

More recently, an incoherent optical soliton of a fundamentally different nature
has been identified by exploiting the Raman effect of conventional optical fibers
[30,31]. The relevant property underlying the existence of these incoherent soli-
tons is in this case the non-instantaneous character of the nonlinear Raman effect.
This incoherent structure has been called ‘spectral incoherent soliton’ because the
optical field does not exhibit a confinement in the spatio-temporal domain, but
exclusively in the frequency (i.e. Fourier) domain. More specifically, the optical
field exhibits a stationary statistics (i.e., the field exhibits random fluctuations that
are statistically stationary in time), and the soliton behavior only manifests in the
spectral domain. The analysis has revealed that the kinetic equation that describes
spectral incoherent solitons has a rather simple structure, which was considered in
plasma physics to study weak Langmuir turbulence or stimulated Compton scatter-
ing [32–37,39,40].2

In the following, we present a unified kinetic formulation that combines the
Vlasov and Langmuir approaches within a general framework. Indeed, when the
amount of non-stationary statistics is comparable to the amount of non-instan-
taneous nonlinearity, a generalized Vlasov–Langmuir equation is obtained, which
describes the propagation of a random wave that exhibits a quasi-stationary
statistics in the presence of a delayed nonlinear response. The analysis is based on
a separation of scales technique, which is valid when the characteristic time of the
random fluctuations of the field is much smaller than the characteristic time of
variations of the averaged field intensity.

An important property of the weak turbulence Vlasov–Langmuir kinetic equa-
tion is its formal reversibility, a feature which is consistent with the fact that it
conserves the non-equilibrium entropy. Accordingly, this kinetic equation does not
describe the process of irreversible evolution toward thermodynamic equilibrium.
As a matter of fact, the process of optical wave thermalization [31,41–57] is usually
described in the theoretical framework of the wave turbulence theory [58], whose
kinetic equation was originally derived by Hasselmann [59,60]. This theory implic-
itly assumes that the random field exhibits a stationary or homogeneous statistics.
It turns out that the causality condition inherent to the delayed nonlinear response
and, on the other hand the non-stationary statistics of the field, both prevent the
process of optical wave thermalization from taking place.

2Note that soliton solutions to the weak Langmuir turbulence kinetic (16) should not be con-
fused with the so-called ‘Langmuir soliton’solutions of Zakharov-like equations, see e.g. [38].
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The wave-turbulence theory has been the subject of a detailed investigation in
the context of plasma physics [61,62], in which it is often referred to the so-called
‘random phase-approximation’ approach [58–64]. This approach may be considered
as a convenient way of interpreting the results of the more rigorous technique
based on a multi-scale analysis of the cumulants of the nonlinear field, as origi-
nally formulated in [65–70]. This technique has been recently reviewed in [67], and
studied in more details through the analysis of the probability distribution func-
tion of the random field in [68–70]. In a loose sense, the random phase approxi-
mation may be considered as justified when phase information becomes irrelevant
to the wave interaction due to the strong tendency of the waves to decohere. The
random phases can thus be averaged out to obtain a weak turbulence description
of the incoherent wave interaction, which is formally based on irreversible kinetic
equations [58]. It results that, in spite of the formal reversibility of the equation
governing wave propagation, the kinetic equation describes an irreversible evolu-
tion of the field to thermodynamic equilibrium. This equilibrium state corresponds
to the fundamental Rayleigh–Jeans (RJ) spectrum, whose tails are characterized by
an equipartition of energy among the Fourier modes.

In a recent work, we identified a process of anomalous thermalization [71,72],
which is characterized by an irreversible evolution of the wave towards a ‘local
equilibrium state’ of a fundamentally different nature than the usual thermody-
namic RJ equilibrium state. In this article, we shall pursue the study of this anom-
alous thermalization process through the analysis of a simple system. We consider
the one-dimensional scalar nonlinear Schrödinger (NLS) equation, whose integra-
bility is broken by the presence of a third derivative, i.e. the presence of third-
order dispersion effects. This generalized NLS equation is known to describe the
nonlinear propagation of an optical wave whose carrier frequency is in the neigh-
borhood of the zero dispersion frequency [11]. In spite of its importance, the evo-
lution of the coherence properties of a random wave ruled by this generalized NLS
equation has not been studied in the literature. We show that the spectrum of
the field exhibits an unexpected asymmetric deformation, which is characterized
by two remarkable properties: (1) the formation of a lateral spectral shoulder, and
(2) the emergence of a constant spectral pedestal in the long-term evolution of the
field. As a result, the field relaxes toward an equilibrium state of a different nature
than the usual RJ equilibrium state. This anomalous thermalization is described in
detail by the wave turbulence theory: the kinetic equation that we obtain is found
in quantitative agreement with the numerical simulations of the NLS equation.
More specifically, the kinetic wave theory reveals that the anomalous thermaliza-
tion is due to the existence of a local invariant in frequency space Jω, which origi-
nates in degenerate resonances of the system. In contrast to integral invariants that
lead to a generalized RJ distribution, here, it is the local nature of the invariant Jω
that makes the new equilibrium states fundamentally different than the usual RJ
equilibrium states. It turns out that the local invariant Jω explains all the essential
properties of the complex evolution of the wave spectrum.
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Figure 1. Schematic illustration of the domains of validity of the fundamental kinetic equa-
tions discussed in this paper: fR represents the amount of non-instantaneous nonlinearity, ε
represents the amount of non-stationary statistics in the wave [see (1)]. The weak-Langmuir
turbulence equation describes, e.g. spectral incoherent solutions; the Vlasov kinetic wave equa-
tion describes the incoherent modulational instability or the incoherent solitons (see Sec-
tion 2.2); while the Hasselmann equation describes the irreversible process of thermalization
to the Rayleigh–Jeans equilibrium distribution (see Section 2.3).

Let us briefly comment the organization of the manuscript by clarifying some
useful aspects underlying the derivation of the kinetic equations. In the first part
of the paper, we present the fundamental kinetic wave equations that describe
the evolution of random nonlinear waves (Section 2). We expose, in particular,
the key problem of achieving a closure of the infinite hierarchy of moment equa-
tions for the random field. The hierarchy is closed at the first order when the
statistics of the random wave is non-stationary or when the response of the non-
linearity is non-instantaneous, which, respectively, leads to the Vlasov equation,
and the weak-Langmuir turbulence equation. A unified derivation of these kinetic
equations is presented in Section 2.2: a Vlasov–Langmuir equation is obtained
when the amount of non-stationary statistics is comparable to the amount of non-
instantaneous nonlinearity. Conversely, when the statistics of the random wave
is stationary and the nonlinear response instantaneous, one obtains a vanishing
result into the first-order approximation: the closure of the hierarchy requires a
second-order perturbation expansion procedure (Section 2.3), which leads to the
Hasselmann (or wave turbulence) kinetic equation. Contrarily to the Vlasov and
Langmuir equations, the Hasselmann equation is irreversible and describes the pro-
cess of wave thermalization to equilibrium. The domains of validity of these kinetic
wave equations are summarized schematically in Figure 1. In the second part of
the paper (Section 3), we report recent results obtained in the study of the process
of anomalous thermalization. In particular, we shall discuss the differences between
the local nature of the invariant Jω and the integral invariants investigated in line
with the problem of integrability [73–76]. Finally in Section 3.3, we report numerical
simulations of the anomalous thermalization process. The simulations of the wave
turbulence kinetic equation will be compared directly with the simulations of the
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NLS equation and the (dis)agreement between them is discussed in the framework
of an improved criterion of applicability of the wave turbulence theory.

We would like to mention that the statistical properties of the wave may evolve
during its propagation, so that the terminology used above, such as, e.g. ‘station-
ary statistics,’ may appear ambiguous. For instance, one may assume the initial
statistics of the wave to be stationary and the nonlinearity instantaneous, so that
the Hasselmann equation is expected to be the relevant kinetic equation. How-
ever, if the nonlinearity is ‘focusing,’ the statistics of the wave may become non-
stationary as a result of the incoherent modulational instability described by the
Vlasov kinetic equation (see Section 2.2.1), which thus makes the Hasselmann
equation irrelevant. In this respect, the kinetic description of random nonlinear
waves may be considered as ‘empirical’ rather than rigorous. We underline, how-
ever, that the dynamics described by the kinetic equations is supported by the
numerical simulations of the corresponding wave equations (e.g., NLS-like equa-
tions). For instance, we shall see in Section 3.3 that a remarkable quantitative
agreement between the Hasselmann kinetic equation and the NLS equation may
be obtained without using adjustable parameters.

