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Abstract
In this paper, a perturbation theory for the nonlinear Schrödinger equation with
non-vanishing boundary conditions based on the inverse scattering transform
is presented. It is applied to study the stability of the soliton propagation on a
continuous-wave background. It is shown that the soliton is rather robust with
respect to dispersive perturbations but it can be strongly affected by damping.
In particular, it is shown that adiabatic approaches can underestimate the decay
of the soliton energy.

PACS numbers: 42.65.−R, 47.20.Ky

(Some figures may appear in colour only in the online journal)

1. Introduction

It is well known that the one-dimensional nonlinear Schrödinger (NLS) equation can model the
wave dynamics in the deep ocean [20] and pulse propagation in optical fibers [1]. This analogy
has recently found an imaginative and insightful development. Indeed, the understanding of
the infamous hydrodynamic rogue waves on the surface of the ocean [7] is not straightforward
as very few observations are available. The discovery that optical rogue waves can be generated
in optical systems [22] has opened the way to new research directions, as it is now possible
to produce and study optical rogue waves in laboratories. Furthermore, the analysis of special
solutions of the NLS equation that could describe rogue waves has attracted a lot of attention.

The bright soliton solution for the NLS equation with vanishing boundary conditions was
exhibited by Zakharov and is now well known [19]. Using the inverse scattering transform,
soliton solutions with non-vanishing boundary conditions were first investigated in [16]. It is
also possible to find this solution using more direct approaches based on a direct algebraic
ansatz [3] or the Bäcklund transform [13]. This solution is nowadays better known under the
name of Ma soliton [18]. In the notation of equation (2.1), it is a wave solution periodic in
t and localized in x. When the background wave goes to zero, one recovers the standard bright
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soliton of the NLS equation. The Ma soliton can be seen as a particular class of a more general
family of solutions that describes periodic wave solutions in both t and x [3]. Note that the
Akhmediev breathers are another particular class of this general family of solutions [4]. These
breathers are localized in t and periodic in x and they can be used to describe a nonlinear
stage of the modulational instability. The Peregrine solution [21] is a rational solution of the
NLS equation, which can be seen as a limiting case of both a one-parameter family of Ma
solitons or a one-parameter family of Akhmediev breathers (when the periods go to infinity).
The Peregrine solution was observed in [17] and it is a very good candidate for a ‘wave that
appears from nowhere and disappears without a trace’ [2], that is, a rogue wave. The Ma
solitons provide one way to study the Peregrine solution.

It is of theoretical and practical interest to understand the stability of the Ma soliton under
different types of perturbations [9]. In the hydrodynamic context, one should take into account
finite depth, bottom friction, dissipation and other effects present in the ocean [6, 23]. In
the nonlinear fiber optics context, the NLS equation is a simplified model of a more general
equation that should take into account high-order dispersion and nonlinear effects [8, 24] and
damping [6, 14].

The stability of the solutions of the NLS equation with non-vanishing boundary conditions
has already been investigated using numerical or analytical tools. Background modulational
instability and Raman self-scattering were numerically investigated in [5]. In this paper, we
are not concerned with the possible modulational instability of the background but we focus
our attention to the stability of the Ma soliton with respect to different types of perturbations.
An adiabatic approach was used to study the stability of the soliton in [10]. In this approach, it
is assumed that the solution keeps its form and that its parameters slowly evolve. The adiabatic
evolutions of the soliton parameters are identified by using the evolution equations of a few
conserved integrals, such as the total energy. In our paper, we develop a perturbation theory
based on the inverse scattering transform to study the evolution of the soliton. The principle
of such a method for a small perturbation of an integrable system was described in [15]. This
method was successfully applied to the NLS equation with vanishing boundary conditions in
the case of both deterministic and random perturbations [11, 12].

In this paper, we develop the perturbation theory for the solution of the NLS equation with
non-vanishing boundary conditions and pay particular attention to the case of the Ma soliton.
This theory can be applied to analyze the effect of different dispersive, diffusive (damping),
or nonlinear perturbations to the soliton propagation. As we will see, the perturbed inverse
scattering transform approach reveals that the evolution of the soliton can be different than
that predicted by the adiabatic approach. In particular, radiation can play a significant role in
the evolution of the conserved integrals. We will show that the Ma soliton is rather robust with
respect to dispersive perturbations, but can be strongly affected by damping terms. Although
the total energy is not greatly affected by damping, the soliton energy can decay significantly.
These theoretical predictions are confirmed by numerical simulations.

