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In the first part of the Supplemental we report the general theory underlying the derivation of the

singular integro-differential kinetic equations (SIDKE). In the second part we present complementary

numerical simulations and discuss the feasibility of the optical experiment aimed at observing incoherent

DSWs.

I. DERIVATION OF THE SINGULAR INTEGRO-DIFFERENTIAL KINETIC EQUATIONS

In this Section we describe in detail the mathematical procedure which allowed us to derive the singular

integro-differential kinetic equations (SIDKE) starting from the kinetic equation (KE) given in Eq.(2) of

the Letter. We first present the theory in the framework of a general response function (satisfying the

causality property) and show that the leading-order terms of the SIDKE are related to the properties of

the response function close to zero. Then we apply the general results to the damped harmonic oscillator

response and the purely exponential response.

A. A general response function

The starting point is to carefully address the singularities involved in the convolution operator of the

KE (2) in the Letter. The response function can be written in the following general form

R(t) =
1

τR
R̄
( t

τR

)

H(t),

where H(t) denotes the Heaviside function and R̄ is a smooth function (that is at least five times differ-

entiable with integrable derivatives).

By using integration by parts one finds that the imaginary part of the Fourier transform of the response

function

gω = Im
(

∫

∞

−∞

R(t)e−iωtdt
)

has the form

gω = g0ωτR , g0ω = − 1

ω
R̄(0) +

1

ω3
R̄(2)(0)− 1

ω5
R̄(4)(0)− 1

ω5
Re

(

∫

∞

0

R̄(5)(t)e−iωtdt
)

,

where R̄(j)(t) denotes the j−th derivative of R̄(t). This allows us to identify the two ‘singularities’ (the

terms in 1/ω and 1/ω3) that are important when addressing the convolution operator of the KE (2) in the

Letter.

For a smooth function nω we want to find the expression of

Nω =

∫

∞

−∞

gω−unudu, (1)

in particular in the regime τR ≫ 1.
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Summary of the general results:

1. For any τR > 0, the convolution operator can be written in the following form without approximations

Nω = −πR̄(0)

τR
Hnω +

πR̄(1)(0)

τ 2R
∂ωnω +

πR̄(2)(0)

2τ 3R
H∂2

ωnω +
1

τ 4R

∫

∞

0

[

∂3
ωnω+ u

τR

+ ∂3
ωnω− u

τR

]

G0(u)du, (2)

where we have defined for u > 0:

G0(u) = −1

2

∫

∞

u

(

g0v +
R̄(0)

v
− R̄(2)(0)

v3
)

(v − u)2dv, (3)

and H is the Hilbert transform.

2. When τR ≫ 1,

Nω = −πR̄(0)

τR
Hnω +

πR̄(1)(0)

τ 2R
∂ωnω +

πR̄(2)(0)

2τ 3R
H∂2

ωnω − πR̄(3)(0)

6τ 4R
∂3
ωnω + o

( 1

τ 4R

)

. (4)

These results show that the leading-order term in the expansion (4) is determined by the behavior of

the response function at 0. We will address in the two following sections two examples for which R̄(0) = 0

and R̄(0) 6= 0 [1], respectively.

Proof.

We can write Nω in the form

Nω = −R̄(0)

τR
P
∫

∞

−∞

nω−u
1

u
du+

1

τR
P
∫

∞

−∞

(

g0u +
R̄(0)

u

)

nω− u

τR

du

= −πR̄(0)

τR
Hnω − 1

τR

∫

∞

0

(

g0u +
R̄(0)

u

)[

nω+ u

τR

− nω− u

τR

]

du

= −πR̄(0)

τR
Hnω − 1

τR

∫

∞

0

∂uf
0(u)

[

nω+ u

τR

− nω− u

τR

]

du,

where we have introduced the function f 0 defined by (for u > 0):

f 0(u) = −
∫

∞

u

g0v +
R̄(0)

v
dv.