2. Kinetic Wave Equations

2.1. MODEL EQUATION

To provide an overview into the kinetic wave theory, we shall consider the con-
crete example of the propagation of a partially coherent optical field in a medium
characterized by a cubic nonlinearity (e.g., Kerr medium). Although we focus our
presentation into the context of nonlinear optics, the methodology exposed here is
rather general and can easily be transposed to other systems of nonlinear waves.
In the framework of the slowly varying envelope approximation, the evolution of
the optical field envelope ψ(z, t) of carrier frequency ω0 is known to be governed
by the following generalized NLS equation [11,77]

i∂zψ=−β ∂t tψ+γ ψ
+∞∫

−∞
χ(θ) |ψ |2(z, t − θ)dθ. (1)

The function χ(t) characterizes the response function of the nonlinearity. As usual
in optics, the distance z of propagation in the nonlinear medium plays the role of
an evolution variable for the NLS (1), while t measures the time in a reference
frame moving at the group-velocity of the field [11,77]. In practice, for a given ini-
tial condition of the optical field at the entry of the nonlinear medium ψ(z =0, t)
(1) is solved to get the temporal profile of the field amplitude at the output of
the medium, ψ(z = L , t). The parameter γ in (1) denotes the nonlinear Kerr coef-
ficient, the parameter β=β2/2 is related to the dispersion coefficient β2 =∂2k/∂ω2

where k is the wave vector modulus [11,77]. The linear dispersion relation of the
field reads k(ω)=βω2.
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For the sake of generality, we consider in the following a response func-
tion that can be decomposed into the sum of an instantaneous and a delayed
contribution,

χ(t)= (1− fR)δ(t)+ fR R(t). (2)

The coefficient fR ∈ [0,1] expresses the ratio between the two contributions.
The function R(t) is normalized in such a way that

∫
R(t)dt = 1 (so that we

have
∫
χ(t)dt = 1 whatever fR is) and the causality condition imposes R(t) =

0 for t < 0. According to the linear response theory, the causality condition
imposes restrictions on the Fourier transform of the response function R̃(ω) =∫

R(t) exp(−iωt)dt . Because of the causality of R(t), the function R̃(ω) is ana-
lytic in the lower half-plane Im(ω) < 0, so that the real and imaginary parts
of R̃(ω) = R̃r(ω) + i R̃i(ω) turn out to be related by the Kramers–Krönig rela-
tions, R̃r(ω)=− 1

π
P ∫ R̃i(ω

′)
ω′−ω dω′, and R̃i(ω)= 1

π
P ∫ R̃r(ω

′)
ω′−ω dω′, where P denotes the

principal Cauchy value [77,78]. We recall that R̃r(ω) is an even function, while
R̃i(ω) is an odd function. We note that the decomposition (2) finds a direct
application in optical fiber systems, which are known to exhibit both an instan-
taneous electronic contribution and a non-instantaneous molecular Raman contri-
bution [11].

We remark that the NLS (1) for fR > 0 only conserves the total power of the
field

N =
∫

|ψ |2dt, (3)

while in the limit fR =0 (1) recovers the integrable NLS equation.
The evolution of the random field is characterized by two characteristic lengths,

the nonlinear length Lnl = 1/(γ P), and the linear dispersion length Ld = t2
c /β,

where tc is the coherence time of the field and P is related to the character-
istic power of the field. In the following, we consider the weakly nonlinear (or
highly incoherent) regime of interaction, ρ= Ld/Lnl � 1, where the rapid tempo-
ral fluctuations of the field make linear effects dominant with respect to nonlinear
effects.

In simple terms, the kinetic equation consists of an equation describing the evo-
lution of the ‘averaged spectrum’ of the field during its propagation in the non-
linear medium. The structure of the kinetic equation depends on the nature of
the statistics of the optical field. The statistics is said to be stationary, if the cor-
relation function C(z, t1, t2)= 〈ψ(z, t1)ψ∗(z, t2)〉 only depends on the time delay
|t1 − t2|. The brackets 〈.〉 denote here an averaging over the realizations of the ini-
tial noise of the field ψ(z = 0, t), i.e. the noise that characterizes the optical field
injected into the nonlinear medium. We note in this respect that the partial dif-
ferential equation (1) is deterministic, so that the noise to which we refer to only
concerns the initial condition, ψ(z =0, t).
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2.2. VLASOV–LANGMUIR WEAK TURBULENCE EQUATION

We follow the usual procedure to derive an equation describing the evolution of
the autocorrelation function C(z, t1, t2) [1],

i∂zC =β
(
∂2

t2 −∂2
t1

)
C +γ

∫
χ(θ)

(〈
ψ(t1)ψ

∗(t2)ψ(t1 − θ)ψ∗(t1 − θ)〉

− 〈
ψ(t1)ψ

∗(t2)ψ(t2 − θ)ψ∗(t2 − θ)〉), (4)

where ‘ψ(t j )’ stands for ψ(z, t j ) in the integrand. Because of the nonlinear char-
acter of the NLS equation, the evolution of the second-order moment of the
field depends on the fourth-order moment. In the same way, the equation for the
fourth-order moment depends on the sixth-order moment, and so on. Accord-
ingly, one obtains an infinite hierarchy of moment equations, in which the nth-
order moment depends on the (n + 2)th-order moment of the field. This makes
the equations impossible to solve unless some way can be found to truncate the
hierarchy. This refers to the fundamental problem of achieving a closure of the
infinite hierarchy of the moment equations [58–67]. A simple way to achieve a clo-
sure of the infinite hierarchy of moment equations is to assume that the field has
Gaussian statistics. This approximation is justified in the weakly nonlinear regime,
ρ = Ld/Lnl � 1. Under these conditions, one can exploit the property of factor-
izability of moments of Gaussian fields, e.g., 〈ψ(t1)ψ∗(t2)ψ(t1 − θ)ψ∗(t1 − θ)〉 =
C(t1, t2)C(t1 − θ, t1 − θ)+C(t1, t1 − θ)C(t1 − θ, t2).

Introducing the change of variables t = (t1 + t2)/2 and τ = t1 − t2, we obtain a
closed equation for the evolution of the second-order moment

B(z, t, τ )=C(z, t + τ/2, t − τ/2)= 〈
ψ(z, t + τ/2)ψ∗(z, t − τ/2)〉

that has the form

i∂z B(t, τ )=−2β∂2
tτ B(t, τ )+γ P(t, τ )+γ Q(t, τ ), (5)

where we have omitted the z-label and we have denoted

P(t, τ )= B(t, τ )
∫
χ(θ)

[
Ñ (t − θ + τ/2)− Ñ (t − θ − τ/2)

]
dθ, (6)

Q(t, τ )=
∫
χ(θ) [B(t − θ/2+ τ/2, θ)B(t − θ/2, τ − θ)

−B(t − θ/2, τ + θ)B(t − θ/2− τ/2,−θ)] dθ, (7)

and

Ñ (z, t)≡ B(z, t,0)=〈|ψ(z, t)|2〉 (8)

denotes the averaged power of the field, which depends on time t because the sta-
tistics of the field is a priori non-stationary.



KINETIC DESCRIPTION OF RANDOM OPTICAL WAVES

2.2.1. Instantaneous Response: Vlasov Limit

We can remark that in the limit of an instantaneous response, i.e. fR =0, we have
P = Q and (5–7) recovers the well-known equation for the mutual coherence func-
tion [8]:

i∂z B(t, τ )=−2β∂2
tτ B(t, τ )+2γ B(t, τ )

[
Ñ (t + τ/2)− Ñ (t − τ/2)

]
. (9)

Next, one may assume that the field exhibits a quasi-stationary statistics, Ñ (t +
τ/2)− Ñ (t − τ/2)
 τ∂t Ñ (t). Then it proves convenient to write the kinetic equa-
tion for the local spectrum of the field, defined as a Fourier (Wigner-like) trans-
form of the autocorrelation function

nω(z, t)=
+∞∫

−∞
B(z, t, τ ) exp(−iωτ)dτ.

Applying this transformation to (9), one obtains the Vlasov-like kinetic equation,

∂znω(z, t)+∂ωκω(z, t)∂t nω(z, t)−∂tκω(z, t)∂ωnω(z, t)=0 (10)

where κω(z, t) refers to a generalized dispersion relation

κω(t)= k(ω)+2γ Ñ (z, t), (11)

and we recall that Ñ (z, t)= 1
2π

∫
nω(z, t)dω.