2. The nonlinear Schrödinger equation with non-vanishing boundary conditions

In this section, we recall two of the one-soliton solutions of one-dimensional NLS equation

ivt + vxx + 2|v|2v = 0, (2.1)

with non-vanishing boundary conditions. The simple transformation v(x, t) = e2iν2
0 (t−t0 )q(x, t)

in (2.1) gives

iqt + qxx + 2
(|q|2 − ν2

0

)
q = 0, (2.2)

and we consider the non-vanishing boundary conditions limx→±∞ q(x, t) = ν0.
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The general form of the Ma soliton, as it is known in the literature [18] (with shifted time
and space), was firstly discovered in [16]1, using the inverse scattering transform and is given
by the following expression:

q(x, t) = ν0 + 2η
η cos(4νηt + θ ) + iν sin(4νηt + θ )

ν0 cos(4νηt + θ ) − ν cosh(2ηx + ψ)
, (2.3)

where ψ, θ are real numbers and η, ν and ν0 are positive parameters, for which η =
√

ν2 − ν2
0 .

For ψ = θ = 0, we obtain the usual form of the Ma soliton

q(x, t) = ν0 + 2η
η cos(4νηt) + iν sin(4νηt)

ν0 cos(4νηt) − ν cosh(2ηx)
. (2.4)

The limit of (2.4) at η → 0 gives the Peregrine soliton [21], which is a rational solution of
(2.2) and has the following expression:

p(x, t) = ν0

(
1 − 4 + 16iν2

0 t

1 + 4ν2
0 x2 + 16ν4

0 t2

)
. (2.5)

3. Inverse scattering transform

3.1. The spectral problems

Following [16] the generalized eigenvalue problem associated with (2.2) is

ux = D(λ; x, t)u, D(λ; x, t) = −iλσ3 + Q(x, t), (3.1a)

ut = F(λ; x, t)u, F(λ; x, t) = −i(2λ2 − |q(x, t)|2 + ν2
0 )σ3 + 2λQ(x, t) + iσ3Qx(x, t),

(3.1b)

where

σ3 =
(

1 0
0 −1

)
and Q(x, t) =

(
0 q(x, t)

−q̄(x, t) 0

)
,

and the bar stands for the complex conjugate. The compatibility condition uxt = utx yields the
equation Dt − Fx + DF − FD = 0, which is equivalent to (2.2).

The Jost functions �±(x, t; λ, ζ ; η, ν, ν0) are defined as the 2 × 2 matrices which satisfy
the ordinary differential equation (ODE) (3.1a) with the boundary conditions

�±(x, t; λ, ζ ; η, ν, ν0) → T (λ, ζ )J(ζx), x → ±∞, (3.2)

where

T (λ, ζ ) =
(−iν0 λ − ζ

λ − ζ −iν0

)
, J(ζx) =

(
e−iζx 0

0 eiζx

)
and ζ =

√
λ2 + ν2

0 .

From the above problem one can see that
d

dx
(Det(�±)) = Tr(−iλσ3 + Q(x, t)) = −iλTr(σ3) = 0.

Using conditions (3.2), we obtain

d(λ, ζ ) := Det(�±) = 2ζ (λ − ζ ). (3.3)

We define the scattering matrix S by the following relation:

�−(x, t; λ, ζ ; η, ν, ν0) = �+(x, t; λ, ζ ; η, ν, ν0)S(t; λ, ζ ; η, ν, ν0) (3.4)

1 There is a sign error in equation (6.10) in the original paper [16]. The exact expression is (2.3).
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and Det(S) = 1, for every x and t. Using equations (3.1)–(3.4), one can derive an ODE for the
function S(t; λ, ζ ) from which we obtain the following expression:

S(t; λ, ζ ) = e−2iλζσ3tS0(λ, ζ ) e2iλζσ3t, S0(λ, ζ ) = S(t; λ, ζ )|t=0. (3.5)

In order to consider the analytic properties in the spectral plane we use the transformed Jost
functions 
± = T −1�± which now satisfy the ODE

rx = T −1(DT − Tx)r (r = T −1u)

and the conditions


±(x, t; λζ ) → J(ζx), as x → ±∞.

Equation (3.4) remains invariant under this transformation, i.e. 
− = 
+S.
For an initial profile that converges sufficiently rapidly to ν0 as x → ±∞ we can obtain

the following theorem, as was stated in [16].