Note that f 0 can be expanded as f 0(u) = − R̄(2)(0)
2u2 + O( 1

u4 ) as u → ∞ and f 0(u) = R̄(0) lnu + O(1) as

u → 0, so that limu→0 f
0(u)

[

nω+ u

τR

− nω− u

τR

]

= 0. Therefore we can write after integration by parts

Nω = −πR̄(0)

τR
Hnω +

1

τ 2R

∫

∞

0

f 0(u)
[

∂ωnω+ u

τR

+ ∂ωnω− u

τR

]

du

= −πR̄(0)

τR
Hnω +

f̄

τ 2R
∂ωnω +

1

τ 2R

∫

∞

0

f 0(u)
[

∂ωnω+ u

τR

+ ∂ωnω− u

τR

− 2∂ωnω

]

du,
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where

f̄ = 2

∫

∞

0

f 0(u)du = −
∫

∞

−∞

ug0u + R̄(0)du.

After integration by parts:

ug0u + R̄(0) = −Re
(

∫

∞

0

R̄(1)(t)e−iutdt
)

,

and therefore

f̄ = πR̄(1)(0).

We can write

Nω = −πR̄(0)

τR
Hnω +

πR̄(1)(0)

τ 2R
∂ωnω +

1

τ 2R

∫

∞

0

∂uF
0(u)

[

∂ωnω+ u

τR

+ ∂ωnω− u

τR

− 2∂ωnω

]

du,

where we have introduced the function F 0 defined by (for u > 0):

F 0(u) = −
∫

∞

u

f 0(v)dv.

Note that F 0 can be expanded as F 0(u) = R̄(2)(0)
2u

+ O( 1
u3 ) as u → ∞ and F 0(u) = −πR̄(1)(0)/2 + o(1) as

u → 0, so that limu→0 F
0(u)

[

∂ωnω+ u

τR

+ ∂ωnω− u

τR

− 2∂ωnω

]

= 0. Therefore, after integration by parts we

find

Nω = −πR̄(0)

τR
Hnω +

πR̄(1)(0)

τ 2R
∂ωnω − 1

τ 3R

∫

∞

0

F 0(u)
[

∂2
ωnω+ u

τR

− ∂2
ωnω− u

τR

]

du

= −πR̄(0)

τR
Hnω +

πR̄(1)(0)

τ 2R
∂ωnω +

πR̄(2)(0)

2τ 3R
H∂2

ωnω

− 1

τ 3R

∫

∞

0

(

F 0(u)− R̄(2)(0)

2u

)[

∂2
ωnω+ u

τR

− ∂2
ωnω− u

τR

]

du

= −πR̄(0)

τR
Hnω +

πR̄(1)(0)

τ 2R
∂ωnω +

πR̄(2)(0)

2τ 3R
H∂2

ωnω − 1

τ 3R

∫

∞

0

∂uG
0(u)

[

∂2
ωnω+ u

τR

− ∂2
ωnω− u

τR

]

du,

where we have introduced

G0(u) = −
∫

∞

u

F 0(v)− R̄(2)(0)

2v
dv.

After some calculations, this expression of G0(u) can be written in the form given in Eq.(3). Note that

G0(u) = O( 1
u2 ) as u → ∞ and G0(u) = O(lnu) as u → 0, so that limu→0G

0(u)
[

∂2
ωnω+ u

τR

− ∂2
ωnω− u

τR

]

= 0

and we can integrate by parts the last term

Nω = −πR̄(0)

τR
Hnω +

πR̄(1)(0)

τ 2R
∂ωnω +

πR̄(2)(0)

2τ 3R
H∂2

ωnω +
1

τ 4R

∫

∞

0

G0(u)
[

∂3
ωnω+ u

τR

+ ∂3
ωnω− u

τR

]

du,

which is the first desired result. This expression of Nω is exact, and G0 is an integrable function over

(0,∞). As a result Nω has the following expansion as τR ≫ 1:

Nω = −πR̄(0)

τR
Hnω +

πR̄(1)(0)

τ 2R
∂ωnω +

πR̄(2)(0)

2τ 3R
H∂2

ωnω +
Ḡ

τ 4R
∂3
ωnω + o

( 1

τ 4R

)

,
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with

Ḡ = 2

∫

∞

0

G0(u)du = −1

6

∫

∞

−∞

u3g0u + u2R̄(0)− R̄(2)(0)du.

