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This paper is devoted to the study of the deceleration phase of inertial confinement capsules. First
the self-similar flow exhibited by Bettt al. [Phys. Plasmas®, 5257 (2001)] is proved to be an
attractor in the sense that arbitrary initial conditions converge towards this solution. The
convergence rate depends on the ablation process and heat conductivity and it is shown to be a
power law of the increase rate of the hotspot mass. Second the thin layer that separates the hotspot
from the cold shell is described and it is shown that it also converges to a locally self-similar profile.
By using and generalizing a shell model introduced by Batl. [Phys. Plasma$, 2277(2002]

a closed system of ordinary differential equations for the main hydrodynamic variables is derived.
Finally the linear growth rates of the deceleration phase Rayleigh—Taylor instabilities are computed
taking into account ablation and spherical convergence. Significant differences are exhibited
between directly and indirectly driven capsules2@5 American Institute of Physics

[DOI: 10.1063/1.1825389

I. INTRODUCTION necessary for the study of the Rayleigh—Taylem) growth
rates.

The dynamics of the deceleration phase in inertial con- It is well known that RT instabilities are a limiting factor
finement fusion(ICF) experiments has recently been the sub-in ICF experiments. The RT instability occurs when a fluid
ject of intense researcdh® In ICF a spherical capsule of accelerates another fluid of higher density. This happens in
cryogenic deuterium-tritiun{DT) fuel and filled with gas- ICF targets at the outer shell surface during the acceleration
eous DT is imploded by laser or x-ray irradiatibithe irra-  phase and at the shell inner surface during the deceleration
diation is designed to drive multiple shocks through the shelphase. This phenomenon may dramatically reduce the perfor-
to minimize entropy. These shocks merge into a single ongance of ICF experiments by degrading the symmetry of
before reaching the center of the capsule, then this shock isplosion or even by breaking the shell. In ICF targets the
reflected off the center. When interacting with the shell innerablation process and the thermal transport play a central
surface, the shock slows down the shell in an impulsive manrole? It has been shown by several authors that the ablative
ner and generates a new shock that converges towards tRg instability growth is stabilized relative to classical RT
center. A series of shocks are then reflected off the center arféring the acceleration phase at the outer shell suffabtin
the shell inner surface increasing the pressure of the lowthis paper the growth rates of RT instabilities at the shell
density gaseous hotspot enclosed by the shell. Eventually tHener surface are studied during the deceleration phase with a
gas inside the hotspot reaches a pressure large enough mpdel that takes into account ablation, finite-density-gradient
slow down the shell in a continuous manner. The so-callegcale length, heat conduction, and spherical convergence.
deceleration phase then develops at the shell inner surface. The paper is organized as follows. In Sec. Il we write the
Betti et al. have recently proposed an analysis of the hotspoduations of motion in spherical geometry. Section il is de-
dynamics where all hydrodynamic quantities are calculateyoted to the description qf the attractive self-similar solutior).
by assuming a self-similar internal energy profille shall e study carefully the thin layer at the edge of the h'otspot.ln
revisit this work and prove in particular that any arbitrary S€C- IV. We close the system by introducing and discussing
initial condition at the beginning of the deceleration phasedifferent shell models in Sec. V. Finally we compute the RT
quickly converges to this self-similar solution. We shall 970Wth rates of the shell inner surface in Sec. V.
prove a similar result at a microscopic level by showing that
the thin layer can also be described in terms of an attractive
self-similar small-scale profile which matches the macro-l. THE MODEL IN SPHERICAL GEOMETRY
scopic profiles inside the hotspot and inside the shell. The

description of the thin layer provides all relevant parameters Tthe model is based on the mass, momentum, and energy
equations
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dpu)+ V -(pu@u)+ Vp=0, (2) the local behavior at the interface in Sec. IV and show that
Vo is of the order oféR/). To lowest ordel8) can thus be
AP+ V - [ypu=(y=D(T) VT]=S, (3)  simplified into
whereS=(y- 1)p2Ea(0'v>/(4mi2) is the source term given by P’ = pap? __ 37&/‘ 9)
nuclear reactionk,, is the a-particle energy{ov) is the fu- p Ry