Theorem 3.1. Let 
±
1 and 
±

2 be the columns of 
± and S = (
S11 S12
S21 S22

)
. The functions


−
1 (λ, ζ , x, t) eiζx, 
+

2 (λ, ζ , x, t) e−iζx and S11(λ, ζ ) are analytic on λ, when Im ζ > 0.
The functions 
−

2 (λ, ζ , x, t) e−iζx, 
+
1 (λ, ζ , x, t) eiζx and S22(λ, ζ ) are analytic on λ, when

Im ζ < 0.

Furthermore, if we assume that the function f (x) = q(x, 0) − ν0 has a compact support,

then all of the above functions are analytic in λ if ζ �= 0. Here we consider ζ =
√

λ2 + ν2
0 as

a single valued function by introducing two Riemann surfaces.

3.2. Integrals

On the one hand, asymptotic expansions of the functions listed in theorem 3.1, around |ζ | = ∞,
in their domain of analyticity, allow us to construct two 2 × 2 systems of integral equations
for the Jost functions, (equations (4.4) and (4.5) in [16]). On the other hand, the ODE (3.1a)
allows us to construct the following integral representation for the Jost functions:

�±(x, t; λ, ζ ) = T (λ, ζ )J(ζx) −
∫ ±∞

x
K±(x, s, t)T (λ, ζ )J(ζx) ds. (3.6)

Substitution of the integral representation (3.6) into the previously mentioned integral
equations yields two 2 × 2 systems of integral equations where Jost functions are eliminated,
which give the Gel’fand–Levitan integral equations

K±(x, y, t) + H±(x + y, t) =
∫ ±∞

x
K±(x, s, t)H±(y + s) ds, y > x, (3.7)

where

H± = (
H±

2 , H±
1

)
, H±

j (z) = 1

4π

∫
�±

j

e−(−1) j iζ z

ζ
ρ j(λ, ζ )T (λ, ζ ) dλ

(
δ2 j

δ1 j

)
,

where δij stands for the Kronecker delta. ρ1(λ, ζ ) = S21(λ,ζ )

S11(λ,ζ )
and ρ2(λ, ζ ) = S12(λ,ζ )

S22(λ,ζ )
, for some

appropriate contours
{
�±

j

}2
j=1 on the λ-plane, see [16]. From the (+) equations above, one

can obtain that 2K+
12(x, x, t) = q(x, t) − ν0.

The following symmetries are valid and will be useful in the following subsection:

S(λ, ζ ) = σ2S(λ̄, ζ̄ )σ2, K±(x, y, t) = σ2K±(x, y, t)σ2, ρ1(λ, ζ ) = −ρ2(λ̄, ζ̄ ),

where σ2 = (
0 −i
i 0

)
.
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Moreover, the fact that the functions �±(x, t; λ,−ζ ) satisfy equation (3.1a), the definition
of S(t; λ, ζ ) in (3.4) implies that S11(t; λ, ζ ) = S22(t; λ,−ζ ) and S12(t; λ, ζ ) = S21(t; λ,−ζ ).
Hence,

S11(t; λ, ζ ) = S11(t; λ̄,−ζ̄ ). (3.8)

3.3. Solitons

From (3.5) we find that ρ1(λ, ζ , t) = ρ1(λ, ζ , 0) e4iλζ t . So if we consider the discrete part of
the functions H±(z, t) one has to find the zeros of ρ1(λ, ζ , t) or equivalently S11(λ, ζ , 0)—let
us note them {(λ j, ζ j)}n

j=1. Then, the definition of H+
1 (z, t) gives the following representation:

H+
1 (z, t) =

n∑
j=1

(
c j(t)
c̃ j(t)

)
eiζ j z, Im (ζ j) > 0, (3.9)

where

c j(t) = i

2
(λ j − ζ j)b(λ j, ζ j) e4iλ jζ jt, c̃ j(t) = −1

2
ν0b(λ j, ζ j) e4iλ jζ jt,

and

b(λ, ζ ) = S21(λ, ζ )

ζ
dS11(λ,ζ )

dλ

.

The form of function H+
1 (z, t) suggests to take the following representation:(

K+
12(x, y, t)

K+
22(x, y, t)

)
=

n∑
j=1

(
K+

j (x, t)
K̃+

j (x, t)

)
eiζ jy. (3.10)

Applying the representations (3.9) and (3.10), of functions H+(z, t) and K+(x, y, t),
respectively, to the (+) integral equation (3.7), one obtains two n × n linear systems of
algebraic equations which give the functions

{
K+

j (x, t), K̃+
j (x, t)

}n

j=1.