After iterated integration by parts:

u3g0u + u2R̄(0)− R̄(2)(0) = Re
(

∫

R̄(3)(t)e−iutdt
)

,

and therefore

Ḡ = −π

6
R̄(3)(0),

which completes the proof.

B. Damped harmonic oscillator response

In this Section we apply the general theory exposed here above to the particular example of a damped

harmonic oscillator response function. In this way we derive the SIDKEs reported in Eqs.(3,4) of the

Letter. The normalized nonlinear response function is R(t) = 1+β2

βτR
sin(βt/τR) exp(−t/τR)H(t), where

we recall that H(t) denotes the Heaviside function. The imaginary part of its Fourier transform gω =

Im
(

∫

∞

−∞
R(t)e−iωtdt

)

is

gω =
1 + β2

2β

( 1

1 + (β + τRω)2
− 1

1 + (β − τRω)2

)

. (5)

For a smooth function nω we want to find the expression of

Nω =

∫

∞

−∞

gω−unudu, (6)

in particular in the regime τR ≫ 1. Applying the general theory reported in the previous section, we find

the following results.

1. For any τR, β > 0,

Nω =
π(1 + β2)

τ 2R
∂ωnω − π(1 + β2)

τ 3R
H∂2

ωnω +
1

τ 4R

∫

∞

0

[

∂3
ωnω+ u

τR

+ ∂3
ωnω− u

τR

]

G0(u)du, (7)

where we have defined for u > 0:

G0(u) =
1 + β2

β

∫

∞

u

πβ

2
− 1

2

[

w arctan(w)− 1

2
log(1 + w2)

]v+β

v−β
− β

v
dv, (8)

and H is the Hilbert transform.

2. When τR ≫ 1,

Nω =
π(1 + β2)

τ 2R
∂ωnω − π(1 + β2)

τ 3R
H∂2

ωnω − 1 + β2

2τ 4R
∂3
ωnω + o

( 1

τ 4R

)

. (9)
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- SIDKE without background: Eq.(3) in the Letter

With an initial condition without background:

nω(z = 0)
ω→±∞−→ 0, (10)

in the asymptotic regime τR ≫ 1, the spectrum satisfies the SIDKE

∂znω =
1 + β2

τ 2R

(

nω∂ωnω − 1

τR
nωH∂2

ωnω − 1

2πτ 2R
nω∂

3
ωnω

)

, (11)

in which the second term is dispersive and thus regularizes the (first) shock term in the rhs of Eq.(11).

Although the third term is perturbative with respect to the second term, its third-order derivatives

can play a non-negligible role in the long-term dynamics, when the width of the spectral peaks that

emerge from the DSW become of the order of the width of the gain spectrum, ∆ωg. We qualitatively

assess the roles of the three terms through the analysis of the three corresponding propagation lengths

(Lj , j = 1, 2, 3) over which they play a non-negligible role. We have L1 ∼ τ 2R∆ω/n̄, L2 ∼ τ 3R∆ω2/n̄,

and L3 = τ 4R∆ω3/n̄, where ∆ω denotes the typical frequency scale of variations of nω and n̄ its typical

amplitude. The derivation of the SIDKE (11) is based on a multi-scale expansion, which remains

well-ordered if L1/L2 ≪ 1 and L2/L3 ≪ 1, i.e., ∆ω ≫ 1/τR ∼ ∆ωg. Then the third term of the SIDKE

(11) remains negligible during the whole development of the incoherent shock, while it becomes of the

same order as the other two terms in the long-term dynamics, when the widths of the spectral peaks

emerging from the shock become comparable to ∆ωg (see Fig. 1d in the Letter).