sion reaction rate, andy is the ion massk(T)=xT" is the

Spitzer thermal conductivity. This system is completed by

the standard ideal gas equation of staE€OS p=(y

-1)c,pT with y=5/3 for amonoatomic gas, is the specific  lll. SELF-SIMILAR DYNAMICS
heat at constant volume. We approximate the fusion cross
section by a quadratic forfuv)=S,T% Such an approxi-
mation is valid as long as6 T<20 keV which is the range
relevant to ignition in ICE. For subsonic flows we can ex-
pand the solution to the equations of motion by a formal r

expansion in powers of the Mach number. To lowest order T(tr) :Tc(t)FT(m)' (10
we get the flat pressure approximatip(t,r)=p(t). To order ) . ) )
one the mass and energy equations read in spherical geoMith F1(0)=1. In the near-isobaric framework, the density

In this section we revisit the derivation of a self-similar
solution that was first obtained in Ref. 2. Let us seek a self-
similar form for the temperature profile

etry as profile is then also self-similap(t,r)=p(t)/F{r/R,(t)].
T(t) [resp.ps(t)] is the central hotspot temperatupesp.
Ip + %i(rzpu) =0, (4) den_sit)]. _Substituting the ansa‘(ZLO)_ inFo Eq. (7)_ and using
gt reor the identity(9), we get the compatibility equation
v 1 1 YT?Z 1

B, o X a( - ) > [X(FEFEY (0 + 2FFF 01| <5 | +[xFr'(0)]

—+ = -S—\rT=M )= , 5

x T2y W (P (D) ) = b (5 YRA(D)

— -1

where x=(y-1x and 12,=E,S,/[4(y-Dmc?]. The mo- x[(pﬂ—+&pz)n-pn} =0, (11)
mentum equation describes the fluctuations of the pressure Y Y

and it can be integrateslposteriori The energy equation can \yhich involves the two independent variablésand x
be integrated to obtain the expression of the velocity flow =r/Ry(t). The EOS implieg./p.+T./Tc=p’ /p. The mass of
T r o’ the _hotspth satisfies R,Q_/Rhfpé/pczMg/Mh. Usir_]g once

o g \saPT ) (6)  again Eq.(9), the expression in the last brackets in Ftj)

» Y P can be rewritten as [p'(y=1)/y+(u./ y)p*IT.—pT.
Substituting into the mass equation and eliminating the den=T,pM},/M;.. As a result the compatibility equation admits a
sity by the EOS, we get the equation governing the evolutiorsolution if the mass of the hotspot satisfies the differential
of the temperature equation

u(r,t) =

=1, aT o T Mi) XTEN)
(p —+—p2>T—p———(Map2—p )— P =A (12)
Y Y a3y ar M) "yRA(DP()
X129 og IT for a constanfA, that also parameterizes the equation that
+ ==\ T""— | =0. (7) :
w2 or ar must satisfy
-1y rev-1 -1 —
The initial conditions in ICF are such that the temperature in ~ X(FtF7 )" (X) + 2FtF7 (%) + AxF(x) = 0. (13

the shellT,, is much less than the central hotspot temperatur%y definingG(x)=F%(x) this equation can be rewritten in the
T.. Denoting by this small ratio, the temperature is of order following simple form:

T. inside a sphere with radiug,(t) (delimiting the so-called ., , L
hotspoj, and of ordersT, outside the sphere. We shall seein ~ XG'(X) +2G'(x) + vAXG"(x) = 0. (14)

