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This paper is devoted to the study of the deceleration phase of inertial confinement capsules. First
the self-similar flow exhibited by Bettiet al. [Phys. Plasmas8, 5257 (2001)] is proved to be an
attractor in the sense that arbitrary initial conditions converge towards this solution. The
convergence rate depends on the ablation process and heat conductivity and it is shown to be a
power law of the increase rate of the hotspot mass. Second the thin layer that separates the hotspot
from the cold shell is described and it is shown that it also converges to a locally self-similar profile.
By using and generalizing a shell model introduced by Bettiet al. [Phys. Plasmas9, 2277(2002)]
a closed system of ordinary differential equations for the main hydrodynamic variables is derived.
Finally the linear growth rates of the deceleration phase Rayleigh–Taylor instabilities are computed
taking into account ablation and spherical convergence. Significant differences are exhibited
between directly and indirectly driven capsules. ©2005 American Institute of Physics.
[DOI: 10.1063/1.1825389]

I. INTRODUCTION

The dynamics of the deceleration phase in inertial con-
finement fusion(ICF) experiments has recently been the sub-
ject of intense research.1–6 In ICF a spherical capsule of
cryogenic deuterium-tritium(DT) fuel and filled with gas-
eous DT is imploded by laser or x-ray irradiation.7 The irra-
diation is designed to drive multiple shocks through the shell
to minimize entropy. These shocks merge into a single one
before reaching the center of the capsule, then this shock is
reflected off the center. When interacting with the shell inner
surface, the shock slows down the shell in an impulsive man-
ner and generates a new shock that converges towards the
center. A series of shocks are then reflected off the center and
the shell inner surface increasing the pressure of the low-
density gaseous hotspot enclosed by the shell. Eventually the
gas inside the hotspot reaches a pressure large enough to
slow down the shell in a continuous manner. The so-called
deceleration phase then develops at the shell inner surface.
Betti et al. have recently proposed an analysis of the hotspot
dynamics where all hydrodynamic quantities are calculated
by assuming a self-similar internal energy profile.2 We shall
revisit this work and prove in particular that any arbitrary
initial condition at the beginning of the deceleration phase
quickly converges to this self-similar solution. We shall
prove a similar result at a microscopic level by showing that
the thin layer can also be described in terms of an attractive
self-similar small-scale profile which matches the macro-
scopic profiles inside the hotspot and inside the shell. The
description of the thin layer provides all relevant parameters

necessary for the study of the Rayleigh–Taylor(RT) growth
rates.

It is well known that RT instabilities are a limiting factor
in ICF experiments. The RT instability occurs when a fluid
accelerates another fluid of higher density. This happens in
ICF targets at the outer shell surface during the acceleration
phase and at the shell inner surface during the deceleration
phase. This phenomenon may dramatically reduce the perfor-
mance of ICF experiments by degrading the symmetry of
implosion7 or even by breaking the shell. In ICF targets the
ablation process and the thermal transport play a central
role.8 It has been shown by several authors that the ablative
RT instability growth is stabilized relative to classical RT
during the acceleration phase at the outer shell surface.9,10 In
this paper the growth rates of RT instabilities at the shell
inner surface are studied during the deceleration phase with a
model that takes into account ablation, finite-density-gradient
scale length, heat conduction, and spherical convergence.

The paper is organized as follows. In Sec. II we write the
equations of motion in spherical geometry. Section III is de-
voted to the description of the attractive self-similar solution.
We study carefully the thin layer at the edge of the hotspot in
Sec. IV. We close the system by introducing and discussing
different shell models in Sec. V. Finally we compute the RT
growth rates of the shell inner surface in Sec. VI.

II. THE MODEL IN SPHERICAL GEOMETRY

The model is based on the mass, momentum, and energy
equations
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]tsrud + = · sru ^ ud + ¹ p = 0, s2d

]tspd + = · fgpu − sg − 1dksTd ¹ Tg = S, s3d

whereS=sg−1dr2Eaksvl / s4mi
2d is the source term given by

nuclear reaction,Ea is thea-particle energy,ksvl is the fu-
sion reaction rate, andmi is the ion mass.ksTd=xTn is the
Spitzer thermal conductivity. This system is completed by
the standard ideal gas equation of state(EOS) p=sg
−1dcvrT with g=5/3 for amonoatomic gas.cv is the specific
heat at constant volume. We approximate the fusion cross
section by a quadratic formksvl.SaT2. Such an approxi-
mation is valid as long as 6,T,20 keV which is the range
relevant to ignition in ICF.2 For subsonic flows we can ex-
pand the solution to the equations of motion by a formal
expansion in powers of the Mach number. To lowest order
we get the flat pressure approximationpst ,r d=pstd. To order
one the mass and energy equations read in spherical geom-
etry as

]r

]t
+

1

r2

]

]r
sr2rud = 0, s4d
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]t
+
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r2

]

]r
sr2ud −
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]

]r
Sr2Tn ]

]r
sTdD = map2, s5d

where x̄=sg−1dx and ma=EaSa / f4sg−1dmi
2cv

2g. The mo-
mentum equation describes the fluctuations of the pressure
and it can be integrateda posteriori. The energy equation can
be integrated to obtain the expression of the velocity flow

usr,td =
x̄Tn

gp

]T

]r
+

r

3g
Smap −

p8

p
D . s6d

Substituting into the mass equation and eliminating the den-
sity by the EOS, we get the equation governing the evolution
of the temperature

Sp8
g − 1

g
+

ma

g
p2DT − p

]T

]t
−

r

3g
smap2 − p8d

]T

]r

+
x̄T2

gr2

]

]r
Sr2Tn−1]T

]r
D = 0. s7d

The initial conditions in ICF are such that the temperature in
the shellT` is much less than the central hotspot temperature
Tc. Denoting byd this small ratio, the temperature is of order
Tc inside a sphere with radiusRhstd (delimiting the so-called
hotspot), and of orderdTc outside the sphere. We shall see in
Sec. IV that the hotspot is actually surrounded by a thin layer
with thicknessdnRh where the temperature and the heat flow
undergo a rapid transition between the two regimes. By Eq.
(6) the velocity at the edge of the hotspot satisfies

sp8 − map2d
Rh

3

3
+ gpRh

2ufRhstd,tg = x̄Rh
2Tn]rT. s8d

The right-hand member is 0 to lowest order ind because the
heat flux is small at the edge of the hotspot. The velocity at
Rh is the sum of the surface motion and the ablative flow
ufRhstd ,tg=Rh8std+Vlocstd. The local ablation velocity is much
smaller than the interface velocity(we shall study precisely

the local behavior at the interface in Sec. IV and show that
Vloc is of the order ofdRh8). To lowest order(8) can thus be
simplified into

p8 − map2

p
= − 3g

Rh8

Rh
. s9d

III. SELF-SIMILAR DYNAMICS

In this section we revisit the derivation of a self-similar
solution that was first obtained in Ref. 2. Let us seek a self-
similar form for the temperature profile