In complete analogy with the Vlasov equation in plasma physics, (10) exhibits a
self-consistent Hamiltonian structure. Indeed, (10) may be written in a form anal-
ogous to the Liouville equation,

dznω(z, t)≡∂zn + ṫ ∂t n + ω̇ ∂ωn =0, (12)

where the variables t and ω appear as canonical conjugate variables,

ṫ =∂z t =∂ωκ=∂ωk(ω) (13)

ω̇=∂zω=−∂tκ=−2γ ∂t Ñ (z, t), (14)

with the effective Hamiltonian κω(t) given in (11). Note that the Vlasov equation
(10) conserves the total power of the field N = ∫

Ñ (z, t)dt . This property natu-
rally results from the Liouville’s equation (12), which implies conservation of the
area N = ∫∫

dt dω nω(z, t) occupied by the quasi-particle distribution nω(z, t) in the
phase-space (t,ω). More generally, the Vlasov equation (10) exhibits the important
property of conserving any functional of the form

∫∫
dt dω F[n], where F[n] is an

arbitrary function. These functional are called Casimirs.
The Vlasov equation exhibits soliton solutions [24–26], a feature that can be

shown by exploiting the following property. In the ‘stationary’ (i.e., z indepen-
dent) limit, the Hamiltonian κω(t) (11) becomes a conserved quantity of the sta-
tionary Vlasov equation (10), ∂ωκω(z, t)∂t nω(z, t)− ∂tκω(z, t)∂ωnω(z, t) = 0. This
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stationary Vlasov equation then admits the following class of solutions, nω(t)=
G(κ), where G(κ) is an arbitrary function of the conserved Hamiltonian κω(t) (11).
Another important phenomenon described by the Vlasov equation (10) is the mod-
ulational instability of partially coherent waves. Incoherent modulational instabil-
ity has been the subject of a recent detailed investigation in the context of opti-
cal waves, from both the theoretical and experimental point of views [11–13,23].
In the temporal domain, an incoherent field that exhibits a stationary statistics can
become modulationally unstable in the presence of a focusing nonlinearity (γ >0)
and an anomalous dispersion (β < 0). We also recall that, contrarily to the usual
modulational instability induced by a coherent field, wave incoherence can sup-
press modulational instability [11–13,23,27].

2.2.2. Stationary Statistics: Langmuir Weak Turbulence Limit

On the other hand, in the limit of a stationary statistics, the instantaneous con-
tribution of the nonlinear response no longer contributes to the kinetic equation
(P =0), and (5–7) can be reduced to

i∂z B(τ )=γ fR

∫
R(θ)[B(θ)B(τ − θ)− B∗(θ)B(τ + θ)]dθ, (15)

where the autocorrelation function B only depends on the time lag τ . A Fourier
transform of (15) readily gives the following weak Langmuir turbulence kinetic
equation

∂znω(z)= γ fR

π
nω(z)

∫
R̃i(ω−ω′)nω′(z)dω′. (16)

Several simplified forms of this kinetic equation have been the subject of a detailed
study in the literature. A differential (‘hydrodynamic’) approximation of the inte-
grodifferential equation (16) was derived for the first time by Kompaneets [79].
This Compton Fokker–Planck equation has been subsequently analyzed by sev-
eral authors [80,81]. The complete integral kinetic equation (16) may be derived
from the Zakharov equations [82], it can also be derived from the quantum version
of the Boltzmann-like kinetic equation describing the nonlinear induced Compton
scattering [83].

A peculiar property of the weak Langmuir turbulence (16) is that it admits sol-
itary wave solutions [32–37]. This fact can be anticipated by remarking that, as
a result of the convolution product in (16), the spectral gain curve R̃i(ω) ampli-
fies the front of the spectrum at the expense of its trailing edge, thus leading to
a global red-shift of nω(z). The numerical simulations of the NLS (1) and of the
Langmuir-like equation (16) reveal that, after a transient regime, the averaged spec-
trum of the field self-organizes in the form of a solitary wave, which propagates
without distortion in the frequency domain towards the low-frequency components
[30,32–37]. This phenomenon has been called ‘spectral incoherent soliton’ because
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the statistics of the field is stationary and thus the soliton behavior manifests itself
in the spectral domain, but not in the temporal domain.

2.2.3. Generalization for Non-stationary Statistics and Non-instantaneous Nonlinear
Response

When the influences of the non-stationary statistics and of the non-instantaneous
response are comparable, the Vlasov and Langmuir limits discussed above need
to be generalized into a unique kinetic equation [84]. For this purpose, we shall
assume that the optical field exhibits initially a quasi-stationary statistics. We intro-
duce the small parameter ε, which is the ratio between the coherence time of
the initial field (i.e. the time scale of the random fluctuations) and the time scale
of variation of the power of the field (i.e. the duration of the incoherent optical
pulse), ε= tc/tp. The autocorrelation function at z = 0 can then be written in the
form:

B(z =0, t, τ )= B(0) (z =0, εt, τ )

and we look for the solution of (5) in the form

B(z, t, τ )= B(0) (εz, εt, τ )+ εB(1) (εz, εt, τ )+· · · (17)

The fact that evolution variable is scaled as εz follows from the forthcoming anal-
ysis, in which it is shown that effects of order one can be observed for propagation
distances z of the order of ε−1. It turns out that different regimes can be obtained,
depending on the ratio fR between the delayed and the instantaneous contribu-
tions to the nonlinear response function χ(t). The most interesting regime happens
when fR is of the order of ε, since then the two contributions are of the same
order in the kinetic equation. We therefore denote:

fR = ε fR0. (18)

We substitute the ansatz (17) into (5) and collect the terms with the same pow-
ers in ε. One can then show that the local spectrum n(0)ω (Z ,T )= ∫

B(0)(Z ,T, τ )
exp(−iωτ)dτ (Z = εz,T = εt), is ruled by the following weak-turbulence Vlasov–
Langmuir-like kinetic equation [84]

∂Z n(0)ω (Z ,T )+∂ωκ
(0)
ω (Z ,T )∂T n(0)ω (Z ,T )−∂T κ

(0)
ω (Z ,T )∂ωn(0)ω (Z ,T )

= γ fR0

π
n(0)ω (Z ,T )

∫
R̃i(ω−ω′)n(0)

ω′ (Z ,T )dω′. (19)

The generalized dispersion relation reads

κ(0)ω (Z ,T )= k(ω)+ V (0)(Z ,T ), (20)
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with the effective potential

V (0)(Z ,T )= γ

π

∫
n(0)
ω′ (Z ,T )dω′. (21)

Let us briefly address the degenerate cases in which fR is not of the form (18):
If fR is smaller than (18), i.e. fR = ε p fR0 with p>1, then the collision term of

the right side of (19) vanishes and we recover the Vlasov limit. This means that,
in the first-order approximation in ε, the non-instantaneous character of the non-
linearity does not affect the evolution of the incoherent wave.

If fR is larger than (18), i.e. fR = ε p fR0 with p< 1, then the collision term of
the right side is dominant and we recover the weak Langmuir turbulence kinetic
equation, i.e. the non-stationary statistics does not affect the dynamics of the inco-
herent field.

In the particular case (18), if we push the expansion to second order in ε and
consider

n(ε)ω (Z ,T )=
∫ [

B(0)(Z ,T, τ )+ εB(1)(Z ,T, τ )
]

exp(−iωτ)dτ,

we obtain the following generalized Vlasov–Langmuir-like kinetic equation for
n(ε)ω (Z ,T ):

∂Z n(ε)ω (Z ,T )+∂ωκ
(ε)
ω (Z ,T )∂T n(ε)ω (Z ,T )−∂T κ

(ε)
ω (Z ,T )∂ωn(ε)ω (Z ,T )

= γ fR0

π
n(ε)ω (Z ,T )

∫
R̃i(ω−ω′)n(ε)

ω′ (Z ,T )dω′ (22)

with the effective dispersion relation and the effective potential

κ(ε)ω (Z ,T )= k(ω)+ V (ε)
ω (Z ,T ), (23)

V (ε)
ω (Z ,T )= γ (2− fR0ε)

2π

∫
n(ε)
ω′ (Z ,T )dω′

+εγ fR0

2π

∫
R̃r(ω−ω′)n(ε)

ω′ (Z ,T )dω′. (24)

Let us remark that the effective potential V (ε)
ω (Z ,T ) now involves a convolution

with the real part of the Fourier transform of the response function, R̃r(ω), so
that V (ε)

ω (Z ,T ) now depends on the frequency ω. Then contrarily to the conven-
tional Vlasov-like equation [see (19–21)], the effective dispersion relation κ(ε)ω (Z ,T )
no longer splits into the sum of a t-dependent and a ω-dependent contributions.
Note that the kinetic equations (19) and (22) derived above have the same struc-
ture as the inhomogeneous weak Langmuir turbulence kinetic equation discussed
in [27,32]. Let us remark, however, that the mean field potential Vω(z, t) involved
in the dispersion relation considered in [27,32] differs substantially from the mean
field potentials obtained here.