The symmetry relation (3.8) shows that the zeros of S11 go in pairs, apart from the case
that λ j ∈ R. Furthermore, from the definition of b(λ, ζ ) we obtain that b(λ, ζ ) = b(λ̄,−ζ̄ ).
Following the previous procedure, we take the pairs of zeros {(λ j, ζ j) = ((−1) jν, η)}2

j=1 with

the constraint ν =
√

η2 − ν2
0 and by letting b(λ j, ζ j) = 2η

ν
, j = 1, 2, we obtain

K+(x, x, t) = η

ν0 cos(4νηt) − ν cosh(2ηx)

×
(

ν0 cos(4νηt) − νe−2ηx η cos(4νηt) + iν sin(4νηt)
−η cos(4νηt) + iν sin(4νηt) ν0 cos(4νηt) − νe−2ηx

)
(3.11)

and K(x, y, t) = K(x, x, t) eη(x−y). Consequently, we obtain the Ma soliton given in (2.4). An
arbitrary choice for b(λ, ζ ) will give, in the same way, the more general form (time and space
shifted) of the Ma soliton given in equation (2.3).

4. The Jost functions

4.1. The Jost functions for the Ma soliton

Applying the expression we obtained for K+(x, y, t) in (3.11) to the integral representation of
the Jost functions in (3.6), we obtain the following expressions for �+ = (

�+
1 ,�+

2

)
:

5
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�+
1 (x, t) = − e−iζx

ζ − iη

1

ν0 cos(4νηt) − ν cosh(2ηx)

×
(

iν2
0λ cos(4νηt) − iν[(λ − ζ )(ν cos(4νηt) + iη sin(4νηt)) + ν0(ζ cosh(2ηx) − iη sinh(2ηx))]

ν0λ(λ − ζ ) cos(4νηt) + ν[ν0(ν cos(4νηt) − iη sin(4νηt)) + (λ − ζ )(ζ cosh(2ηx) − iη sinh(2ηx))]

)
(4.1)

and

�+
2 (x, t) = − eiζx

ζ + iη

1

ν0 cos(4νηt) − ν cosh(2ηx)

×
(

ν0λ(λ − ζ ) cos(4νηt) + ν[ν0(ν cos(4νηt) + iη sin(4νηt)) + (λ − ζ )(ζ cosh(2ηx) + iη sinh(2ηx))]
iν2

0λ cos(4νηt) − iν[(λ − ζ )(ν cos(4νηt) − iη sin(4νηt)) + ν0(ζ cosh(2ηx) + iη sinh(2ηx))]

)
.

(4.2)

The Jost functions �− are given from the �+ under the substitution η → −η. Moreover, the
equation �− = �+S yields the following expression:

S(λ, ζ , t) =

⎛
⎜⎜⎝

ζ − iη

ζ + iη
0

0
ζ + iη

ζ − iη

⎞
⎟⎟⎠. (4.3)

Functions 
± are given by equation 
± = T −1�± and we obtain the following expressions:


+
1 (x, t) = e−iζx

ν0 cos(4νηt) − ν cosh(2ηx)

×

⎛
⎜⎝

ν0

ζ
(ζ + iη) cos(4νηt) − ν

ζ − iη
(ζ cosh(2ηx) − iη sinh(2ηx))

− iη

ζ

1

ζ − iη
(ηλ cos(4νηt) − iνζ sin(4νηt))

⎞
⎟⎠ (4.4)

and


+
2 (x, t) = eiζx

ν0 cos(4νηt) − ν cosh(2ηx)

×

⎛
⎜⎝ − iη

ζ

1

ζ + iη
(ηλ cos(4νηt) + iνζ sin(4νηt))

ν0

ζ
(ζ − iη) cos(4νηt) − ν

ζ + iη
(ζ cosh(2ηx) + iη sinh(2ηx))

⎞
⎟⎠ . (4.5)

The functions 
− are given by the 
+ under the substitution η → −η. Note that 
± → J(ζx)

as x → ±∞.

4.2. The Jost functions for the Peregrine soliton

In the case of the Peregrine soliton (2.5) we can obtain the expressions of the relative spectral
functions by taking the limit η → 0 on the equations of the previous subsection, i.e.