Tst,rd = TcstdFTS r

Rhstd
D , s10d

with FTs0d=1. In the near-isobaric framework, the density
profile is then also self-similarrst ,rd=rcstd /FTfr /Rhstdg.
Tcstd [resp. rcstd] is the central hotspot temperature[resp.
density]. Substituting the ansatz(10) into Eq. (7) and using
the identity(9), we get the compatibility equation

fxsFT8FT
n−1d8sxd + 2FT8FT

n−1sxdgF x̄Tc
n+2

gRh
2stdG + fxFT

−1sxdg

3FSp8
g − 1

g
+

ma

g
p2DTc − pTc8G = 0, s11d

which involves the two independent variablest and x
=r /Rhstd. The EOS impliesrc8 /rc+Tc8 /Tc=p8 /p. The mass of
the hotspotMh satisfies 3Rh8 /Rh+rc8 /rc=Mh8 /Mh. Using once
again Eq.(9), the expression in the last brackets in Eq.(11)
can be rewritten as fp8sg−1d /g+sma /gdp2gTc−pTc8
=TcpMh8 /Mh. As a result the compatibility equation admits a
solution if the mass of the hotspot satisfies the differential
equation

Mh8std
Mhstd

= An

x̄Tc
n+1std

gRh
2stdpstd

s12d

for a constantAn that also parameterizes the equation thatFT

must satisfy

xsFT8FT
n−1d8sxd + 2FT8FT

n−1sxd + AnxFT
−1sxd = 0. s13d

By definingGsxd=FT
nsxd this equation can be rewritten in the

following simple form:

xG9sxd + 2G8sxd + nAnxG−1/nsxd = 0. s14d

The profileG must satisfyGs0d=1, G8s0d=0, and the tem-
perature becomes evanescent at the edge of the hotspotx
=1 so thatGs1d=0. These conditions are fulfilled only for a
particular value ofAn that can be determined as follows. We
considerG1 the solutionxG19+2G18+xG1

−1/n=0 starting from
G1s0d=1, G18s0d=0. We establish numerically that the first
zero ofG1 is atxn.2.253 forn=5/2. Theprofile G can then
be expressed in terms ofG1 as Gsxd=G1sxxnd. Thus An

=xn
2/n.2.03 forn=5/2. ThefunctionG is plotted in the left

plot of Fig. 1 for n=5/2. We canalso give the value of the
hotspot mass Mhstd=mnrcstdRhstd3 where mn

=4pe0
1x2/FTsxddx which is equal tomn.7.33 for n=5/2.
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To sum up, if the initial temperature profile is of the
form Tst=0,rd=Tc0FTfr /Rhs0dg with FT=G1/n, then the dy-
namics is self-similar and described by Eq.(10). The hotspot
radius is obtained by integration of Eq.(9)

Rhstd = Rhs0dS pstd
ps0dD

−1/s3gd

expSma

3g
E

0

t

pssddsD .

The mass of the hotspot can then be integrated

Mhstd = FMhs0dn+1 + c1cv
−n−1x̄fRhs0d3gps0dgs3n+1d/s3gd

3 E
0

t

pssdf3sg−1dn−1g/s3gd

3expS s3n + 1dma

3g
E

0

s

pstddtDdsG1/sn+1d

,

with c1=fsn+1dAnmn
n+1g / fgsg−1dn+1g.1.883104 for n

=5/2 andg=5/3. Thetemperature profile is Eq.(10) with
the central hotspot temperature given by

Tcstd = Tcs0d
Mhs0dps0d1/g

Mhstdpstd1/g expSma

g
E

0

t

pssddsD .

Substituting into Eq.(6) establishes the velocity profile

ust,rd = Rh8stdF r

Rhstd
− estdFT

nFT8S r

Rhstd
DG , s15d

with estd=An
−1fMh8 /Mhstdg / fuRh8 u /Rhstdg. In typical ICF con-

figurationse is increasing with time. To sum up, all hydro-
dynamic quantities can be computed in terms of the hotspot
pressurepstd. We shall address in Sec. V different shell mod-
els. The coupling between the hotspot and the shell provides
additional equations that close the system. However, an in-
teresting issue that was not addressed in Refs. 2 and 3 is
whether the self-similar profile will be actually observed in
an ICF experiment. The end of the section is devoted to this
issue.

Let us consider an arbitrary initial condition with tem-
perature profileTst=0,rd which is compactly supported in a

sphere whose radius is denoted byRhs0d. The initial pressure
and mass in this sphere are denoted byps0d and Mhs0d,
respectively. We write Tst=0,rd=T0st=0,rd+T1st=0,rd
where T0 is the self-similar profile that corresponds to the
massMhs0d and radiusRhs0d, that is to say

T0st = 0,rd = FTS r

Rhs0dD mnRhs0d3ps0d
cvsg − 1dMhs0d

.

If T1st=0,rd is zero, then the flow is self-similar and obeys
the dynamics described in Sec. III. IfT1st=0,rd is nonzero
but small enough, then we can linearize the solution near the
self-similar flowTst ,rd=T0st ,rd+T1st ,rd. By integrating the
linearized EOS and energy conservation we can express the
perturbed density and velocity in terms of the perturbed tem-
perature

r1st,rd = −
pstd

cvsg − 1dT0
2st,rd

T1st,rd, s16d

u1st,rd =
xW

gpstd
]

]r
fT0

nT1st,rdg. s17d

We introduce jst ,rd=T1st ,rd /T0
2st ,rd which satisfies the

equation

Sp8

p
+ 3

Rh8

Rh
Dj +

]j

]t
+

Rh8

Rh
r
]j

]r
−

x̄

gpr2

]

]r
Sr2]T0

n+1j

]r
D = 0.