- SIDKE with background: Eq.(4) in the Letter

With an initial condition with background:

nω(z) = n0 + ñω(z), n0 > 0, (12)

introducing the scaling

ñω(z) =
1

τR
ñ(0)
ω (z/τ 3R), (13)

the spectrum satisfies in the asymptotic regime τR ≫ 1

∂Z ñ
(0)
ω = (1 + β2)

(

τRn0∂ωñ
(0)
ω + ñ(0)

ω ∂ωñ
(0)
ω − n0H∂2

ωñ
(0)
ω

)

. (14)

where Z = z/τ 3R. The first term of this equation can be removed by a change of Galilean reference frame,

(Ω = ω + (1 + β2)τRn0Z, ξ = Z), so that Eq.(14) recovers the Benjamin-Ono (BO) equation.
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To compare the simulations of Eq.(14) with those of the KE (2), we come back to the original variables,

which gives

τ 2R∂zñω − (1 + β2)n0∂ωñω = (1 + β2)
(

ñω∂ωñω − 1

τR
n0H∂2

ωñω

)

. (15)

This BO-like equation is completely integrable [3], and thus admits soliton solutions and an infinite number

of conserved quantities. Note that the BO equation finds a timely application to model submerged plumes

of oil as were reported following the Deepwater Horizon leak in the Gulf of Mexico in May 2010. This

problem is discussed in particular by P.D. Miller in relation with recent on line video experiments [4].

C. Exponential response

In this Section we apply the general theory reported above in Section I to the particular example of

a purely exponential response function. In this way we derive the SIDKEs reported in Eqs.(5,6) of the

Letter. Note that an exponential response function is found whenever one models the medium by means of

a simple rate equation, see e.g., Maxwell-Debye model, Maxwell-Bloch equations, or the two temperature

model in the context of condensed matter physics [2].

The nonlinear response function is R(t) = H(t) 1
τR

exp
(

− t
τR

)

, and the imaginary part of its Fourier

transform gω = Im
(

∫

∞

−∞
R(t)e−iωtdt

)

reads

gω = − τRω

1 + (τRω)2
. (16)

For a smooth function nω we want to find the expression of

Nω =

∫

∞

−∞

gω−unudu, (17)

in particular in the regime τR ≫ 1. Applying the general results derived in the previous section, we find

the following results.

1. For any τR > 0,

Nω = − π

τR
Hnω − π

τ 2R
∂ωnω +

π

2τ 3R
H∂2

ωnω +
1

τ 4R

∫

∞

0

[

∂3
ωnω+ u

τR

+ ∂3
ωnω− u

τR

]

G0(u)du, (18)

where we have defined for u > 0:

G0(u) = −3

4
+

1

4
(1− u2) ln

(

1 +
1

u2

)

+ u arctan
(1

u

)

. (19)

2. When τR ≫ 1,

Nω = − π

τR
Hnω − π

τ 2R
∂ωnω +

π

2τ 3R
H∂2

ωnω +
π

6τ 4R
∂3
ωnω + o

( 1

τ 4R

)

. (20)
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1. From the convolution operator to SIDKEs

The starting point is again the KE (2) in the Letter.

∂znω =
1

π
nω

∫

gω−unudu. (21)

- SIDKE without background: Eq.(5) in the Letter

With an initial condition without background:

nω(z = 0) = ñ0
ω, with ñ0

ω
ω→±∞−→ 0, (22)

in the asymptotic regime τR ≫ 1, the spectrum satisfies the SIDKE (5) in the Letter

τR∂znω = −nωHnω − 1

τR
nω∂ωnω +

1

2τ 2R
nωH∂2

ωnω. (23)

As discussed in the Letter, the dynamics is dominated by the leading-order term in the rhs of Eq.(23):

∂z̃nω = −nωHnω (24)

with z̃ = z/τR. The numerical simulations of this equation show that the spectrum exhibits a collapse-like

dynamics which is saturated in the presence of a small amplitude background. There is local existence and

uniqueness of the solution, but global existence is not guaranteed when there is no background. Actually,