The Vlasov-like equation and the weak Langmuir turbulence equation both
conserve the total power (quasi-particle number) of the optical field,
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N = (2π)−1
∫∫

nω(z, t)dωdt . These equations are also known to conserve the non-
equilibrium entropy,

S(z)= 1
2π

∫∫
log[nω(z, t)]dωdt. (25)

Let us show that the Vlasov–Langmuir-like kinetic equation (19) or (22) also con-
serves S. This is obvious for (19) since the dispersion relation (20) for κ(0)ω (t)
splits into the sum of a t-dependent and a ω-dependent contributions, as it occurs
for the Vlasov equation. However, this is not the case of the generalized dis-
persion relation κ

(ε)
ω (t) (23) associated to the Vlasov–Langmuir equation (22). To

show that (22) conserves S, one can simply write ∂zS = 1
2π

∫∫
∂tκ ∂ω log(n)dωdt −

1
2π

∫∫
∂ωκ ∂t log(n)dω dt . Integrating by parts the first (second) term with respect

to t (ω), the two terms cancel each other and ∂zS =0.
The conservation of the non-equilibrium entropy (25) is consistent with the fact

that the Vlasov–Langmuir kinetic equation (19) or (22) are formally reversible, i.e.
they are invariant under the transformation (z,ω, t)→ (−z,−ω, t). Note that the
requirement of the sign inversion in ω can be understood by analogy with kinetic
gas theory, where time reversal needs the inversion of the velocities of the particles,
(t, k, x)→ (−t,−k, x). Accordingly, the Vlasov–Langmuir kinetic equation (19) or
(22) does not describe an irreversible evolution of the optical field to thermody-
namic equilibrium. The process of thermal wave relaxation to equilibrium is the
subject of the next section. We finally note that, although the kinetic equation has
been derived in one-dimension and in the temporal domain, it can easily be gen-
eralized to the spatio-temporal evolution of the field [85,86].

2.3. STATIONARY STATISTICS AND INSTANTANEOUS RESPONSE: WAVE TURBULENCE

EQUATION

Let us remark that the relationship between formal reversibility and actual dynam-
ics can be rather complex for infinite dimensional Hamiltonian systems like
classical optical waves. In integrable systems, such as the one-dimensional (NLS)
equation, the dynamics may be expected to be essentially periodic in time, reflect-
ing the underlying regular phase-space structure of nested tori. This recurrent
behavior is broken in non-integrable systems, where the dynamics is in general
governed by an irreversible process of diffusion in phase space [87].3 The essen-
tial properties of this irreversible evolution to equilibrium are described by the
wave turbulence theory. Let us remark that besides this non-equilibrium kinetic
approach, the equilibrium properties of a random nonlinear wave may be studied
on the basis of equilibrium statistical mechanics by computing appropriate parti-
tion functions [88–93].

3The statistical description of an integrable wave system still constitutes a longstanding prob-
lem that has been recently discussed by V. E. Zakharov at the conference in honor of B. Vladimir
Matveev’s 65th birthday, Statistical description of integrable systems (Dijon, June 28–July 2, 2009).
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In the following, we shall briefly outline the derivation of the Hasselmann (or
wave turbulence) kinetic equation for a random wave characterized by a stationary
statistics that propagates in a nonlinear medium with an instantaneous response
time. In particular, we shall highlight the differences with respect to the derivation
of the Vlasov–Langmuir equation, while we refer the reader to [58,67] for a rigor-
ous derivation of the wave turbulence equation. In the limit of an instantaneous
response, fR =0, (1) recovers the integrable NLS equation. In this limit, the wave
turbulence kinetic equation is not relevant. In order to break the integrability of
the NLS equation, we shall introduce higher-order dispersion effects in the NLS
equation,

i
∂ψ

∂z
=

m∑
j≥2

(−i) jβ j

j !
∂ jψ

∂t j
+γ |ψ |2ψ. (26)

The inclusion of higher-order dispersion effects is extremely important for the
description of the propagation of a broadband optical wave in an optical fiber [94].
More precisely, the higher-order time derivatives originate in a Taylor expansion
series of the dispersion curve of the optical fiber around the carrier frequency
ω0 [94,95]. This becomes apparent by looking at the linear dispersion relation of
(26),

k(ω)=
m∑

j≥2

β jω
j

j ! . (27)

Equation (26) conserves three important quantities, the power of the field N =∫ |ψ |2 dt , the momentum P = Im
∫
ψ∗ ∂tψ dt and the Hamiltonian H = E + U ,

which has a linear (kinetic) contribution E and a nonlinear contribution U =
γ
2

∫ |ψ |4 dt . It proves convenient to write the Hamiltonian in Fourier’s space,

H =
∫

k(ω)|ψ̃ω|2dω+ γ

4π

∫
ψ̃ωψ̃ω1ψ̃

∗
ω2
ψ̃∗
ω3
δω+ω1−ω2−ω3 dωdω1dω2dω3, (28)

where δω+ω1−ω2−ω3 ≡ δ(ω + ω1 − ω2 − ω3) denotes the one-dimensional Dirac’s
δ−function. In (28), ‘ψ̃ω’ stands for the Fourier transform of the field amplitude
defined by ψ̃(z,ω)= 1√

2π

∫
ψ(z, t) exp(−iωt)dt .

As discussed in Section 2, the derivation of the wave turbulence kinetic equa-
tion is based on a perturbation expansion theory in which linear dispersive effects
dominate nonlinear effects, |U/E |�1. Accordingly, an effective large separation of
the linear and the nonlinear lengths scales takes place [65–67]. In this way, the sta-
tistics of the field may be assumed to be Gaussian, which allows one to achieve
the closure of the hierarchy of moment equations. Note that the statistics does not
need to be Gaussian initially. Because linear effects dominate nonlinear effects, it is
the linear behavior which brings the system close to a state of Gaussian statistics.

The wave turbulence equation assumes a priori that the statistics of the wave
is stationary, i.e., it is stationary initially at z = 0, and we assume that it remains
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stationary at any z (see the comment at the end of Section 1). Then it proves con-
venient to derive the kinetic equation in Fourier’s space. In this respect, we remark
that, because the statistics is stationary, the spectrum of the field no longer depend
on the time variable, t . More precisely, the spectrum of a field characterized by a
stationary statistics is δ-correlated, 〈ψ̃(z,ω1) ψ̃

∗(z,ω2)〉= nω1(z) δω1−ω2 . By means
of a Fourier’s expansion of the NLS (26), one may readily derive the following
equation for the evolution of the averaged spectrum of the field

i∂znω0 δω4−ω0 = γ

2π

∫ (
J 2,4

1,3 δω0−ω1+ω2−ω3 − J̄ 1,3
2,0 δω4−ω1+ω2−ω3

)
dω1dω2dω3

(29)

where J k,l
i, j = 〈ψ̃(z,ωi ) ψ̃(z,ω j ) ψ̃

∗(z,ωk) ψ̃
∗(z,ωl)〉 refers to the fourth-order

moment of the field, J̄ ≡ J ∗ being the complex conjugate of J . We note again
from (29) that the second-order moment of the field depends on the fourth-order
moment. If one assumes that the field obeys a Gaussian statistics, the right-hand
side of (29) vanishes exactly, simply because the statistics of the field has been
assumed to be stationary, which corroborates the results of the previous section.
Accordingly, in contrast with the problem of non-stationary statistics and non-instan-
taneous nonlinearity, the closure of the moment equations now requires a second-
order perturbation theory in ε=|E/U |�1.