s18d

j can be written in the form

jst,rd =
1

Rh
2pstdr

FT
−n−1S r

Rhstd
DǰS r

Rhstd
,tstdD . s19d

The functiontstd characterizes the time flow in terms of the
ablation process

tstd =
1

An

lnS Mhstd
Mhs0dD . s20d

FIG. 1. Heat conductivity profileTst ,rdn for n=5/2. At the macroscopic level(left picture) the profile is described by the functionTc
nstdGfr /Rhstdg, whereTcstd

is the central temperature andG is the normalized profile obtained from the self-similar analysis of Sec. III. Close to the edge of the hotspot the functionG
decays linearlyGsxd.Cns1−xd, 0,1−x!1 with Cn.2.96. At the microscopic level aroundr =Rh (right picture) the profile is described by the function
T`

n stdghfr −Rhstdg /Dstdj whereT`std is the temperature in the inner region of the shell, the widthDstd is given by(25), and the normalized profileg is obtained
from the thin layer analysis of Sec. IV. This microscopic profile matches the self-similar high-temperature profile in the hotspot and the low temperature in
the shell.
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At r =0, jst ,0d takes some finite value, so thatǰst ,0d=0 at
x=0. For r ùRg, the diffusive part in Eq.(18) vanishes and
only the transport term remains. As a result, forxù1, the

equation satisfied byǰ is simply ]tǰ=0, which shows that

ǰst ,1d= ǰs0,1d=0. Finally, forxP s0,1d, ǰ is solution of the
one-dimensional diffusion equation

]tǰ = FT
n+1sxd]x

2ǰ, s21d

with the boundary conditionsǰst ,0d= ǰst ,1d=0.
By differentiatinge0

Rhstdr1sr ,tdr2dr we get that the pertur-
bation of the densityr1 does not modify the evolution of the
massMhstd, in the sense that

Mhstd = 4pE
0

Rhstd

r0sr,tdr2dr.

The section is devoted to the study of the differenceT1 be-
tween the solutionT of the real system and the self-similar
solutionT0. We are going to prove two quantitative estimates
that give the convergence rate of the solution towards the
self-similar solution. These two results give two different
estimates for two different weighted quadratic norms ofT1.

Proposition. The convergence rate of the solution to-
wards the self-similar solution is a power law in
Mhs0d /Mhstd. The following inequality holds true:

E
0

Rhstd

sT1
2/T0

2dst,rdmtsrdr2dr

E
0

Rhstd

mtsrdr2dr

øSMhs0d
Mhstd

D2cn
E

0

Rhs0d

sT1
2/T0

2ds0,rdm0srdr2dr

E
0

Rhs0d

m0srdr2dr

s22d

for sm ,cnd=smsad ,cn
sadd or =smsbd ,cn

sbdd where (a) cn
sad.2.48

for n=5/2, mt
sadsrd=FT

sn−1d/2fr /Rhstdg, (b) cn
sbd.3.51 for n

=5/2, mt
sbdsrd=FT

3sn−1d/2fr /Rhstdg.
The Appendix is devoted to the mathematical proof of

the proposition. This proposition demonstrates that the abla-
tion process makes the flow converge to the self-similar so-
lution. Thermal conduction is also important as it imposes
the value of the powercn.

IV. ANALYSIS OF THE THIN LAYER

The preceding section was devoted to the macroscopic
description of the hotspot. The analysis is carried out in the
asymptotic framework where the temperature in the shell is
much smaller than the central hotspot temperature. We have
found that the temperature vanishes at the edge of the
hotspot because the asymptotic analysis only takes into ac-
count leading order terms. We would like to study more care-
fully the thin layer that separates the hotspot from the cold
shell. We accordingly impose the nonzero boundary condi-
tion

Tst,rd ——→
r→`

T`std s23d

and we introduced=T`s0d /Tcs0d. We shall study the thin
layer in the asymptotic frameworkd!1. The temperatureT`

could be considered as constant, but we shall address the
general case whereT`std is a slowly time-varying quantity
which takes values with the same order of magnitude as
T`s0d. We accordingly introduce the normalized temperature

T̂`std=T`std /T`s0d and assume thatT̂`std=0s1d. The central
temperature is also a time-varying quantity, so we normalize

it by introducing T̂cstd=Tcstd /Tcs0d and by assumingT̂cstd
=0s1d. To study the thin layer we focus our attention to the
vicinity of the edge and set

Tst,rd = T`stdfS r − Rhstd
Dstd

D . s24d

We aim at identifying the thicknessDstd and the profilefsxd
of the local temperature profile. We also wish to prove that
the temperature profile takes the form(24) locally. On the
one hand, from the boundary condition(23) the profile f
must satisfyfsxd→1 asx→ +`. On the other handf should
match the macroscopic self-similar temperature profile asx
→−`. For 0,1−r /Rhstd!1 the macroscopic profile is of
the form TcstdCn

1/nf1−r /Rhstdg1/n where Cn=−G8s1−d.2.96

for n=5/2 (see Fig. 1). Thus dT̂`stdfsxd.Cn
1/nuxu1/nT̂cstd

3fDstd /Rhstdg1/n as x→−`. This in turn imposes that the
thickness of the layer is of orderdn and given by

Dstd = dnRhstd
n
S T̂`std

T̂cstd
Dn

=
Rhstd

n
ST`std

Tcstd
Dn

. s25d

Furthermore the profilef must satisfy fsxd.uxu1/n as
x→−`. By substituting Eq.(24) into Eq. (7) we get

Fp8
g − 1

g
+

ma

g
p2 − p

T̂8̀

T̂`

Gstdfsxd + HRhp

D
FRh8

Rh
+

1

3g

3Sp8

p
− mapDGstd + xSD8p

D
+

p8 − map2

3g
DstdJ f8sxd

+
x̂dn+1T̂`

n+1std
g

F fn+1f8sxd
DRhstd

+
sn − 1df82fnsxd + fn+1f9sxd

Dstd2 G
= 0, s26d

where x̂= x̄Tc
n+1s0d. The identity (9) cannot be applied di-

rectly because it is valid only at lowest order ind. Here the
correction ind plays a role. We substituteusRhstd ,td=Rh8std
+Vlocstd with Vlocstd=dV̂locstd into Eq. (8). Taking into ac-
count Eq.(25) we get

Rh8

Rh
std +

1

3g
Sp8

p
− mapDstd

=dS− V̂locstdRhstd +
Cnx̂T̂cstdnT̂`std

gpRh
2std

fns0df8s0dD .
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Note that another scaling forVlocstd would lead to a compat-
ibility condition that has no solution. Substituting into Eq.
(26) and collecting the terms with lowest order ind, we get
the effective compatibility equation

F− pV̂locstd +
Cnx̂T̂c

nstdT̂`std
gRhstd

fns0df8s0dG f8sxd

+
Cnx̂T̂c

nstdT̂`std
gRhstd

fsn − 1df82fn + fn+1f9gsxd = 0.