K(x, x, t) = − 2ν0

1 + 4ν2
0 x2 + 16ν4

0 t2

(
2ν0x 1 + 4iν2

0 t
−1 + 4iν2

0 t 2ν0x

)
(4.6)

and K(x, y, t) = K(x, x, t). The Jost functions �+ = (
�+

1 ,�+
2

)
are given by

�+
1 (x, t)= e−iζx

⎛
⎜⎜⎜⎝

−iν0

{
1 − i

ζ

2ν0

1 + 4ν2
0 x2 + 16ν4

0 t2

[
2ν0x + i

λ − ζ

ν0
(1 + 4iν2

0 t)

]}

(λ − ζ )

{
1 − i

ζ

2ν0

1 + 4ν2
0 x2 + 16ν4

0 t2

[
2ν0x − i

λ + ζ

ν0
(1 − 4iν2

0 t)

]}
⎞
⎟⎟⎟⎠ (4.7)

6
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and

�+
2 (x, t)= eiζx

⎛
⎜⎜⎜⎝
(λ − ζ )

{
1 + i

ζ

2ν0

1 + 4ν2
0 x2 + 16ν4

0 t2

[
2ν0x + i

λ + ζ

ν0
(1 + 4iν2

0 t)

]}

−iν0

{
1 + i

ζ

2ν0

1 + 4ν2
0 x2 + 16ν4

0 t2

[
2ν0x − i

λ − ζ

ν0
(1 − 4iν2

0 t)

]}
⎞
⎟⎟⎟⎠. (4.8)

Mentioning that �+ → T J as x → ±∞, we conclude that the Jost functions �− are identical
to the �+ functions. This means that S(λ, ζ ) that satisfies the equation �− = �+S is the
identity matrix, which means that the Peregrine soliton is a zero-radiation solution but it does
not provide any eigenvalue, i.e. S11(λ, ζ ) �= 0.

Functions 
 = 
± are given by equation 
 = T −1� and we obtain the following
expressions:


(x, t) =

⎛
⎜⎜⎜⎝

e−iζx

(
1 − 2ν2

0

ζ 2

1 + 2iζx

1 + 4ν2
0 x2 + 16ν4

0 t2

)
eiζx 2iν0

ζ 2

λ+4iν2
0 ζ t

1+4ν2
0 x2+16ν4

0 t2

e−iζx 2iν0

ζ 2

λ − 4iν2
0ζ t

1 + 4ν2
0 x2 + 16ν4

0 t2
eiζx

(
1 − 2ν2

0
ζ 2

1−2iζx
1+4ν2

0 x2+16ν4
0 t2

)
⎞
⎟⎟⎟⎠ . (4.9)

Alternatively,


(x, t) = J(ζx) + 1

ζ 2

2ν0

1 + 4ν2
0 x2 + 16ν4

0 t2

(−e−iζxν0 (1 + 2iζx) eiζx(iλ − 4ν2
0ζ t)

e−iζx(iλ + 4ν2
0ζ t) −eiζxν0 (1 − 2iζx)

)
.

(4.10)

5. Perturbation theory

In this section, we consider a perturbation theory for the perturbed NLS equation

qt = S[q] + εR[q], (5.1)

where

S[q] = iqxx + 2i
(|q|2 − ν2

0

)
q

is the right-hand side (rhs) of the unperturbed NLS equation (2.2), R[q] is a perturbation and ε

is a (small) dimensionless parameter that characterizes the amplitude of the perturbation. We
assume that the perturbation R[q] does not affect the background. We work in a way similar to
[15] in order to obtain the evolution of the eigenvalues of the spectral problem in the presence
of small perturbations.

5.1. Variational derivative

Equations (3.1a) can be rewritten as(
iσ3

∂

∂x
+ Q̂(x, t)

)
u = λu, Q̂ =

(
0 −iq(x, t)

−iq̄(x, t) 0

)
. (5.2)

By taking the variational derivative of (5.2) we obtain(
iσ3

∂

∂x
+ Q̂(x; t)− λI

)
δu{q; x, t, λ}

δq(x′)
= −δQ̂(x; t)

δq(x′)
u{q; x, t, λ} + δλ{q}

δq(x′)
u{q; x, t, λ}. (5.3)

When λ belongs to the continuous spectrum, we obtain the following problem for the variational
derivative of the Jost functions:(

iσ3
∂

∂x
+ Q̂(x; t) − λI

)
δ�±{q; x, t, λ}

δq(x′)
= iδ(x − x′)�±{q; x, t, λ}

(
0 1
0 0

)
, (5.4)

7
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with the conditions δ�±{q;x,t,λ}
δq(x′ ) → 0 as x → ±∞. These conditions are valid because we

consider the problem on the continuous spectrum.
Hence, one has to find Green’s function associated with equation (5.2). Using the fact that

the columns of the Jost functions are independent solutions of the associated homogeneous
problem along with the previous conditions we find that

δ�±{q; x, t, λ}
δq(x′)

= �(±(x′ − x))

d(λ, ζ )
�±(x)

(
φ±

21(x
′)φ±

22(x
′) φ±

22(x
′)2

−φ±
21(x

′)2 −φ±
21(x

′)φ±
22(x

′)

)
, (5.5)

where d(λ, ζ ) is given in (3.3) and �(y) is the Heaviside function �(y) = {
0, y<0,

1, y>0.
. Here we

do not write explicitly the time t on the rhs of the equation, considering it as a parameter. We
will keep this notation throughout this section.