Constantin, Lax and Majda constructed a one-dimensional model of the vorticity formulation of the 3D

Euler equations that has the form of Eq.(24) [5]. For a given initial condition nω(z = 0) = n0
ω the solution

has the form

nω(z̃) =
4n0

ω

(2 + z̃Hn0
ω)

2 + z̃2(n0
ω)

2
. (25)

There is blow up if and only if there exists ω such that n0
ω = 0 and Hn0

ω < 0. Then the blow up distance

z̃c is given by z̃c = −2/[Hn0
ω=ω0

], where ω0 is such that n0
ω0

= 0. If the initial condition n0
ω vanishes for

several frequencies, then 2/z̃c = sup{−Hn0
ω , ω s.t. n0

ω = 0}.
If the initial condition is Lorentzian:

n0
ω =

Nω0

π(ω2
0 + ω2)

with N =
∫

n0
ωdω, then the solution propagates with constant shape and constant velocity

nω(z̃) =
Nω0

π(ω2
0 + (ω − c̃0z̃)2)

with c̃0 = −N/(2π). If the initial condition is positive-valued and has the form of a peak that decays to

zero at infinity faster than a Lorentzian, then there is no blow up, but the solution exhibits a peak that
8



moves towards the left tail of the initial spectrum n0
ω at velocity c̃0 (see the Letter). More generally, if the

initial condition n0
ω decays fast enough, then denoting

〈ωp〉 = 1

N

∫

ωpnω(z)dω, 〈ωp
0〉 =

1

N

∫

ωpn0
ωdω

and assuming 〈ωp
0〉 = 0 for odd p, we have

〈ω〉 = c̃0z̃,
〈

(ω − 〈ω〉)2
〉

=
〈

ω2
0

〉

,
〈

(ω − 〈ω〉)3
〉

= −
〈

ω2
0

〉

c̃0z̃,
〈

(ω − 〈ω〉)4
〉

=
〈

ω4
0

〉

+
〈

ω2
0

〉

c̃20z̃
2,

which shows that the spectrum moves with velocity c̃0 but also experiences an asymmetric deformation.

It is interesting to note that, in contrast with conventional coherent DSWs, which usually require a

background, here, it is the absence of the (noise) background which leads to a singularity. On the other

hand, we will now see that this singularity is suppressed by the existence of a non-vanishing background.

- SIDKE with background: Eq.(6) in the Letter

With an initial condition with background:

nω(z) = n0 + ñω(z), n0 > 0, (26)

introducing the scaling

ñω(z) =
1

τR
ñ(0)
ω (z/τR), (27)

the spectrum satisfies in the asymptotic regime τR ≫ 1

∂Z ñ
(0)
ω = −n0Hñ(0)

ω − 1

τR

(

ñ(0)
ω Hñ(0)

ω + n0∂ωñ
(0)
ω

)

+
1

τ 2R

(

− ñ(0)
ω ∂ωñ

(0)
ω +

1

2
n0H∂2

ωñ
(0)
ω

)

. (28)

where Z = z/τR. The leading-order linear term is

∂Z ñ
(0)
ω = −n0Hñ(0)

ω . (29)

The solution to this linear equation is periodic

ñ(0)
ω (Z) = cos

(

n0Z
)

ñ
(0)
ω,0 − sin

(

n0Z
)

Hñ
(0)
ω,0, (30)

where ñ
(0)
ω (Z = 0) = ñ

(0)
ω,0. It turns out that the presence of a background, n0 ≫ ñω, removes the collapse

singularity discussed above through Eq.(25).

In order to compare this solution with the simulations of the whole SIDKE (28), of the KE (2) and

of the NLS Eq.(1), we need to come back to the original variables, which gives the SIDKE (6) and the

analytical periodic solution (7) in the Letter.
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FIG. 1: Simulations of the NLSE (grey), KE (green) and BO (dashed red) equations for τR = 1 (β = 1, σ = 1,

the damped harmonic oscillator response is considered here). A quantitative agreement is obtained between the

NLSE and the KE. Because of the small value of τR, a discrepancy is observed with the BO equation. The spectra

refer to z = 7000 (a), z = 10000 (b), z = 15000 (c), z = 20000 (d). The dark line refers to the initial condition.