Note that this compatibility equation holds true only ifn
.1. It is satisfied if the local velocity is of the form

V̂locstd =
Cnx̂T̂c

nstdT̂`std
gpRhstd

ffns0df8s0d − Bng, s27d

whereBn is a constant that also parameterizes the differential
equation thatf must satisfy

sn − 1df82fnsxd + fn+1f9sxd + Bnf8sxd = 0. s28d

By defining g= fn we can write this equation in the simple
form g9+Bng8g−sn+1d/n=0. The boundary conditions in terms
of g readgsxd→1 asx→ +` andgsxd.uxu asx→−`. Using
the boundary condition at +̀ the equation governingg can
be integrated as

g8sxd = nBnfgsxd−1/n − 1g. s29d

The boundary condition at −̀ thus imposesBn=1/n. The
functiong is plotted in Fig. 1 forn=5/2. Bysubstituting into
Eq. (27) we obtain the local velocity

Vlocstd = −
Cnx̄Tcstdn

ngpRhstd
T`stdfs0d.

Note thatT`stdfs0d is the exact temperature at the edger
=Rhstd while the density at this point is rlocstd
=Tcstdrcstd / fT`stdfs0dg. The mass flow at the edge of the
hotspot is accordingly

rlocstdVlocstd = −
Cnx̄Tcstdn+1rcstd

ngRhstdpstd
,

which is independent of the precise definition of the position
of the edge, i.e., the mass flow is locally constant. We also
get the variation of the mass of the hotspot

Mh8std = − 4pRh
2stdrlocstdVlocstd

=
4pCn

n

x̄Tcstdn+1rcstdRhstd
gpstd

. s30d

The identity proved in the following lemma shows that Eq.
(30) is the same as Eq.(12). In other words the compatibility
equations for the macroscopic self-similar profile and for the
microscopic local profile are identical. They are satisfied si-
multaneously. As we have shown that the self-similar profile
is attractive, this property also holds true for the local profile.

Lemma.Anmn=4pCn /n.14.88 forn=5/2.
Proof. mn is given by mn=e0

1x2G−1/nsxddx. Using Eq.
(14) satisfied byG, and integrating by part yields

mn = −
4p

nAn
E

0

1

fx2G8sxdg8dx= −
4p

nAn

G8s1−d.

However, Cn=−G8s1−d which completes the proof of the
lemma. h

The velocity flow can be described around the edge of
the hotspot

ust,rd = Rh8std −
Cnx̄TcstdnT`std

ngpRhstd
fS r − Rhstd

Dstd
D . s31d

To lowest order ind the velocity isRh8std. The correction is of
orderd. This correction is important in that it is the one that
is related to ablation. By denoting byr`std the shell density
and by defining the ablation velocityVastd by the identity
r`stdVastd=mass flow=rlocstdVlocstd, we get a closed form
expression for the ablation velocity

Vastd = −
Cnx

ngcv

Tcstdn

Rhstdr`std
. s32d

The density-gradient scale length isLg= ur /]rru. From the
differential equation satisfied byg it is easy to establish that
the minimum density-gradient scale length is reached at the
point where the temperature value isT=fsn+1d /ngT`std, and
then

Lg,minstd =
sn + 1dn+1

Cnnn−1 ST`std
Tcstd

Dn

Rhstd,

where sn+1dn+1/ sCnnn−1d.6.86 for n=5/2. Note that this
result is consistent with the one obtained by Kull with the
well known isobaric model.11 The expressions of the ablation
velocity and the minimum density-gradient length scale are
important because they play key roles in the growths of RT
instabilities, as we shall see in Sec. VI.

V. SHELL MODELS

The previous sections demonstrate that local and global
hydrodynamic quantities are functions of the hotspot pres-
surepstd. Additional equations must be exhibited to close the
system. These equations result from the coupling of the
hotspot with the shell surrounding the hotspot. A first model
consists in approximating the shell by a thin and incompress-
ible layer of high-density material.2 The shell motion is then
deduced from Newton’s law which provides the additional
equation required to close the system. This simple model was
analyzed in Ref. 2 but as discussed in Ref. 3 the comparisons
with numerical simulations do not exhibit good agreement.
The main reason is that shells are thick and compressible in
ICF. Furthermore, a return shock is created at the edge of the
hotspot and travels through the shell, which is not a uniform
medium anymore but exhibits two regions with different
characteristics. In Ref. 3 a thick shell model is introduced
and results are proposed and discussed without derivation.
The goal of this section is to derive and generalize this
model. In particular we derive the equations for arbitrary
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adiabatic exponents in the gaseous hotspot and the solid
shell, and we consider a different profile for the free-falling
shell material. We also discuss the validity of the model by
pointing out the underlying hypotheses.

A. The thick shell model

An accurate model should take into account the return
shock in the cold unperturbed shell. The deceleration phase
actually starts when the shock reflected from the center of the
capsule interacts with the incoming shell. We thus consider
that the shock starts at time 0 from the edge of the hotspot
and propagates within the shell. We denote byRs the location
of the shock. Three regions can be distinguished which are as
follows:

(1) r ,Rhstd corresponds to the hotspot.
(2) Rhstd, r ,Rsstd corresponds to the shocked shell.
(3) r .Rsstd corresponds to the cold unperturbed shell,

whose pressure is much lower.
Let us first consider the outer regionr .Rsstd. The shell

is in free-fall conditions, with an evanescent pressure. This
region is not yet perturbed by the hotspot. By assuming a
uniform implosion velocity profile and by integrating the
equations of motion in spherical geometry, we get with an
evanescent pressure and heat conductivity that, forr .Rsstd,

uffst,rd = − Vi , s33d

rffst,rd =
Msh

4pr2D0
r̄0S r + Vit − R0

D0
D , s34d

where Vi is the implosion velocity,Msh is the initial shell
mass,R0 is the initial location of the shell inner surface, and
D0 is the initial shell thickness. The normalized density pro-
file r̄0 is such thatr̄0sxd=0 for xø0, r̄0sxd.0 for x.0, and
e0

`r̄0sxddx=1.
The shock propagation is governed by the Rankine–

Hugoniot relations12

frug = Rs8frg,

fp + ru2g = Rs8frug,

Fgspu+
gs − 1

2
ru3G = Rs8Fp +

gs − 1

2
ru2G .

We denote bygs the adiabatic exponent in the shell in con-
trast with the valuegg in the gaseous hotspot. In front of the
shock the pressure is evanescent, so we havepsRs

+d.0,
usRs

+d=uffsRs,td, rsRs
+d=rffsRs,td. Behind the shock the pres-

sure, velocity, and density are denoted bypsstd=psRs
−,td,

vsstd=usRs
−,td, and rsstd=rsRs

−,td. Substituting into the
Rankine–Hugoniot relations we obtain

rsstd = rffsRs,td
gs + 1

gs − 1
,

psstd = rffsRs,tdfvs − uffsRs,tdgfRs8 − uffsRs,tdg,

Rs8std = −
gs − 1

2
uffsRs,td +

gs + 1

2
vs.