Taking the variational derivative of equation (3.4) we obtain
δ�−(x)

δq(x′)
= δ�+(x)

δq(x′)
S + �+(x)

δS

δq(x′)
,

for all x ∈ R. Taking the limit x → +∞, we obtain
δS

δq(x′)
= lim

x→+∞

{
(�+(x))−1 δ�−(x)

δq(x′)

}
.

Equation (5.5) yields

δS

δq(x′)
= 1

d(λ, ζ )
lim

x→+∞{(�+(x))−1�−(x)}
(

φ−
21(x

′)φ−
22(x

′) φ−
22(x

′)2

−φ−
21(x

′)2 −φ−
21(x

′)φ−
22(x

′)

)
.

Using the fact that the quantity (�+(x))−1�−(x) is equal to S and independent of x we obtain

δS

δq(x)
= 1

d(λ, ζ )
(�+(x))−1�−(x)

(
φ−

21(x)φ−
22(x) φ−

22(x)2

−φ−
21(x)2 −φ−

21(x)φ−
22(x)

)

and consequently

δS

δq(x)
= 1

d(λ, ζ )

(
φ−

21(x)φ+
22(x) φ−

22(x)φ+
22(x)

−φ−
21(x)φ+

21(x) −φ−
22(x)φ+

21(x)

)
. (5.6)

If λ = iν, ν > 0 is a discrete eigenvalue, i.e. S11(iν) = 0, then we obtain the following
identity:

δν

δq(x)
= i

S′
11(iν)

δS

δq(x)

∣∣∣∣
λ=iν

, (5.7)

where the prime stands for the derivative with respect to λ and consequently
δν

δq(x)
= 1

d(iν, iη)

i

S′
11(iν)

φ−
21(x)φ+

22(x)

∣∣∣∣
λ=iν,ζ=iη

. (5.8)

In the same way, we obtain the analog of (5.4), (5.5), (5.6) and (5.8) for the function q̄,(
iσ3

∂

∂x
+ Q̂(x; t) − λI

)
δ�±{q̄; x, t, λ}

δq̄(x′)
= iδ(x − x′)�±{q̄; x, t, λ}

(
0 0
1 0

)
, (5.9)

δ�±{q; x, t, λ}
δq̄(x′)

= H(±(x′ − x))

d(λ, ζ )
�±(x)

(
φ±

11(x
′)φ±

12(x
′) φ±

12(x
′)2

−φ±
11(x

′)2 −φ±
11(x

′)φ±
12(x

′)

)
, (5.10)

δS

δq̄(x)
= 1

d(λ, ζ )

(
φ−

11(x)φ+
12(x) φ−

12(x)φ+
12(x)

−φ−
11(x)φ+

11(x) −φ−
12(x)φ+

11(x)

)
, (5.11)

and, if S11(iν) = 0, then we obtain
δν

δq̄(x)
= 1

d(iν, iη)

i

S′
11(iν)

φ−
11(x)φ+

12(x)

∣∣∣∣
λ=iν,ζ=iη

. (5.12)

8
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5.2. Evolution of the discrete spectrum

Let F{q} be a functional that depends on q(x, t), x, t ∈ R. Its time derivative is given by

dF{q}
dt

=
∫ +∞

−∞

[
δF

δq(x)

dq

dt
+ δF

δq̄(x)

dq̄

dt

]
dx. (5.13)

Applying this to the perturbed NLS equation (5.1) we obtain that

dF{q}
dt

=
∫ +∞

−∞

(
δF

δq(x)
S[q] + δF

δq̄(x)
S̄[q]

)
dx + ε

∫ +∞

−∞

(
δF

δq(x)
R[q] + δF

δq̄(x)
R̄[q]

)
dx.