II. COMPLEMENTARY NUMERICAL SIMULATIONS

In this Section we complete the numerical study reported in the Letter. We report numerical simulations

of the NLSE, of the KE and of the SIDKE in different conditions. First of all, we would like to underline

again that all comparisons between these equations have been reported without making use of any adjustable

parameter. Note that, in order to compare the NLSE simulations with those of the KE and SIDKEs, a

simple averaging over nearest-neighbour points has been used in the plots of the stochastic NLSE spectra.

We have verified that other smoothing algorithms, such as the Savitzky-Golay smoothing filter, the moving

average, or the Loess algorithm, provide almost identical results.

A. Role of the response time τR

In the Letter, we have considered moderate values of the parameter τR (τR = 3 or τR = 5), and a

good agreement has been obtained between the NLSE, KE and SIDKEs. Here we show that for smaller

values of the parameter τR(∼ 1), a quantitative agreement is still obtained between the NLSE and the

KE, while the spectral evolutions obtained with these equations deviates from the predictions of the

SIDKEs. This is obviously consistent with the multi-scale expansion which underlies the derivation of

SIDKEs. We illustrate this in Fig. 1 by considering the example of the damped harmonic oscillator with

background (where the SIDKE refers to the BO equation), while similar results have been obtained without
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FIG. 2: Simulations of the KE (green) and BO (red) equations for τR = 10 (β = 1, σ = 1, the damped harmonic

oscillator response is considered here). A quantitative agreement is obtained between the KE and the BO equation.

The spectra refer to z = 1.61 × 106 (a), z = 2 × 106 (b), z = 2.5 × 106 (c). The dark line refers to the initial

condition.

background. Conversely, for large values of the parameter τR, the rapid spectral oscillations produced by

the DSW become very narrow and thus invalidate the weakly nonlinear approximation which underlies the

derivation of the KE. A discrepancy is observed in this case between the simulations of the NLSE and the

KE. On the other hand, as remarkably illustrated in Fig. 2, an excellent quantitative agreement is obtained

between the simulations of the KE and the BO equation, as expected from the multi-scale expansion with

the small parameter 1/τR.

Let us finally comment the long term evolution of the DSW discussed in Fig. 3 of the Letter. In this

case the DSW asymptotically leads to the the generation of genuine BO solitons, as confirmed by the

simulation reported here in Fig. 3. Accordingly, the amplitudes of the peaks that emerge from the DSW

saturate to a constant value in their long-term evolution (Fig. 3d), a feature which is in contrast with

the non-solitonic DSW discussed through Fig. 1 in the Letter. It is interesting to note in Fig. 3 that,

during the shock, a quantitative agreement is obtained between the simulations of the BO equation and

those of the KE (see Fig. 3a-b), whereas an appreciable discrepancy arises once solitons are generated in

the long term (post-shock) dynamics (see Fig. 3c). This is simply due to the limited range of validity

of the reduced BO equation: as the solitons form, their widths become comparable to the width of the

gain spectrum (∆ω ∼ ∆ωg), while their amplitudes become comparable to the background noise level

(ñω ∼ n0). Although the validity of the approximations underlying the derivation of the BO equation

becomes critiquable, we note in Fig. 3 that the BO equation still provides a reliable qualitative description

of the long term evolution of the DSW.
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FIG. 3: (a-c) Long-term evolution of the solitonic DSW: Simulation of the KE (green) and BO (red) with a bright

initial condition (τR = 4, β = 1, σ = 1, damped harmonic oscillator response). The DSW eventually leads to the

generation of BO soliton states, as attested by the evolutions of the maximum amplitudes of the first few peaks

(d). See the text for a discussion of the discrepancy between the BO and KE simulations. (a) z = 3 × 105, (b)

z = 5× 105, (c) z = 2.8× 106.