In the shocked shell regionRh, r ,Rs the dynamics is gov-
erned by the equations of motion(1)–(3) in absence of heat
conduction and nuclear reaction. We cannot assume anymore
a subsonic flow, so that these equations are equivalent to
Euler equations. Let us introduce the shocked shell mass

Mss= 4pE
Rh

Rs

rr2dr.

The hotspot mass is negligible with respect to the shell mass,
so the integration domain can be set tof0,Rsg with a negli-
gible error. By differentiating this identity and using the mass
conservation equation we findMss8 =4pRs

2rsstdsRs8−vsd. From
the expression ofrsstd in terms ofrff we get

Mss8 = 4pRs
2rffst,RsdfRs8 − uffst,Rsdg. s35d

We introduce the average velocity of the shocked shell

Uss=
4pkrul

Mss
, krul =E

Rh

Rs

rur2dr.

Once again, as the hotspot mass is much smaller than the
shell mass, we can set the integration domain tof0,Rsg. We
then differentiatekrul and use the momentum conservation
equation and the expressions ofrs, vs, andps. We obtain

krul8 = rffst,Rsduffst,RsdfRs8 − uffst,Rsdg + 2E
0

Rs

prdr.

The first term in the right-hand side can be expressed in
terms ofMss8 . The second term can also be simplified because
the volume insideRs is occupied mostly by the hotspot. This
is equivalent to assumeRs−Rh!Rh, which holds true at the
beginning of the deceleration phase, but has to be checkeda
posteriori during the whole phase. As a result the second
term can be approached by 2e0

Rhprdr. Furthermore the pres-
sure is almost uniform in the hotspot so that we finally obtain

4pkrul8 = Mss8 uffst,Rsd + pRh
2.

The average velocity thus satisfies

sMssUssd8 = Mss8 uffst,Rsd + 4ppRh
2. s36d

The velocity profile is not easy to compute because all
quantities in the Euler equations are of the same order in the
shocked shell. Consistently with the hypothesisRs−Rh!Rh,
we assume that the fluctuations of the velocity flow inside
the shocked shellRh, r ,Rs are small and we accordingly
adopt the uniform profileust ,rd=Rh8std. We shall see in the
following section another model that takes into account an
affine variation of the velocity flow. In case of a uniform
profile we havevsstd=Rh8std and the average velocity is
Ussstd=Rh8std as well. By grouping the last identity with Eqs.
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(35) and (36) and by introducing the velocity of the shell
inner surfaceUh=Rh8std, we get a system of five differential
equations with five unknown variablessRs,Rh,Uh,Mss,pd.
By choosing a model for the flow in the free-fall shell, the
system can be closed and integrated. Let us adopt the model

(33) and (34). We introduce dimensionless variablesR̄s

=Rs/R0, R̄h=Rh/R0, Ūh=Uh/Vi, p̄=p/p0, M̄ss=Mss/Msh, and

t=Vit /R0 so that the system reads asR̄h8=Ūh,

Ūh8 =
1

ê0

R̄h
2p̄

M̄ss

−
M̄ss8

M̄ss

fŪh + 1g,

R̄s8 =
gs − 1

2
+

gs + 1

2
Ūh,

M̄ss8 = A0s1 + R̄s8dr̄0fA0sR̄s + t − 1dg,

p̄8 = − 3gg
Ūh

R̄h

p̄ +
Ya

ê0
2 p̄,

with the initial conditions R̄ss0d=1, R̄hs0d=1, Ūhs0d=0,

M̄sss0d=0, and p̄s0d=1. In the above equations the prime
indicates a derivative with respect tot. This analysis shows
that there are only three independent parameters

ê0 =
MshVi

2

4pp0R0
3, Ya =

map0R0

Vi
ê0

2, A0 =
R0

D0
. s37d

ê0 is proportional to the ratio of the initial kinetic energy of
the shell over the initial internal energy of the hotspot.A0 is
the initial shell aspect ratio.Ya characterizes the reaction
rate.

B. Refinement of the thick shell model

In the preceding section we have assumed a uniform
profile for the velocity flow inside the shocked shellRhstd
, r ,Rsstd. In this section we refine this model by assuming
an affine function for the velocity profile. Taking into ac-
countuft ,Rhstdg=Rh8std we write

usr,td = Rh8std +
r − Rhstd

Rsstd − Rhstd
fvsstd − Rh8stdg. s38d

Using the energy conservation equation and the relation
uft ,Rhstdg=Rh8std, the slope ofu at Rh can be identified

]u

]r
ft,Rhstdg = −

p8

gsp
std − 2

Rh8

Rh
std.

Comparing with Eq.(38) we get the expression ofvs which
can be simplified using Eq.(9)

vsstd = Rh8std + astdfRsstd − Rhstdg, s39d

where

astd = S3
gg

gs
− 2DRh8

Rh
std −

ma

gs
pstd.

We finally rewrite the velocity profile(38) with this addi-
tional identity and getust ,rd=Rh8std+astdfr −Rhstdg.

We shall use the mass conservation equation to get the
density profile. Let us introducer̃st ,rd=r2rft ,r +Rsstdg and
ũst ,rd=uft ,r +Rsstdg. Taking into account the velocity profile
that we have just derived,r̃ satisfies

]r̃

]t
+ Svs − Rs8 +

vs − Rh8

Rs − Rh
rD ]r̃

]r
+

vs − Rh8

Rs − Rh
r̃ = 0,

with the initial condition atr =0: r̃st ,r =0d=Rs
2stdrsstd. The

solution can be computed explicitly and turns out to be an
affine function

r2rst,rd = hRs
2rsstd + fr − Rsstdgbstdj s40d

b can be identified easily as a function of the shocked shell
massMss. We get

bstd =
Rs

2rsstd
Rsstd − Rhstd

−
Mssstd

2pfRsstd − Rhstdg2 .