(5.14)

If λ = iν, ν > 0 is a discrete eigenvalue, then using the fact that the eigenvalues of the
unperturbed NLS are time independent we obtain the following identity:∫ +∞

−∞

(
δν

δq(x)
S[q] + δν

δq̄(x)
S̄[q]

)
dx = dν

dt

∣∣∣∣
ε=0

= 0

and consequently the formula that describes the evolution of these eigenvalues is

dν

dt
= ε

∫ +∞

−∞

(
δν

δq(x)
R[q] + δν

δq̄(x)
R̄[q]

)
dx, (5.15)

where δν
δq(x)

and δν
δq̄(x)

are given by (5.8) and (5.12).
From now on we develop a first-order perturbation theory. In this case, we can substitute

into the rhs of (5.15) the corresponding expression with the unperturbed solution q(x, t) and
this gives the evolution equation of the parameter ν to first order in ε.

6. Evolution of the Ma soliton under small perturbations

In what follows we will explicitly write the evolution of the eigenvalue, under the following
perturbations, which do not affect the background:

(i) R[q] = qxx

(ii) R[q] = qxxx

(iii) R[q] = iqxxxx.

By making use of equations (4.1), (4.2), (4.3), (3.3) and the fact that �− is given by �+

under the substitution η → −η, equations (5.8) and (5.12) become
δν

δq(x)
= ην

2

ν0 − ν cosh(2ηx − i4νηt) − η sinh(2ηx − i4νηt)

[ν0 cos(4νηt) − ν cosh(2ηx)]2 (6.1)

and
δν

δq̄(x)
= ην

2

ν0 − ν cosh(2ηx − i4νηt) + η sinh(2ηx − i4νηt)

[ν0 cos(4νηt) − ν cosh(2ηx)]2 . (6.2)

6.1. Diffusive perturbations

We compute the evolution of the parameter ν, given by (5.15), when R[q] = qxx. Equations
(6.1), (6.2) and the solution (2.4) give

dν

dt
= 4η5ν2ε

∫ +∞

−∞

−3ν + 2ν0 cos(4νηt) cosh(2ηx) + ν cosh(4ηx)

[ν0 cos(4νηt) − ν cosh(2ηx)]4 dx. (6.3)

Consequently,

dν

dt
= − 4η4ν

3
[
ν2 − ν2

0 cos2(4νηt)
]εD(η, t), (6.4)

9
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where

D(η, t) = 2ν2 + ν2
0 cos2(4νηt)

ν2 − ν2
0 cos2(4νηt)

+
6ν2ν0 tan−1

(√
ν+ν0 cos(4νηt)
ν−ν0 cos(4νηt)

)
cos(4νηt)[

ν2 − ν2
0 cos2(4νηt)

]3/2

and we recall that ν =
√

η2 + ν2
0 . Moreover using that dη

dt = ν
η

dν
dt , we obtain

dη

dt
= − 4η3ν2

3
[
ν2 − ν2

0 cos2(4νηt)
]εD(η, t). (6.5)

The rhs is negative valued which shows that damping induces a decay of the soliton parameter.
One can compute the order ε evolution of the total energy Etot, using the following formula:

Etot =
∫ +∞

−∞

(|q(x, t)|2 − ν2
0

)
dx,

∂Etot

∂t
= −2ε

∫ +∞

−∞
|qx(x, t)|2 dx. (6.6)

Straightforward computations give, to leading order ε,∫ +∞

−∞
|qx(x, t)|2 dx = 8η3

3
D(η, t). (6.7)

Using the fact that the energy of the soliton is

Esol =
∫ +∞

−∞

(|q(x, t)|2 − ν2
0

)
dx = 4η,

we find
∂Etot

∂t
= ∂Esol

∂t

ν2 − ν2
0 cos2(4ηνt)

ν2
. (6.8)

This shows that the decay of the soliton energy is larger than the decay of the total energy.
Therefore, an adiabatic approach based on the identification of the soliton parameter via the
decay of the total energy and the hypothesis that the wave solution has the form of soliton
would underestimate the decay of the solution [10]. Note, however, that the adiabatic approach
gives the right prediction when ν0 → 0, that is the classical case of the bright soliton solution
of the NLS equation with vanishing boundary condition.

6.2. Dispersive perturbations

When R[q] = qxxx, straightforward calculations yield

dν

dt
= 6η6ν2ε

∫ +∞

−∞

×
[−11ν2 + 2ν2

0 cos2(4νηt) + 8νν0 cos(4νηt) cosh(2ηx) + ν2 cosh(4ηx)
]

sinh(2ηx)

[ν0 cos(4νηt) − ν cosh(2ηx)]5 dx,

(6.9)

which gives
dν

dt
= dη

dt
= 0.