The details of the derivation of the kinetic equation can be found in [58]. Fol-
lowing the random phase approximation approach, one derives an equation for
the fourth-order moment J that depends on the sixth-order moment of the field.
Owing to the factorizability property of Gaussian fields, the sixth-order moment is
expanded in terms of products of second-order moments, which gives the follow-
ing Hasselmann (or wave turbulence) kinetic equation describing the evolution of
the spectrum nω(z) of the optical field

∂zn(z,ω)=Coll[n], (30)

with the collision term

Coll[n]=
∫

n(ω)n(ω1)n(ω2)n(ω3)
[
n−1(ω)+n−1(ω1)−n−1(ω2)−n−1(ω3)

]

×W dω1 dω2 dω3, (31)

where ‘n(ω)’ stands for ‘n(z,ω)’ in (31). This collision term provides a kinetic
description of the four-wave interaction process underlying the cubic nonlinear-
ity of the NLS equation. The corresponding space-time resonant conditions of
energy and momentum conservation are expressed by the presence of the Dirac
δ−functions in W = γ 2

π
δ(ω+ω1 −ω2 −ω3) δ[k(ω)+ k(ω1)− k(ω2)− k(ω3)], where

k(ω) is given by the linear dispersion relation (27).
The kinetic equation (30) exhibits a structure analogous to the Boltzmann’s kinetic

equation that describes the non-equilibrium evolution of a dilute classical gas [78]. It
thus exhibits similar properties. It conserves the intensity (density of power) N/T0 =
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1
2π

∫
n(z,ω)dω, the density of kinetic energy E/T0 = 1

2π

∫
k(ω)n(z,ω)dω and the

density of momentum M/T0 = 1
2π

∫
ω n(z,ω)dω, where T0 refers to the considered

numerical time window. The irreversible character of the kinetic (30) is expressed by
a H -theorem of entropy growth, ∂zS ≥ 0, where the non-equilibrium entropy reads
S(z)/T0 = 1

2π

∫
Log[n(z,ω)]dω. The thermodynamic equilibrium state nRJ(ω) cor-

responds to the spectrum that realizes the maximum of non-equilibrium entropy
S[n], given the constraints of conservation of E, P and N . By introducing the cor-
responding Lagrange’s multipliers, 1/T, λ/T and −μ/T , one readily obtains the RJ
equilibrium distribution

nRJ(ω)= T

k(ω)+λω−μ. (32)

This equilibrium spectrum nRJ(ω) is a stationary solution of the kinetic equa-
tion (30). This simply means that, once the field has reached the equilibrium state
(32), its spectrum no longer evolve during the propagation, because such spectrum
refers to the ‘most disordered’ equilibrium state.

Let us note that, as occurs in standard thermodynamics, the equilibrium
state (32) is characterized by a set of ‘macroscopic’ parameters, i.e., (T,μ,λ).
Actually, these three parameters are calculated from the conserved quantities
(E, N ,M) by substituting the equilibrium spectrum (32) into the definitions of
E , N and M . One thus obtains an algebraic system of three equations for three
unknown parameters, which can be solved numerically. This was done in [31,56],
where a quantitative agreement was obtained between the RJ spectrum (32) and
the numerical simulations of the NLS (26), without using adjustable parameters.
More precisely, we always found a unique triplet solution (T,μ,λ) for a given set
(E, N ,M), a feature which is consistent with the fact that a ‘closed’ (conserva-
tive and Hamiltonian) system should exhibit a unique thermodynamic equilibrium
state [78].

The parameters T and μ are called, by analogy with thermodynamics, the
temperature and the chemical potential of the optical field at equilibrium. On
the other hand, the meaning of the parameter λ may become apparent through
the analysis of the group-velocity vg of the optical field [k′(ω) ≡ ∂k/∂ω =
1/vg(ω)]. Indeed, recalling the definition of an average in kinetic theory, 〈A〉eq =∫ AnRJ(ω)dω/

∫
nRJ(ω)dω [78] and making use of the equilibrium spectrum (32),

one readily obtains
〈
k′(ω)

〉
eq =−λ. (33)

We remark that this result is valid for an even highest order dispersion in k(ω)
[m even in (27)], a feature which also guarantees nRJ(ω) to be well defined.
According to relation (33), the parameter λ has a simple physical meaning, it
denotes the average of the inverse of the group-velocity of the optical field at equi-
librium. This observation is important in order to provide a simple interpretation
of the ‘velocity-locking’ effect of incoherent wave-packets discussed in [53,54,56],
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in analogy with statistical equilibrium thermodynamics. Note that the average 〈.〉eq

in (33) is quite different from the average over the realizations (〈.〉) considered
above to derive the kinetic equations. The average 〈.〉eq may be regarded as a sim-
ple ‘arithmetic average’ over the equilibrium distribution nRJ(ω).

The derivation of the wave turbulence (30) may easily be extended to several
spatial dimensions, which is relevant, e.g., for the description of the multi-
dimensional NLS equation. A peculiar property of the corresponding RJ distribu-
tion is that it exhibits a condensation-like process: there exists a critical value of
the energy, Hc, below which the fundamental mode (homogeneous wave) becomes
macroscopically populated to the detriment of the other modes [63,96,97,99]. In
other terms, the condensation process is characterized by the spontaneous forma-
tion of a homogeneous plane wave starting from an initial random field. This ‘self-
organization process’ results from the natural thermalization of the nonlinear wave
towards the state of maximum entropy. The thermodynamic properties of wave
condensation are analogous to those of the genuine Bose–Einstein condensation,
despite the fact that the considered optical field is completely classical [97,99].

3. Anomalous Thermalization

In the second part of the article, we shall illustrate the wave turbulence kinetic
equation (30,31) through the analysis of a process of anomalous thermaliza-
tion [71,72]. The anomalous thermalization is characterized by an irreversible
evolution of the random wave toward a ‘local’ equilibrium state of a fundamen-
tal different nature than the expected RJ equilibrium state (32). In the recent
work [71,72], we focused our analysis into the vector NLS equation, which is
known to describe nonlinear polarization effects of the optical beam. In this way,
we provided an experimental signature of the transient process of the anomalous
thermalization. In this section we shall consider another example of NLS equa-
tion in which the anomalous thermalization process is characterized by unexpected
properties.

3.1. MODEL EQUATION: THIRD-ORDER DISPERSION

We consider the NLS equation (26) discussed in Section 2.3, in which the disper-
sion relation k(ω) (27) is truncated up to the third-order, m =3,

i∂zψ=−σ∂2
t ψ+ iα∂3

t ψ+|ψ |2ψ. (34)

For convenience, we normalized the problem with respect to the nonlinear length
Lnl = 1/γ e2

0 and time τ0 = (|β2|Lnl/2)1/2, where e2
0 denotes the average power of

the wave, γ the nonlinear coefficient, and β2 the second-order dispersion coeffi-
cient. The variables can be recovered in real units through the transformations t →
tτ0; z → zLnl and ψ j →ψ j e0. In these units, the normalized third-order dispersion
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(TOD) parameter reads α = β3/(6L1/2
nl (|β2|/2)3/2), where β2 and β3 refer respec-

tively to the second- and third-order dispersion coefficients, while σ = sign(β2)

denotes the sign of β2. The dispersion relation thus reads

k(ω)=σω2 +αω3. (35)

k(ω) exhibits an inflection point at the frequency ω∗ = −σ/(3α). This frequency
plays an important role in the theory presented below and it is usually referred
to the ‘zero-dispersion frequency’ in the nonlinear optics community. We note in
particular that the frequency components of the wave exhibit different dispersion
properties. For instance, assuming α>0, the wave evolves in the so-called normal
dispersion regime [∂2k(ω)/∂ω2>0] for those frequencies verifying ω>ω∗, whereas
for ω<ω∗ the wave evolves in the anomalous dispersion regime [∂2k(ω)/∂ω2<0].
Without loss of generality, we shall assume in the following that α>0. It is impor-
tant to note that we shall not consider the limit α→ 0, because in this limit (34)
is completely integrable and the kinetic equation becomes irrelevant. We note that
the NLS model (34) has been recently considered to study an analogous of rogue
wave-like phenomena in the context of optical waves [100,101].

3.2. WAVE TURBULENCE KINETIC THEORY

3.2.1. Local Equilibrium Spectrum

The kinetic equation that governs the evolution of the averaged spectrum of the
field ψ is given by (30,31), with the dispersion relation (35). Two integrals in the
kinetic equation may be computed exactly owing to the δ-functions in W . Making
use of the property,4 we obtain

∂zn(ω, z)= 1
3π |α|

∫
nωnq−ωnω1 nq−ω1

|ω−ω1| |ω+ω1 −q|
(

1
nω

+ 1
nq−ω

− 1
nω1

− 1
nq−ω1

)
dω1. (36)

where q = −2σ/3α = 2ω∗. The integrand of this equation exhibits a remarkable
property: It is invariant under the substitution ω→ ω̄=q −ω. This peculiar prop-
erty implies ∂zn(ω, z)=∂zn(ω̄, z), which thus reveals the existence of the following
‘local’ invariant

J (ω)=n(ω, z)−n(q −ω, z). (37)

This invariant is ‘local’ in the sense that it is verified for each frequency ω indi-
vidually, ∂z J (ω)=0. It means that the subtraction of the spectrum by the reverse
of itself translated by q = 2ω∗, remains invariant during the whole evolution of
the wave. The invariant (37) finds its origin in the following degenerate resonance
of the phase-matching conditions: a pair of frequencies (ω,q − ω) may resonate

4We made use of the property
∫
δ( f ) γ (x)dx = ∫

S γ (x)/|∇ f |dS, where S is the hypersurface
f =0.