We now express the average shocked shell velocityUss

as a function of the other quantities. Let us denoteřst ,rd
=rst ,rdr2. In the shocked shell region the velocityu and
densityř are affine functions. By integrating these functions
we get

Ussstd = u1/2stdF1 +
astdbstd

12u1/2stdř1/2std
sRs − Rhd2G ,

where ř1/2std and u1/2std are the values ofř and u at fRhstd
+Rsstdg /2. However, a and b are of the same order as
u1/2/Rh andř1/2/ sRs−Rhd, respectively. By using the assump-
tion that the thicknessRs−Rh of the shocked shell is smaller
thanRh, we can safely make the approximationUss.u1/2. By
Eq. (38) we thus haveUss=fvsstd+Rh8stdg /2. Combining with
Eq. (39) yields

Ussstd = Rh8std +
astd

2
fRsstd − Rhstdg. s41d

By grouping Eqs.(9), (35), (36), and(41), and by introduc-
ing the velocity at the edge of the hotspotUh=Rh8std, we get
a system of five first-order differential equations with five
unknown variablessRs,Rh,Uh,Mss,pd. By choosing the free
model (33) and (34) for the shell, we get a closed system
describing the shell and the hotspot. We introduce dimen-

sionless variablesR̄s=Rs/R0, R̄h=Rh/R0, Ūh=Uh/Vi, p̄

=p/p0, M̄ss=Mss/Msh, andt=Vit /R0 so that the system reads

as R̄h8=Ūh,

R̄s8 =
gs − 1

2
+

gs + 1

2 HŪh +FS3
gg

gs
− 2D Ūh

R̄h

−
Ya

gsê0
2 p̄GfR̄s − R̄hgJ ,
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Ūh8 =
R̄h

R̄hS2 −
3gg

2gs
D + R̄sS3gg

2gs
− 1DXS1 −

3gg

2gs
D

3Ūh

R̄s8R̄h − R̄sŪh

R̄h
2

+
Ya

2gsê0
2fp̄8sR̄s − R̄hd

+ p̄sR̄s8 − Ūhdg +
1

ê0

R̄h
2p̄

M̄ss

−
M̄ss8

M̄ss

HŪh + 1

+FS3gg

2gs
− 1D Ūh

R̄h

−
Ya

2gsê0
2 p̄GsR̄s − R̄hdJC ,

M̄ss8 = A0s1 + R̄s8dr̄0fA0sR̄s + t − 1dg,

p̄8 = − 3gg
Ūh

R̄h

p̄ +
Ya

ê0
2 p̄,

with the initial conditions R̄ss0d=1, R̄hs0d=1, Ūhs0d=0,

M̄sss0d=0, andp̄s0d=1. The three parameters of the problem
are Eq.(37). If D0→0 then we recover the thin shell model.
As soon asD0.0, the pressure and acceleration are reduced
compared to the thin shell model. This is due to the fact that

only the shocked shell part acts as a piston while the return
shock has not crossed the whole shell.

We consider the averaged parameters at the beginning of
the deceleration phase for the direct-drive NIF-like capsule
studied in Ref. 2: Msh=1.1 mg, ps0d=0.9 Gbar, Rhs0d
=240mm, Vi =385mm/ns. We assume a density profile for
the free-falling shell material of the typer̄0sxd=4x2 exp
s−2xd. We also have cv=104 m2 s−2 K−1, x=6
310−8 m g s−3 K−7, gg=5/3, and gs=7/4. Finally ma

=u 9.12310−10 m s g−1, with u the absorbeda-particle frac-
tion. We plot in Fig. 2 the time evolutions of hotspot radius
and pressure in the caseu=40%. We consider different val-
ues for the initial shell thickness, which shows that the thin
shell modelD0!R0 is too optimistic as pointed out in Ref. 3.

The velocity profile is plotted in Fig. 3 at different times.
The three main regions can be distinguished: hotspotr
,Rhstd, shocked shellRhstd, r ,Rsstd, and free-fall shellr
.Rsstd. The velocity profile is given by Eq.(15) in the part
r ,Rhstd, by the affine profile(38) in the part Rhstd, r
,Rsstd, and by the free-fall velocity −Vi in the part r
.Rhstd. In particular, we can checka posteriori the hypoth-
esis about the small fluctuations of the velocity profile inside
the shocked shell.

In the same way we study the nominal indirectly driven
LMJ capsule.13 At the beginning of the deceleration phase
we haveMsh=0.31 mg,ps0d=0.6 Gbar,Rhs0d=120mm, Vi

=390mm/ns, andD0=80 mm. We plot in Fig. 4 the evolu-
tions of the hotspot radius and pressure for different values
of the absorbeda-particle fraction. Ifuù78%, then the so-
lution blows up in finite time, which means that the quadratic
approximation for the fusion cross section is not valid any-
more. This blow-up can also be interpreted as the ignition of
the capsule. The thick shell model can thus be used as a
simplified model for the determination of ignition criteria.

VI. HYDRODYNAMIC INSTABILITIES

A rough estimate of the linear RT growth rates for large
l modes can be obtained by using well-known planar
results.2,14 However a more accurate model should take into
account spherical convergence effects.

FIG. 2. Time evolutions of the hotspot radius(a) and pressure(b) for the
NIF capsule. The thick shell model is numerically integrated for different
values of the initial shell thickness.

FIG. 3. Velocity profiles for the NIF capsule,D0=40 mm.
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Unperturbed state. We consider a simplified model
where the density of the unperturbed state is uniform in each
region delimited by the interfacer =Rhstd. By integrating the
mass conservation equation in each region

uIst,rd = −
rI8

3rI
r , s42d

uEst,rd = −
rE8

3rE
r +

Rh
2

r2 SRh8 +
Rh

3

rE8

rE
+ vED , s43d

where subscriptE (resp. I) denotes the external outer(resp.
inner) region. Jump conditions impose

fr0v0g = 0, fp0 + r0v0
2g = 0, s44d

where uIft ,Rhstd−g=Rh8std+vIstd and uEst ,Rhstd+d=Rh8std
+vEstd. We denote the mass flow byṁ=rEvE=rIvI. In the
following we carry out the stability analysis of this hydrody-
namic configuration. The perturbed interface is parameter-
ized asr =Rhstd+h1st ,u ,fd. We expand all hydrodynamic
variables in the inner and outer regions asu=u0+u1, . . . with
u0 given by Eqs.(42) and(43) and we consider the linearized
evolution problem for the perturbed variablesu1, . . ., andh1.