B. Relation with spectral incoherent solitons

The so-called ‘spectral incoherent solitons’ have been studied theoretically and experimentally in dif-

ferent circumstances in the context of optics [6–8]. A necessary condition for the generation of a spectral

incoherent soliton is the existence of a noise background, say n∞, which prevents the process of spectral

narrowing and amplification of the peaks discussed through Fig. 1d in the Letter. This is illustrated in

the numerical simulations of the KE (2) reported here below in Fig. 4. It has been realized in the same

conditions as Fig. 1d in the Letter, except that the initial Gaussian spectrum has been superposed on

a small-amplitude noise background. It shows that the amplification of the spectral peaks is arrested

once they reach the small-amplitude background, thus leading to the formation of spectral incoherent

solitons (see Fig. 4b). This conclusion is corroborated by the analytical solitary-wave solution of the KE

(2) discussed in Ref.[7]

nω(z)− n∞ =
(

nm − n∞

)

exp
[

− log
(nm

n∞

)(ω − V z)2

ω2
i

]

,

where nm(≫ n∞) is the soliton peak amplitude, and the velocity of the solitary wave is

V = − nm − n∞

log3/2
(

nm

n∞

)

γgiω
2
i√

π
,
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FIG. 4: Numerical simulations of the KE [Eq.(2) in the Letter] showing the evolution of the spectrum nω in

normal (a), and logarithmic scale (b) (z = 30000), and corresponding evolutions of the maxima of the first few

peaks (c). The simulation has been realized in the same conditions as Fig. 1 in the Letter, except that the initial

Gaussian spectrum evolves in the presence of a small-amplitude noise background [see panel (b)]. The increase

of the amplitudes of the spectral peaks slowly saturate once they reach the small-amplitude background, thus

leading to the formation of a wave-train of spectral incoherent solitons.

where gi and ωi are constant parameters defined from the response function R(t) [7]. This solution then

explicitly shows that a noise background n∞ sustains a stationary solitary-wave structure.

C. Supplement on the periodic behavior (Fig. 4b-c in the Letter)

We complete here the simulations concerning the periodic spectral behavior reported in Fig. 4b-c of the

Letter for an exponential response function with background. We report in Fig. 5 the simulation of the

NLSE, and the KE, as well as the simulation of the whole SIDKE [Eq.(6) in the Letter] and the plot of

the analytical solution of the first term of this SIDKE [Eq.(7) in the Letter]. It is interesting to note that

the collapse-like dynamics described by the second-term of the SIDKE [Eq.(6) in the Letter] is quenched

by the corresponding leading-order term, which describes a periodic evolution. We underline the excellent

agreement obtained between the different equations.
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FIG. 5: Numerical simulations of the NLSE (a), KE (b), SIDKE [Eq.(6) in the Letter] (c), and plot of the analytical

solution due to the leading-order term of the SIDKE (d) [Eq.(7) in the Letter]. An exponential response function

with background is considered here (τR = 10).

D. Complement on the experimental feasibility

Here we provide some more information concerning the feasibility of the experiment aimed at observing

incoherent DSWs in the context of optical waves. It is important to underline that DSWs can be observed

by exploiting the natural Raman effect in highly nonlinear fibers, such as photonic crystal fibers. To

illustrate this, we report in Fig. 6 the numerical simulation of the generalized NLSE with the usual

complete response function [9, 10], which includes an electronic (instantaneous) Kerr contribution as well

as the molecular (retarded) Raman contribution

R(t) = (1− fR)δ(t) + fRH(t)τ1(τ
−2
1 + τ−2

2 ) exp(−t/τ2) sin(t/τ1), (31)

with fR = 0.18, τ1 = 12.2fs, τ2 = 32fs [9, 10]. The complexity of this Raman response function (31) stems

from the amorphous nature of silica glass. Note that, by showing the existence of Raman induced DSWs,

our analysis reveals that these incoherent shocks are robust and can even be sustained by complicated

response functions.