This shows that the Ma soliton is stable with respect to third-order dispersion.
When R[q] = iqxxxx we obtain

dν

dt
= 4η6ν2ε

∫ +∞

−∞

ν0 [ν − ν0 cos(4νηt) cosh(2ηx)] sin(4νηt) + i
[
ν2 − ν2

0 cos2(4νηt)
]

sinh(2ηx)

[ν0 cos(4νηt) − ν cosh(2ηx)]7{
4νν2

0 cos2(4νηt)[−5 + 11 cosh(4ηx)] + ν3[115 − 76 cosh(4ηx) + cosh(8ηx)]

+ 4ν0 cos(4νηt) cosh(2ηx)[2ν2
0 cos2(4νηt) − 29ν2 + 11ν2 cosh(2ηx)]

}
dx. (6.10)

10
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Figure 1. Propagation of the Ma soliton without perturbation. The left picture plots the maximum
of the spatial profile as a function of time, the right picture plots the spatial profiles as a function
of time. Here ν0 = 0.5, η = 1.
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Figure 2. Propagation of the Ma soliton with a second-order diffusive perturbation. Here ν0 = 0.5,
η = 1 and ε = 0.02.

From the first line of the above integral we can see that the imaginary part has no contribution
to the above expression. Consequently,

dν

dt
= 8η5ν2ν0 sin(4νηt)ε

{
− 1[

ν2 − ν2
0 cos2(4νηt)

]2 + 15ν2ν0[
ν2 − ν2

0 cos2(4νηt)
]3

+
[

4 + 30ν2
0[

ν2 − ν2
0 cos2(4νηt)

]5/2 − 30ν4
0[

ν2 − ν2
0 cos2(4νηt)

]7/2

]
tan−1

(√
ν + ν0 cos(4νηt)

ν − ν0 cos(4νηt)

)}
.

(6.11)

Moreover, the above rhs expression is an odd and periodic function; hence, its integral over
a period is equal to zero. This shows that the Ma soliton is rather stable with respect to
fourth-order dispersion, as it only experiences breathing (to first order in ε).

7. Numerical simulations

In this section, we carry out direct numerical simulations of the NLS equation (2.2) to illustrate
our theoretical predictions. We consider an initial soliton of the form (2.4). The t-period of

the unperturbed soliton is π/(2ην), with ν =
√

ν2
0 + η2 and its maximum at time 0 is

maxx |q(0, x)| = 2ν + ν0.
We use a second-order split-step Fourier method to numerically solve the NLS equation

[11]. In the numerical simulations the background is ν0 = 0.5 and the initial parameter of
the soliton is η = 1. In figures 1–4 we plot the maximum of the solution maxx |q(t, x)| as a
function of t and the profiles |q(t, x)| as a function of (t, x) in the absence of perturbations

11
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Figure 3. Propagation of the Ma soliton with a third-order dispersive perturbation. Here ν0 = 0.5,
η = 1 and ε = 0.02.
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Figure 4. Propagation of the Ma soliton with a fourth-order dispersive perturbation. Here ν0 = 0.5,
η = 1 and ε = 0.02.
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Figure 5. Propagation of the Ma soliton with a second-order diffusive perturbation. Here ν0 = 0.5,
η = 1 and ε takes different values from 0.01 to 0.08. The solid lines stand for the numerical

maxima as functions of time, the dashed lines plot the functions mtheo(t) = 2
√

ν2
0 + η2

theo(t) + ν0,
where ηtheo(t) is the solution of (6.5).

(figure 1) and in the presence of the three perturbations addressed in section 6 (figures 2–4).
Here the amplitude of the perturbation is ε = 0.02. We can observe that the soliton is more
robust with respect to dispersive perturbations than with respect to diffusive perturbations. In
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particular, we can observe a nice periodic behavior in figure 3 in the case of a third-order
dispersion, as predicted by the theory. The same holds true in the case of a fourth-order
dispersion (figure 4) although the period has changed compared to the unperturbed case.
Finally, we can observe a decay of the soliton and a continuous increase of its period in the
case of a diffusive perturbation, which is also in agreement with the theoretical predictions. To
be complete, we must add that the stability of the soliton also becomes affected by dispersive
perturbations when ε � 0.1. Our theory is therefore valid only for weak perturbations.

More quantitatively, we can numerically integrate the ODE (6.5) to find ηtheo(t), take care

of mtheo(t) = 2νtheo(t) + ν0 = 2
√

ν2
0 + η2

theo(t) + ν0 and compare with the maximum of the
solution after one oscillation. The results are reported in figure 5 for different values of ε,
which again shows good agreement.
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