KINETIC DESCRIPTION OF RANDOM OPTICAL WAVES

with any pair of frequencies (ω′,q −ω′), because k(ω)+k(q −ω)=σq2/3 does not
depend on ω. The invariant Jω may thus be used to derive the following kinetic
equation governing the evolution of the averaged spectrum n(ω, z)

∂zn(ω, z)= 1
3π |α|

∫
nω(nω− Jω)nω1(nω1 − Jω1)

|ω−ω1| |ω+ω1 −q|
(

1
nω

+ 1
nω− Jω

− 1
nω1

− 1
nω1 − Jω1

)
dω1.

(38)

The kinetic equation (38) is characterized by a H -theorem of entropy growth,
∂zS ≥ 0, where the non-equilibrium entropy reads S(z)/T0 = 1

2π

∫
log[nω(z)]dω.

One may also verify that the kinetic equation (38) conserves the power N , the
energy E and the momentum M . As outlined above in Section 2.3, the equilibrium
spectrum is obtained by looking at the extremum of S[nω] given the constraints of
conservation of E , M and N . Introducing the corresponding Lagrange multipliers
λ j ( j = E,M, N ) and making use of the variable change ω→q −ω, the extremum
condition reads 1/nloc

ω + 1/(nloc
ω − Jω)= λ, where λ= λE q2/3 + λMq + 2λN . The

important point to underline is that, because of the existence of the local invariant
Jω, the condition of extremum entropy does not involve the frequency, i.e. λ does
not depend on ω. This simply means that the conservations of the energy E and
of the momentum M are implicitly verified as a consequence of the invariant Jω.
The corresponding local equilibrium spectrum thus reads

nloc(ω)= Jω
2

+ 1
λ

⎛
⎝1+

√
1+

(
λJω

2

)2
⎞
⎠, (39)

where we chose the positive sign indetermination in front of the square-root
because of the condition of positivity of the spectrum, nloc

ω (z)≥ 0. The parameter
λ is determined from the initial condition through the conservation of the power,
N/T0 = 1

2π

∫
nloc(ω)dω= 1

2π

∫
n(ω, z = 0)dω. Note that the equilibrium spectrum

nloc(ω) verifies the conservations of the energy E and of the momentum M . We
remark that the equilibrium distribution (39) vanishes exactly the collision term of
the kinetic equation, i.e., it is a stationary solution of (38).

The equilibrium distribution is characterized by an unexpected property: it
exhibits a constant spectral pedestal, nloc(ω)→2/λ for |ω|�|ω∗|. This remarkable
property is confirmed by the numerical simulations of both the NLS (34) and the
kinetic equation (38), a feature that will be discussed in Section 3.3. We remark in
this respect that in the tails of the spectrum (|ω|�|ω∗|), the invariant Jω vanishes,
so that a constant spectrum (nω = const) turns out to be a stationary solution of
the kinetic equation (38).

3.2.2. Local Versus Integral Invariants

The equilibrium distribution (39) is of a fundamental different nature than the
conventional thermodynamic RJ distribution (32). In particular, as discussed just
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above, nloc(ω) is characterized by a constant spectral pedestal in the tails of
the spectrum. The kinetic theory reveals that the difference between nloc(ω) and
nRJ(ω) is due to the existence of the local invariant Jω. Let us briefly discuss the
‘local’ nature of the invariant Jω in regard to the integral invariants investigated in
[73–76] in line with the problem of integrability. First of all, one may note that the
possible existence of a set of additional integral invariants, Q j = ∫

φ j (ω)nω(z)dω,
would still lead to a (generalized) RJ distribution,

nRJ(ω)= T

k(ω)+∑
j λ jφ j (ω)−μ, (40)

where λ j refer to the Lagrangian multipliers associated to the conservation of
Q j [76]. The local invariant Jω thus leads to an equilibrium spectrum nloc(ω) of
a different nature than the generalized RJ spectrum (40).

One may wonder whether the local invariant Jω may generate the existence of
integral invariants of the kinetic equation (38). We can easily verify that Q =∫
φω nω(z)dω is a conserved quantity of (38) whenever φω satisfies the following

relation

φω1 +φq−ω1 =φω2 +φq−ω2 , (41)

for any couple of frequencies (ω1,ω2). In other terms, it is sufficient that φω +
φq−ω does not depend on ω for Q to be a conserved quantity of (38). A simple
way to satisfy this condition is to construct φω as follows, φω=ϕω−ϕq−ω. In this
way, regardless of the particular choice of the function ϕω,

Q =
∫ (

ϕω−ϕq−ω
)

nω(z)dω, (42)

is a conserved quantity of the kinetic (38). These simple considerations illustrate
that the existence of a local invariant (Jω) may generate an infinite set of integral
invariants Q.

3.3. NUMERICAL SIMULATIONS

In the above considerations we implicitly assumed that the interval of integration
in frequency space goes from minus infinity to infinity. This may appear surpris-
ing, because the equilibrium distributions discussed above does not lead to con-
verging expressions for the energy E in the ‘short-wavelength’ limit, i.e. ω→±∞.
Note that this observation holds for the RJ equilibrium distribution (32), but also
for the local equilibrium state (39), which exhibits a constant spectral pedestal. We
shall see in the following that, in spite of this technical difficulty, the local equi-
librium spectrum (39) has a physical signification, in the sense that it provides an
insight into the asymptotic evolution of the wave spectrum nω(z).

We analyzed the anomalous thermalization process by performing numerical
simulations of both the NLS (34) and of the corresponding wave turbulence
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Figure 2. First stage of the spectral evolution obtained by integrating numerically the NLSE (34)
(blue) and the kinetic equation (38) (red). First column α= 0.05, second column α= 0.1, third col-
umn α=0.2, for z =30 (first row), z =200 (second row), z =2,000 (third row). The green dashed line
represents the initial condition (z =0). We set here σ =1. Note that the dashed purple line in (a),
(b) and (c) denotes the local equilibrium state (39), nloc(ω) (color figure online).

kinetic equation (38). We remark in this respect that the temporal discretization of
the NLS (34) naturally introduces a frequency cut-off, ωc =π/dt , which regularizes
the unphysical divergence of the equilibrium distributions (32) or (39), where dt
refers to the temporal discretization of the numerical temporal window. The evo-
lution of the spectrum of the field is essentially characterized by two stages. In the
following we analyze the two stages separately.

3.3.1. First Stage of the Evolution: Formation of a Spectral Shoulder

Typical evolutions of the spectrum of the field are reported in Figure 2 for three
different values of the parameter α. The initial condition is the same for the
three values of α and it is represented by a dashed green line. It refers to a
random wave characterized by a gaussian spectrum and random spectral phases:
ψ̃(z,ω)= A exp[−ω2/(2σ 2

0 )] exp[i2πθ(ω)], where A refers to a normalization con-
stant and θ(ω) is a δ-correlated random function uniformly distributed on [0,1], a
feature which is consistent with the basic statement of the weak turbulence theory.
Accordingly, the field ψ(z =0, t) is of zero mean and exhibits a stationary Gauss-
ian statistics.
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Figure 3. Invariants J (ω) corresponding to the two columns in Figure 2, (a) α=0.05, (b) α=
0.2. The red line shows Jω as determined from the initial condition, while the blue line cor-
responds to the numerical integration of the NLSE at z =2,500 (σ =1) (color figure online).

We remark in Figure 2 that for small propagation lengths (typically z < 200)
the high-frequency tail of the spectrum does not exhibit any significant spectral
broadening, whereas in the low-frequency part a broad spectral shoulder emerges
[101], which is then preserved for long propagation lengths (Figure 2 left column).
Note that this asymmetric spectral evolution preserves the momentum (barycen-
ter) M of the spectrum. For small values of the parameter α (left column of
Figure 2), a quantitative agreement is obtained between the numerical simulations
of the NLS (34) and the wave turbulence kinetic equation (38). We underline that
such a quantitative agreement is obtained without any adjustable parameter. This
good agreement is corroborated by the fact that the NLS (34) conserves, in aver-
age, the invariant Jω, as illustrated in Figure 3a, in which an average over 50 NLS
spectra (from z =2,500 to z =2,550) has been realized. Besides such a quantitative
agreement, we note in the second and third columns of Figure 2 that a significant
discrepancy between the NLS evolution and the kinetic evolution arises as the
parameter α is increased.