Perturbed jump conditions. The stability of solutions of
nonlinear hyperbolic systems of conservation laws has been

studied in Ref. 15. Rankine–Hugoniot relations for the per-
turbed hydrodynamic variables can be expressed in absence
of density perturbation as

Rh
2fr0ur1g = f]tsRh

2r0h1dg, s45d

Rh
2fp1 + 2ṁur1g = fr0gRh

2Rh9h1 + 2ṁfv0gRhh1, s46d

Rhfuu1g = − fv0g]ush1d, s47d

Rh sinsudfuf1
g = − fv0g]fsh1d. s48d

Assuming that the interface is an isotherm we get the supple-
mentary jump condition16

fur1
g + h1f]ru0g = − h1fv0g

]rc

c
sRhd,

where c is a solution to the Laplace equationDc=0. The
partial derivatives]ru0 can be evaluated from the unper-
turbed velocity profiles. Besides, in spherical geometry and
in the case of a single-mode perturbation we havec=r l so
that the supplementary jump condition reads as

fur1
g = h1Fr08

r0
G −

l − 2

Rh
h1fv0g. s49d

Linearized perturbed system. The linearized mass con-
servation equation reads]tsr1/r0d+u0]rsr1/r0d=0. Using the
arguments of Refs. 16 and 17 we neglect density perturba-
tions and putr1=0. The momentum and energy equations in
spherical coordinates take the form

]tsur1
d + ]rsu0uu1

d + ]rSp1

r0
D = 0,

]tsuu1
d +

u0

r
]rsruu1

d +
1

r
]uSp1

r0
D = 0,

]tsuf1
d +

u0

r
]rsruf1

d +
1

r sinsud
]fSp1

r0
D = 0,

]rsr2ur1
d +

r

sinsud
h]ufsinsuduu1

g + ]fsuf1
dj = 0.

Solution in the outer region. The vorticity created by the
instability at the interface is not convected toward this region
so that we can consider that the flow is irrotational. Introduc-
ing the velocity potentialu1= =c1 the linearized energy con-
servation equation imposes the Laplace equationDc1=0. By
considering a single-mode perturbationsl ,md, the general so-
lution that does not blow up at infinity isc1st ,r ,u ,fd
=dstdr−l−1Pl

mfcossudgeimf. The perturbation of the pressure is
given by −p1/r0=]tc1+u0]rc1. The perturbations of the ve-
locity and pressure are thus of the form

ur1
st,r,u,fd = ũr1

st,rdPl
mfcossudgeimf, s50d

uu1
st,r,u,fd = ũu1

st,rd]uPl
mfcossudgeimf, s51d

FIG. 4. Time evolutions of the hotspot radius(a) and pressure(b) for the
LMJ capsule. The thick shell model is numerically integrated for different
absorbeda-particle fractionsu.
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uf1
st,r,u,fd = ũf1

st,rd
im

sinsud
Pl

mfcossudgeimf, s52d

p1st,r,u,fd = p̃1st,rdPl
mfcossudgeimf, s53d

whereũf1
= ũu1

,

ũr1
ft,Rhstd+g =

D

Rh
std, s54d

ũu1
ft,Rhstd+g = −

D

sl + 1dRh
std, s55d

p̃1ft,Rhstd+g = rEstdS D8

l + 1
−

vE

Rh
DDstd. s56d

Dstd=−sl +1ddstdRhstd−l−1std is an arbitrary function.
Solution in the inner region. The vorticity denoted by

v= = 3u1 is convected from the interface toward this re-
gion. The evolution equation ofvr combined with a vanish-
ing initial condition establishes thatvr =0. Thef component
is found to satisfy

f]t + u0]r + s]ru0dgsrvfd = 0. s57d

Using the linearized conservation equations we get thatu1

andp1 can be written in the form(50)–(53), so thatvf reads
as

vfst,r,u,fd = ṽfst,rd]uPl
mfcossudgeimf,

while the radial velocity and thef component of the vortic-
ity satisfy the differential equation

]r
2sr2ũr1

d − lsl + 1dũr1
= lsl + 1drṽf. s58d

Equation(57) imposes thatṽfst ,rd=rIstdrFfrIstdr3g whereF
is an arbitrary function. The solution to Eq.(58) bounded at
0 then reads as

ũr1
st,rd = astdr l−1 +

lsl + 1d
3s2l + 1drE0

j S s

j
D−l/3

Fssdds

−
lsl + 1d

3s2l + 1drE0

j S s

j
Dsl+1d/3

Fssdds,

wherejst ,rd=rIstdr3. By substitution we get the expressions
of the other components of the perturbed velocity and pres-
sure. Finally, let us introduce

Astd = astdRh
l std,

Bstd =
lsl + 1d

3s2l + 1dE0

jstd S s

jstd
D−l/3

Fssdds,

Cstd = −
lsl + 1d

3s2l + 1dE0

jstd S s

jstd
Dsl+1d/3

Fssdds,

wherejstd=rIstdRhstd3, the perturbations of the velocityu1

and pressurep1 can be written as

ũr1ft,Rhstd−g =
A

Rh
+

B

Rh
+

C

Rh
, s59d

ũu1ft,Rhstd−g =
1

l
S A

Rh
+

B

Rh
D −

1

l + 1

C

Rh
, s60d

p̃1ft,Rhstd−g = − rIstdSA8

l
+

vI

Rh
AD , s61d

andũf1
= ũu1

. Note that three parameters appear, but there are
actually only two free parameters because by differentiating
B+C we get the additional identity

C

l + 1
−

B

l
= − S rI8

3rI
+

Rh8

Rh
D−1sB + Cd8

lsl + 1d
−

B + C

lsl + 1d
. s62d

Interface motion. We substitute the expressions of the
modes (54)–(56) and (59)–(61) into the jump conditions
(45)–(49). Combining with Eq.(62) we get a system of four
equations with four unknownsA, B+C, D, andh1. We thus
get a compatibility equation that governs the growth ofh1.
Taking into accountrE@rI the interface motion in terms of
the rescaled elevationh̃1=Rh

2rEh1 can be written as a
second-order differential equation

h̃19 + k1h̃18 + Sk2 − At
l + 1

Rh
Rh9Dh̃1 = 0, s63d

k1 = −
4l2 − 1

lRh
vE −

Rh8

Rh
−

rE8

rE
,

k2 = vEF sl2 + l + 7dsl + 1d
lRh

2 vI +
7l2 + 6l + 5

lRh

Rh8

Rh

+
3l2 + l + 1

lRh

rE8

rE
−

2l2 − 3l − 2

lRh

vE8

vE
G ,

At =
vI − vE

vI + vE
.

The first terms ofk1 andk2 are standard and correspond to
ablative stabilization. The other terms are imposed by con-
vergence effects. The ablation velocityvE, the shell density
rE, the interface positionRh and velocityRh8 are well-defined
quantities. The inner velocityvI should be expressed in terms
of the other parameters to get a closed system. The self-
consistent analysis proposed in Ref. 17 establishes that accu-
rate results are obtained when choosing

vIstd =
vEstd
mn

S 1

kstdL0std
+ KnD1/n

,

where kstd= l /Rhstd and L0 is proportional to the minimal
density-gradient length scale. Forn=5/2 wehavemn=1.05,
Kn=1.57, andL0=0.12Lg,min.