The numerical simulation corresponds to the following realistic experimental parameters. We considered

a commercially available photonic crystal fiber with a nonlinear coefficient of γ = 100W−1km−1, and a
14
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FIG. 6: Experimental feasibility: Numerical simulations of the generalized NLSE (gray) and the KE (dashed green)

showing the formation of an incoherent DSW. The response function includes both an electronic instantaneous Kerr

contribution and a delayed Raman contribution [see Eq.(31)]. (a) z = 200Lnl = 2.42m, (b) z = 250Lnl = 3.05m,

(c) z = 300Lnl = 3.66m, (d) z = 350Lnl = 4.27m. We underline the quantitative agreement between the NLSE

and the KE without adjustable parameters. This good agreement has been obtained in spite of the complexity of

the response function (31).

second-order dispersion coefficient of β2 = 10−26s2/m (i.e., τ0 = 11.1fs, Lnl = 1.22cm, τR = 1.1τ0). The

source is an incoherent quasi-cw (∼ ns pulse) of average power ∼ 820W, and spectral bandwidth 97THz.

In this way, the source exhibits a stationary statistics, in the sense that its time correlation is much shorter

than the pulse duration. This kind of broadband incoherent sources are experimentally accessible by

exploiting high-power quasi-cw supercontinuum generation in photonic crystal fibers, see, e.g., Refs.[9–12].

We remark in Fig. 6 that a fiber length as short as L ≃ 5m is sufficient to observe the formation of the

incoherent dispersive shock wave.

We also reported in Fig. 6 the numerical simulation of the KE [Eq.(2) in the Letter]. A quantita-

tive agreement has been obtained with the corresponding simulation of the generalized NLSE, without

adjustable parameters and despite the complexity of the response function (31). Actually, the weakly

nonlinear statistical approach shows that the instantaneous Kerr effect in (31) only contributes to the

kinetic equation in a second-order perturbation theory in ε = Ld/Lnl. Accordingly, it does not contribute

to the kinetic equation, which refers to a first-order closure of the hierarchy of moments equations (see

Ref.[13] for more details).
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FIG. 7: Simulation of Eq.(32), which refers to a reduced model of the discrete Lotka-Volterra equation. The

dynamics reveals the development of a shock structure, whose ‘wave breaking’ is subsequently regularized by the

formation of rapid discrete oscillations [g0 = 1, (a) t = 10, (b) t = 33, the initial condition is in blue].

Finally note that the experimental observation of incoherent DSWs can also be envisaged by exploiting

the recent progress made on the fabrication of photonic crystal fibers filled with molecular liquids [14].

Indeed, molecular liquids usually display much larger nonlinear response times (τR is in the picosecond

range) as compared to the Raman effect in silica fibers, so that the spectral bandwidth of the incoherent

source can be reduced in a substantial way in this experimental configuration.

E. Complement on the discrete DSWs in the Lotka-Volterra model

We briefly comment here on the applicability of the ideas of DSWs to the discrete Lotka-Volterra model

discussed in the conclusion of the Letter, ∂tnj = nj

∑

i gjini with gji = −gij . In order to map the limit

τR ≫ 1, we need to consider the example of a nearest neighbor predator-prey interaction. In this case, the

discrete Lotka-Volterra equation recovers the following simplified form

Ṅm(t) = g0Nm

(

Nm+1 −Nm−1

)

, (32)

where the dot denotes the derivative with respect to the time variable, t. This model was shown to be

completely integrable by the inverse scattering method [15].

We have performed numerical simulations of Eq.(32). As illustrated in Fig. 7, the simulations indicate

the existence of a discrete shock phenomenon: For a sufficiently broad initial condition, Nm(t) exhibits

a self-steepening process, whose ‘wave-breaking’ is subsequently regularized by the formation of rapid
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discrete oscillations. The relation between these discrete structures and the corresponding discrete solitons

solutions of the integrable model (32) will be the subject of future investigations.
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