The origin of such a discrepancy may not be discussed in the framework
of the standard criterion, |U/E | � 1, which is usually invoked to assess the
validity of the wave turbulence theory. Indeed, in the present case |U/E | takes
approximately the same value for the three different cases analyzed in Figure 2,
i.e. |U/E | 
 0.12. This is illustrated in Figure 4, which reports the evolutions
of the kinetic energy E , the nonlinear energy U , the total energy H , as well
as the contributions of the second- and third-order dispersions to the kinetic
energy, E2/T0 =∫

σω2|ψ̃ |2(ω)dω, E3/T0 =∫
αω3|ψ̃ |2(ω)dω. Several points may be

remarked in this figure. First of all, we may note that the density of nonlinear
energy keeps an almost constant value, U/T0 ∼ 1, which indicates that the system
is not far from the Gaussian statistics (〈|ψ |4〉 = 2〈|ψ |2〉2). One may also notice
that |E2| and |E3| exhibit an appreciable growth during the evolution, despite
the fact that the total kinetic energy E keeps an almost constant value. As a
matter of fact, the ratio |U/E j | ( j = 2,3) is smaller for α = 0.2 as compared to
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Figure 4. Evolutions of the densities of the Hamiltonian H̃ = H/T0, of the kinetic energy Ẽ =
E/T0, of the nonlinear energy Ũ =U/T0, and of the quadratic Ẽ2 = E2/T0 and cubic Ẽ3 =
E3/T0 energy contributions to the kinetic energy, for α=0.05 (a), and α=0.2 (b) (T0 is the
size of the numerical temporal window). a and b correspond to the first and third columns
reported in Figure 2.

α = 0.05, as clearly illustrated in Figure 4. This would erroneously lead to the
conclusion that the kinetic theory becomes more accurate as α increases, a feature
which is in contrast with the results of the numerical simulations reported in
Figure 2.

This shows that the standard criterion of applicability of the wave turbulence
theory, which compares the linear and nonlinear contributions to the energy, is not
appropriate for the problem under consideration. In this respect, we note that the
system that we are considering is not ‘conventional’, in the sense that, as discussed
above through the dispersion relation (35), the frequency components of the wave
may evolve in both regimes of normal or anomalous dispersion. We shall thus
make use of an improved criterion of applicability of the wave turbulence the-
ory which compares the linear frequency k(ω) to the nonlinear frequency knl(ω)=
∂znω/nω [67,98,99]. Indeed, the derivation of the kinetic equation is based on an
asymptotic expansion procedure of the hierarchy of the moment equations, which
is well-ordered if

R(z,ω)= knl(ω)

|k(ω)| = ∂znω(z)

nω(z)|k(ω)| �1. (43)

A major advantage of this criterion is that it depends explicitly on the frequency ω,
contrarily to the usual criterion which does not distinguishes the frequency com-
ponents that evolve in the normal or anomalous dispersion regime.

We report in Figure 5 the functions R(z,ω) for two cases discussed in Figure 2,
α=0.05 and 0.2. In the example of Figure 5, R(z,ω) has been calculated by aver-
aging 50 spectra obtained by solving the NLS (34) from z = 2,500 to z = 2,550.
This quantity will be denoted by ‘R(ω)’ in the following. Obviously, R(ω) diverges
for the two frequencies ω1 =0 and ω2 =−1/α, since for those frequencies the dis-
persion relation vanishes, k(ω1,2)= 0. Besides this aspect, we note that the func-
tion R(ω) is higher in the neighborhood of the zero dispersion frequency, i.e. for
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Figure 5. Applicability criterion of the wave turbulence theory, R(ω)= knl (ω)/k(ω)� 1, for
two cases considered in Figure 2: a α=0.05, b α=0.2. The function R(ω) is plotted in loga-
rithmic scale, it has been obtained by averaging the NLS spectrum from z =2,500 to z =2,550
(over 50 realizations, σ = 1). The dashed blue line shows the dispersion relation |k(ω)|, the
arrows indicate the location of the zero-dispersion frequency ω∗ (color figure online).

ω∼ω∗. It is interesting to note that R(ω) is globally smaller than 1 for α= 0.05,
whereas for α= 0.2 the function R(ω) exceeds 1 in the neighborhood of ω∼ω∗.
This observation corroborates the numerical results reported in Figure 2, in which
the deviation of the kinetic evolution from the NLS wave evolution becomes sig-
nificant for α=0.2.

The fact that the validity of the kinetic theory becomes questionable in the
neighborhood of the zero dispersion frequency may be simply interpreted as a con-
sequence of the fact that, for ω∼ω∗, linear dispersion effects become perturbative:
the dynamics is thus essentially dominated by nonlinear effects, which invalidates
the weakly nonlinear assumption that underlies the wave turbulence approach. On
the other hand, one may wonder why the validity of the kinetic theory decreases
as the parameter α increases (see Figure 2). We note in this respect that, as α
increases, the sensitive region around the zero dispersion frequency becomes more
populated (we recall that the width of the initial Gaussian spectrum in Figure 2
is kept constant). To quantify this aspect, we analyzed the power that evolves in
the neighborhood of the zero dispersion frequency, N∗ =∫ ω+

ω− nω dω, with ω± =ω∗ ±
δω/2. At z =2,000 we have N∗/N ∼0.008 for α=0.05, whereas for α=0.2 we have
N∗/N ∼ 0.09 (we chose here δω= 2). Although the values of N∗/N slightly oscil-
late during the propagation, we verified that we still have a factor ∼ 10 between
them. In other terms, for α= 0.2 the sensitive region near by the zero dispersion
frequency ω∗ is abundantly populated as compared to α=0.05. This may provide a
simple explanation of the discrepancy observed in the evolutions of the NLS equa-
tion and the kinetic equation as the parameter α increases. We note that, to our
knowledge it is the first time that the criterion R(ω)� 1 is used to directly com-
pare the numerical results of a wave equation and of the corresponding kinetic
equation.

Let us finally note that a spectral evolution similar to that discussed in
Figure 2 is obtained by setting the carrier frequency of the wave in the anomalous
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Figure 6. a Spectrum of the wave obtained by solving numerically the NLS (34) (blue) and
the kinetic equation (38) (red), for the same conditions as in Figure 2 (left column) but
in the anomalous dispersion regime, σ = −1 (z = 200, α= 0.05). The green dashed line rep-
resents the initial condition (z = 0). b Corresponding function R(ω) in logarithmic scale
obtained by averaging the NLS spectrum from z =200 to z =250 (over 50 realizations). The
dashed blue line shows the dispersion relation |k(ω)|, the arrows indicate the location of the
zero-dispersion frequency ω∗ (color figure online).

dispersion regime. This is illustrated in Figure 6a, which reports the spectrum of
the field obtained by integrating numerically the NLS (34) in the same conditions
as in Figure 2 (left column, α = 0.05), except that σ = −1. As expected, in this
case the deformation of the spectrum is reversed, so that the spectral shoulder
emerges in the normal dispersion regime (i.e. for ω>ω∗). The fact that the sys-
tem is not sensitive to the sign of the dispersion coefficient (σ ) is consistent with
the kinetic equation (38), which globally does not depend on the sign of the disper-
sion coefficient σ . We note in Figure 6 that a good agreement is obtained between
the NLS wave evolution and the kinetic evolution. This is confirmed by the fact
that the function R(ω) is smaller than 1 (except for ω=ω1,2 where R(ω) diverges),
as illustrated in Figure 6b. We also note that, as discussed above, R(ω) is higher
in the sensitive region of the zero dispersion frequency, ω∼ ω∗, which corrobo-
rates the discussion of Figure 5. We verified in the numerical simulations of the
NLS (34) that the weakly nonlinear regime considered here prevents the formation
of robust coherent structures, such as the so-called ‘quasi-soliton’ solutions of the
NLS (34) [64]. We analyzed with care the evolution of the field amplitude ψ(z, t)
in many different cases and no robust quasi-soliton structures were ever identified.