Sec. IV that the hotspot is actually surrounded by a thin layefp,o profileG must satisfyG(0)=1, G'(0)=0, and the tem-
with thicknes&?”Rh Whgre the temperature and the heat ﬂowperature becomes evanescent at the edge of the hotspot
undergo a rapid transition between the two regimes. By Eq- 1 g4 thatG(1) =0. These conditions are fulfilled only for a

(6) the velocity at the edge of the hotspot satisfies particular value of, that can be determined as follows. We
RS _ considerG, the solutionxG} +2G; +xG;*"=0 starting from
(p' - /‘l’apz)? + ypRU[R,(D),t] = XRET"4,T. (8)  G,(0)=1, G}(0)=0. We establish numerically that the first
zero of G is atx,=2.253 forv=5/2. Theprofile G can then
The right-hand member is 0 to lowest orderdibecause the be expressed in terms db; as G(x)=G;(xx,). Thus A,
heat flux is small at the edge of the hotspot. The velocity al:x§/v22.03 forv=5/2. ThefunctionG is plotted in the left
R, is the sum of the surface motion and the ablative flowplot of Fig. 1 for »=5/2. We camalso give the value of the
U[Ry(1),t]=R},(t) +Vioc(t). The local ablation velocity is much hotspot mass  My(t)=m,p(t)Ry(1)3 where m,
smaller than the interface velocityve shall study precisely :47-rféx2/FT(x)dx which is equal tam,=7.33 for v=5/2.
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FIG. 1. Heat conductivity profil@(t,r)” for v=5/2. At the nacroscopic leve(left picture) the profile is described by the functidii(t)G[r/R,(t)], whereT(t)

is the central temperature a@lis the normalized profile obtained from the self-similar analysis of Sec. lll. Close to the edge of the hotspot the fainction
decays linearlyG(x)=C,(1-x), 0<1-x<1 with C,=2.96. At the microscopic level aroundR;, (right picture the profile is described by the function

T2 (t)g{[r—Ry(t)]/D(t)} whereT..(t) is the temperature in the inner region of the shell, the wiiit) is given by(25), and the normalized profilg is obtained
from the thin layer analysis of Sec. IV. This microscopic profile matches the self-similar high-temperature profile in the hotspot and the lowrinperat
the shell.

To sum up, if the initial temperature profile is of the sphere whose radius is denotedRy0). The initial pressure
form T(t=0,r)=TF{r/R,(0)] with F;=G'"”, then the dy- and mass in this sphere are denoted Q) and M(0),
namics is self-similar and described by Ef0). The hotspot respectively. We write T(t=0,r)=Ty(t=0,r)+T4(t=0,r)

radius is obtained by integration of E) where T, is the self-similar profile that corresponds to the
p(t) _1,(3,/) massMy(0) and radiusR,(0), that is to say
Ra(t) =R (0)< J p(s)ds|.
' 3y t=0m=F ( ) m,Ry(0)°p(0)
0 T .
The mass of the hotspot can then be integrated Ra(0)/¢,(7 = 1)My(0)
1 _— 3 (@ DI3y) If T,(t=0,r) is zero, then the flow is self-similar and obeys
Mi(t) = | My(0)"** + c1¢,” X R:(0)*"p(0)] 7 the dynamics described in Sec. Ill. Ti(t=0,r) is nonzero
but small enough, then we can linearize the solution near the
t [3(y-1)-1]/(39) self-similar flow T(t,r)=Ty(t,r)+T4(t,r). By integrating the
0 p(s) linearized EOS and energy conservation we can express the
e perturbed density and velocity in terms of the perturbed tem-
3 + l S vt
><exp<( v )/*Laj p(r)dr)ds} 1 perature
v o p(t)
with C]_:[(V+ 1)AVmZ|-1]/[,y(,y_ 1)V+1] ~1.88X10% for v ,01(t,r) =- Cv(y_ ]_)Tg(t,r)Tl(t,r), (16)
=5/2 andy=5/3. Thetemperature profile is Eq10) with
the central hotspot temperature given by %
oTa(t,0)]. (17)
(O) (0)1/7 " Ul(t r) [T 1
T =Td0r 5 e 2 p(s)ds o
h
We introduce &(t,r)=Ty(t, r)/T (t,r) which satisfies the
Substituting into Eq(6) establishes the velocity profile equation
r ’ — v+l
t, t t 15 ' J d a( ,dT,
u(t,r) = Rh(){Rh(t) e(HF TT(Rh(t)>] (15) (p_+3Rh>§ & &_‘5_ X _(2 0 5)20.
p R, ot Rh o ypréor ar
with e(t) =AM/ /M (O]/[|R,|/Ry(1)]. In typical ICF con- (18)