Assuming that the parameters of the shell implosion are
slowly varying over the time studied, we may assume a so-
lution of the form h1std=h1s0dexpsgRTtd where gRT is the
linear RT growth rate, and Eq.(63) can be reduced to a
second-order polynomial, which gives
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gRT = ÎAtsl + 1dRh9/Rh + k1
2/4 − k2 −

k1

2
− 2

Rh8

Rh
−

rE8

rE
. s64d

Let us consider the direct-drive NIF-like capsule studied in
Ref. 3 in the last moments(the last 100 ps) before stagna-
tion. The authors giveRh9.3100mm/ns2, vE.−18 mm/ns,
Lg,min.1.5 mm, Rh.65 mm, leading to a Froude number
Fr.0.5. We also taken=5/2 and theimplosion velocity is
typically aroundRh8=−200mm/ns. Feeding Eq.(64) with
these data, we can compute the RT growth rate ofh1. Figure
5 compares our result with the classical fitting formula
ÎkRh9 / s1+kLg,mind, k= l /Rh, and the formula(61) (Ref. 3)
obtained by Bettiet al. taking into account ablation, thermal
conduction, finite density gradient, but neglecting conver-
gence effects, 0.9ÎkRh9 / s1+kLg,mind−1.4kuvEu. The results of
numerical simulations given in Ref. 3 are also reported. This
shows that the cutoff mode number isl .100, and that
spherical convergence effects induce slight enhancements of
the RT growth rates for low modesl ø20. Note, however,
that the RT growth rates vary strongly with the implosion
velocity and acceleration, so that comparisons with numeri-
cal simulations are not easy.

Let us finally consider the nominal indirectly driven
LMJ capsule. In the last 50 ps before stagnation we have
Rh9.1000mm/ns2, vE.−15 mm/ns, Lg,min.1.5 mm, Rh

.40 mm leading to a Froude number Fr.0.6. The implo-
sion velocity is typically aroundRh8=−100mm/ns. The

growth rate is plotted in Fig. 6, and we find that the cutoff
mode number isl .30. We expect to be able to perform
numerical simulations in the near future for this case and to
get the growth rates of low modes. The overall result with
the considered data is that the linear deceleration-phase RT
growth rates for the indirectly driven LMJ capsule are
smaller than the ones of the direct-drive NIF-like capsule.

VII. CONCLUSION

We have carried out a multiscale analysis of the hotspot
during the deceleration phase of ICF capsules which gives
information at a macroscopic level, useful for ignition crite-
ria for instance, as well as microscopic detail, necessary for
the computations of RT growth rates. We have shown that
the flow inside the hotspot converges towards a self-similar
profile whose dynamics depends on the hotspot uniform
pressure. We have exhibited that the hotspot is separated
from the shell by a thin layer that also possesses a micro-
scopic self-similar profile. The derivation of a closed system
requires the coupling of the flows inside the hotspot and in
the shell. We have discussed and generalized a thick shell
model originally proposed by Bettiet al.3 that takes into
account the return shock that propagates through the shell.
As a result we have derived a closed system of ordinary
differential equations governing the hotspot and shell dy-
namics. Finally we have computed the linear growth rates of
the deceleration phase RT instability taking into account the
stabilizing ablation and the spherical convergence.
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APPENDIX: PROOF OF EQ. (22)

We prove in this Appendix the convergence of the mac-
roscopic temperature profile to the self-similar solution. We
first introduce some notations. Ifa,b andg: sa,bd→R+ is a
positive-valued function, then we introduce the Hilbert space
L2fgsxddxg equipped with the weighted norm

ifigsxddx
2 =E

a

b

f2sxdgsxddx.

Proof of Eq.(22) with smsad ,cn
sadd. The energy decay of

the solution to a diffusion equation is a well-known phenom-
enon. Here the problem comes from the fact that the diffu-
sion coefficientFT

n+1sxd vanishes at the edgex=1. However,
for n.1, the decay rate of the diffusion coefficient ensures
the convergence of the integralX0=e0

1FTsxd−sn+1d/2dx,`. We
haveX0.2.01 forn=5/2. Wedefine the new spatial variable

Xsxd =E
x

1

FTsxd−sn+1d/2dx,

which is a one-to-one decaying function from[0,1] onto

fX0,0g. We then define the new functionwsX,td= ǰfxsXd ,tg
which satisfies

FIG. 5. RT growth rate vs mode number for the deceleration phase of a
NIF-like capsule as predicted by this work[Eq. (64)] and by reference
formulas neglecting convergence effects. These theoretical predictions are
compared with numerical results addressing this capsule(Ref. 3).

FIG. 6. RT growth rate vs mode number for the deceleration phase of the
LMJ capsule.
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]tw = ]X
2w + gsXd]Xw,

with the boundary conditionswst ,0d=wst ,X0d=0. The func-
tion g is

gsXd = −
n + 1

2
]XslnhFTfxsXdgjd.

By differentiating the squareL2sdxd-norm of w, we get after
a straightforward integration by part that

]tiwidx
2 = − 2i]Xwidx

2 −E
0

X0

g8sXdw2sXddX.

Using the standard estimatei]Xwidx
2 ù sp2/X0

2diwidx
2 which

holds true for any smooth function inL2sdxd with zero
boundary conditions,18 we obtain]tiwidx

2 ø−lsadiwidx
2 with

lsad=p2/X0
2+minXPf0,X0gfg8sXd /2g. A numerical estimate

yields minXPf0,X0gfg8sXdg.1.18 for n=5/2 so that lsad

.3.03. By integrating we get the exponential decay of the
L2sdxd-norm of w

iwst, · didx
2 ø iws0, ·didx

2 exps− 2lsadtd.

This implies the exponential decay of the

L2fFT
−sn+1/2dsxddxg-norm of ǰ which in turn implies Eq.(22)

with cn
sad=An

−1lsad. h

Proof of Eq.(22) with smsbd ,cn
sbdd. An integration by part

yields that

]tiǰst, · diFT
−n−1sxddx

2 = − 2i]xǰst, · didx
2 .

Integrating this equation with respect tot we get

iǰst, · diFT
−n−1sxddx ø e−2lsbdtiǰs0, ·diFT

−n−1sxddx

which implies (22) with cn
sbd=An

−1lsbd and lsbd=infci]xcidx.
The infimum is taken over all smooth functionsc with
cs0d=cs1d=0 andiciFT

−n−1sxddx=1. The operatorFT
n+1sxd]x

2 is
self-adjoint in the spaceL2sFT

−n−1sxddxd. Using standard
spectral theory tools we can compute the spectral represen-
tation of this operator. The first eigenvalues arel1=−5.075,
l2=−15.22,l3=−30.28 forn=5/2.This spectral study dem-
onstrates thatlsbd=−l1=5.075.
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