Let us now show that the invariant Jω provides a simple qualitative interpreta-
tion of the asymmetric deformation of the spectrum discussed in Figure 2. For this
purpose, one should consider that, in general, the natural tendency of a nonlinear
wave is to generate new frequency components in the tails of its spectrum, which
thus leads to a lowering of the central part of the spectrum. In the particular
case considered here, the lowering of the spectrum is constrained by the existence
of the invariant Jω, because nω = Jω + nq−ω ≥ Jω. It turns out that the spectrum
tends to approach the spectral profile of Jω for those frequencies verifying Jω≥ 0
i.e., nω 
 Jω for ω ≥ q/2. Making use of the substitution ω→ q − ω, the above
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Figure 7. a Second stage of the spectral evolution obtained by integrating numerically the NLSE
(34) (blue) and the kinetic (38) (red) at z = 20,000 for α= 0.05 (σ = 1). b Numerical simulations
of the kinetic (38) showing the spectral profile n(z,ω) at different propagation lengths z: a con-
stant spectral pedestal emerges in the tails of the spectrum (α=0.05). The spectrum slowly relaxes
toward the equilibrium state nloc(ω) given by (39) (blue) (color figure online).

expression reads nq−ω 
 −Jω, because Jq−ω = −Jω. For the frequencies ω≤ q/2,
we thus obtain nω= Jω+ nq−ω
 0, i.e. the field essentially exhibits a small ampli-
tude constant spectrum. In summary, in the normal dispersion regime (ω≥ω∗), the
spectrum evolves towards Jω, while in the anomalous dispersion regime (ω≤ω∗)
the spectral amplitude is small and almost constant. This provides a simple inter-
pretation of the emergence of the spectral shoulder discussed in Figure 2, which
characterizes the first stage of the spectral evolution.

3.3.2. Second Stage of the Evolution: Formation of a Constant Spectral Pedestal

The second stage of the spectral evolution of the wave is characterized by the
emergence of a constant spectral pedestal in the far tails of the spectrum. This is
illustrated in Figure 7, which reports the numerical simulations of the NLS (34)
and of the kinetic equation (38) for long propagations. Let us note the remark-
able agreement between the NLS wave equation and the kinetic equation for a very
long propagation (z = 20,000), and down to ∼ 10−8 in the tails of the spectrum.
We see that a constant spectral pedestal progressively emerges as a result of two
fronts that propagate in opposite directions in frequency space, and symmetrically
with respect to the zero dispersion frequency, ω∗ =q/2. Such a symmetric propaga-
tion of the two fronts may be interpreted as a consequence of the degenerate reso-
nance discussed above through the invariant Jω [see (37)], simply because the pairs
of frequencies (ω j ,q −ω j ) involved in the conversion (ω1,q −ω1)→ (ω2,q −ω2)

are always symmetric with respect to ω∗. It turns out that the two fronts propa-
gate with the same velocity in frequency space, although they are asymmetric with
respect to the carrier frequency of the wave, i.e. ω=0.

As discussed above in the framework of the local equilibrium distribution (39), a
peculiar property of nloc(ω) is precisely the fact that it exhibits a constant spectral
pedestal, nloc(ω)→2/λ for |ω|�|ω∗|. The numerical simulations of both the NLS
(34) and the kinetic equation (38) thus confirm that the wave slowly relaxes toward
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Figure 8. Equilibrium spectrum nloc(ω) (39) (red), initial condition (blue) and corresponding
invariant Jω (dashed green), for α= 0.02 (a), α= 0.05 (b), and α= 0.08 (c). The second row
shows the same plots in logarithmic scale [because of the sign change of the invariant, we
plotted |Jω| in (d–f)] (color figure online).

the local equilibrium spectrum given by (39). Note that a complete relaxation of
the simulations toward the exact analytical expression (39) cannot be demonstrated
in practice, simply because the numerical schemes used to solve the NLS equation
and the kinetic equation break down as the two symmetric fronts approach the
frequency cut-off ωc associated to the numerical discretization of the equations.
In this way, the analytical expression of the equilibrium distribution should be
regarded as the asymptotic evolution to which the wave spectrum tends to evolve.

The local equilibrium spectrum (39) also provides physical insight into the long-
term evolution of the field. Indeed, we may notice in Figure 8 that nloc(ω) exhibits
a lateral dip for ω<ω∗, i.e. into the anomalous dispersion regime. Such a spectral
dip is in fact reminiscent of the spectral shoulder generated in the first stage of
the evolution discussed in Figure 2. The central frequency of the spectral dip pre-
cisely corresponds to the frequency in which the invariant J (ω) reaches its mini-
mum value, a feature that is illustrated by various different examples in Figure 8.
Note also that, for very small values of α, we observed a discrepancy between the
kinetic equation (38) and the NLS (34) evolutions. We observed in this case a neg-
ligible contribution of E3 with respect to E2. This means that third-order disper-
sion becomes negligible and the NLS (34) recovers the integrable scalar NLS equa-
tion, whose dynamics cannot be described by the kinetic equation (38).

4. Conclusion

In conclusion, considering the NLS equation as a representative model of nonlin-
ear wave propagation, we have sketched the derivation of some fundamental kinetic
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equations that describe the evolution of the averaged spectrum of the random non-
linear wave. When the amount of non-stationary statistics is comparable to the
amount of non-instantaneous nonlinearity, we derived a generalized Vlasov–Lang-
muir equation that combines the Vlasov and Langmuir approaches within a general
framework. The Vlasov–Langmuir equation is formally reversible, which reveals that
the non-stationary statistics and the delayed nonlinear response both prevent the
thermalization of the optical field. In the Vlasov and Langmuir limits, this equa-
tion describes important phenomena, such as incoherent modulational instability or
the generation of spectral incoherent solitons. The Vlasov and Langmuir dynamics
have been usually studied separately in the literature. However, the preliminary work
shows that their interplay may lead to unexpected results: the generation of spectral
incoherent solitons may be prevented by incoherent modulational instability, and
reciprocally, incoherent modulational instability may be suppressed by the spectral
red-shift described by the Langmuir effect [84]. Although this equation has been
derived in the temporal domain, it may be easily generalized to the spatio-temporal
evolution of the optical field. A complete analysis of the Vlasov–Langmuir kinetic
equation still needs to be done. In particular, it would be important to study the exis-
tence of soliton solutions of the whole Vlasov–Langmuir kinetic equations (19) or
(22), which would constitute a non-trivial generalization of Vlasov-like solitons [24–
26] and weak Langmuir turbulence solitons [33–36].

On the other hand, when the optical field exhibits a stationary (or homoge-
neous) statistics, and when it propagates in an instantaneous response nonlinear
medium, the closure of the hierarchy of the moment equations requires a sec-
ond-order perturbation theory, which leads to the Hasselmann, or wave turbu-
lence, kinetic equation (see Section 2.3). This equation is irreversible and usually
describes a relaxation process of the random wave toward the thermodynamic RJ
equilibrium distribution.

In the second part of the paper we illustrated the applicability of the wave tur-
bulence kinetic equation by analyzing a process of anomalous thermalization that
occurs in the framework of the scalar NLS equation in the presence of third-order
dispersion. The anomalous thermalization finds its origin in a degenerate reso-
nance of the resonant conditions of energy and momentum conservation. Such a
degeneracy is responsible for the existence of a local invariant in frequency space.
The relaxation process turns out to be constrained by the existence of this local
invariant, so that the wave system relaxes toward a local equilibrium state of a
fundamental different nature than the RJ equilibrium state. We also briefly dis-
cussed the important difference that distinguishes a ‘local’ invariant with an inte-
gral invariant, in particular by showing that the ‘local’ invariant may generate an
infinite set of integral invariants. In the last part of the paper we reported the
results of the numerical simulations of the NLS equation and of the correspond-
ing kinetic equation. For a small value of the third-order dispersion, a quanti-
tative agreement is obtained between the NLS and the kinetic equation, without
using adjustable parameters, and for long propagation lengths. As the third-order
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dispersion coefficient increases, the simulations reveal a discrepancy between the
NLS wave equation and the kinetic equation. Through the analysis of an improved
criterion of applicability of the wave turbulence theory, we ascribed such a dis-
crepancy to the existence of a zero dispersion frequency. In the neighborhood of
this frequency linear dispersion effects become perturbative, so that the dynamics
turns out to be essentially dominated by nonlinear effects. The numerical simula-
tions of both the NLS and kinetic equations confirm that the wave slowly relaxes
towards the local equilibrium state, which is characterized by a constant spectral
pedestal. In substance, the complex evolution of the spectrum identified through
this anomalous thermalization can be explained in detail by the existence of the
local invariant. We are presently considering possible mechanisms that would per-
mit a generalization of the anaomalous thermalization process described here in
the particular example of the NLS equation with a third-order derivative.
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