figurationse is increasing with time. To sum up, all hydro-

dynamic quantities can be computed in terms of the hotspat can be written in the form

pressurep(t). We shall address in Sec. V different shell mod-

els. The coupling between the hotspot and the shell provides Etr) = 1 _H< r )§< 7(t)> (19)
additional equations that close the system. However, an in- ' Rﬁp(t)r T AR Ry(t)’

teresting issue that was not addressed in Refs. 2 and 3 is

whether the self-similar profile will be actually observed in The function(t) characterizes the time flow in terms of the
an ICF experiment. The end of the section is devoted to thisblation process

issue.
Let us consider an arbitrary initial condition with tem- (t) = 1 | ( Mh(t)> (20)
perature profileT(t=0,r) which is compactly supported in a Mp(0)
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At r=0, &(7,0) takes some finite value, so thé(tr,O)zo at

x=0. Forr=R,, the diffusive part in Eq(18) vanishes and
only the transport term remains. As a result, joe 1, the

equation satisfied bi? is simply &TE:O, which shows that
é(r,l)zé(o,l)zo. Finally, forx e (0, 1), éis solution of the
one-dimensional diffusion equation

3,6 = F2Y(x) 2, (21)

with the boundary condition§(,0)=&(r,1)=0.
By differentiatingfgh(t)pl(r ,Hr2dr we get that the pertur-
bation of the density,; does not modify the evolution of the
massM,(t), in the sense that
Ry (1)
M (t) :47-rf po(r,Hyradr.

0

The section is devoted to the study of the differefigebe-

tween the solutiorT of the real system and the self-similar
solutionT,. We are going to prove two quantitative estimates

Phys. Plasmas 12, 012704 (2005)

r—oo
T(t,r) —— T.(b) (23

and we introduces=T,(0)/T.(0). We shall study the thin
layer in the asymptotic framewoi&< 1. The temperature,,

could be considered as constant, but we shall address the
general case wher&,(t) is a slowly time-varying quantity
which takes values with the same order of magnitude as
T..(0). We accordingly introduce the normalized temperature
T.(t)=T.(t)/T.(0) and assume thdt,.(t)=0(1). The central
temperature is also a time-varying quantity, so we normalize
it by introducing 'i'c(t):TC(t)/TC(O) and by assumin@ (0
=0(1). To study the thin layer we focus our attention to the
vicinity of the edge and set

r—Rh(t)>_

D) (29

T(t,r)= Toc(t)f(

We aim at identifying the thickned3(t) and the profilef(x)

that give the convergence rate of the solution towards thé’f the local temperature profile. We also wish to prove that

self-similar solution. These two results give two different

estimates for two different weighted quadratic normd of

Proposition. The convergence rate of the solution to
law in

wards the self-similar solution is a power
Mp(0)/M,(t). The following inequality holds true:

Ry(t)
J (T2IT3)(t,r) m(r)r2dr

0
Ry (1)
f w(r)rédr

0

Rn(0)
%, f (THTE(O.1) pro(r)rdr

0
Rp(0)
f wo(r)rédr
0

$<MM®> (22)

Mp(t)

for (M,cy)=(u(a),c(f>) or =(,u(b),c(vb)) where (a) cia):2.48
for v=5/2, p®()=F" Y’[r/R (1], (b) c”=3.51 for v
=5/2, 1 (N =FF" 1 IR\(1)].

The Appendix is devoted to the mathematical proof of
the proposition. This proposition demonstrates that the abla-
tion process makes the flow converge to the self-similar so-
lution. Thermal conduction is also important as it imposes

the value of the powet,.

IV. ANALYSIS OF THE THIN LAYER

the temperature profile takes the fo@4) locally. On the
one hand, from the boundary conditig@3) the profile f

‘must satisfyf(x) — 1 asx— +. On the other handl should

match the macroscopic self-similar temperature profile as
——oo, For 0<1-r/R,(t)<1 the macroscopic profile is of
the form T(t)CY"[1-r/R,(t)] where C,=-G'(17)=2.96
for v=5/2 (see Fig. 1 Thus ST.()f(x)=CY "' T (t)
X[D(t)/R,(1)]¥* as x——=. This in turn imposes that the
thickness of the layer is of orde€” and given by

D(t) = &

Rha)(u(t)) _ Fm(t)(u(t)){ 25

v :I\-c(t) Te(t)

14

Furthermore the profilef must satisfy f(x)=|x|"” as
X— —o0, By substituting Eq(24) into Eq.(7) we get

e, T {m[& 1
[p +yp p$ ](t)(X)+ Rh+3y

y w D
’ D’ r_ N 2
X(% - uapﬂ(t) + X(Fp + %)(t)}f’(x)
L XY { PR (= DEAP + fmf"(x)]
Y DRy(1) D(t)?

=0, (26)

where)“(:YTg”(O). The identity (9) cannot be applied di-

rectly because it is valid only at lowest orderdhHere the

The preceding section was devoted to the MAaCroscopic, . «tion ins plavs a role. We substitute(R.(t) 1) =R(t
description of the hotspot. The analysis is carried out in the pay ' B(RA(0), ) =Ry (1)

asymptotic framework where the temperature in the shell is Vioc(t) With Vo (t) = 8Vio (1) into Eq. (8). Taking into ac-
much smaller than the central hotspot temperature. We hagPunt Eq.(25) we get
found that the temperature vanishes at the edge of th&

hotspot because the asymptotic analysis only takes into ac<"(t) + _(
count leading order terms. We would like to study more careFn 3y
fully the thin layer that separates the hotspot from the cold
shell. We accordingly impose the nonzero boundary condi-

tion

® )
0 e | ()

CXT(0)T..()

(0)1'(0) |.
i roro)

:5(—\7.0c(t) Ru(t) +
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Note that another scaling fof..(t) would lead to a compat- Lemma.A,m,=47C,/v=14.88 forv=5/2.

ibility condition that has no solution. Substituting into Eq. Proof. m, is given by m,=[3?G Y*(x)dx. Using Eq.
(26) and collecting the terms with lowest order dhwe get  (14) satisfied byG, and integrating by part yields

the effective compatibility equation

4ar fl 5 4ar _
L m,=—— [ [xG'(x)]'dx=-—G'(1").
o CATHDT.) vArJo VA,
= PVioct) + — S f(O)f"(0) | ' (x) B o
YRA() However, C,=-G’(17) which completes the proof of the
JESI lemma. O
+ M[(V_ 1267 + £717(x) = 0. The velocity flow can be described around the edge of
YRA(1) the hotspot
Note that this compatibility equation holds true only if u(tr) = R(t) - CVXTc(t)”Tx(t)f<r - Rh(t)> 31
>1. It is satisfied if the local velocity is of the form ' vypRy(t) D(t)
IS To lowest order ins the velocity isRy (t). The correction is of
\A/Ioc(t) = M[f"(o)f’(o) -B,], (27) order . This correction is important in that it is the one that
PRy (1) is related to ablation. By denoting kp.(t) the shell density

; . ) _and by defining the ablation velocity,(t) by the identity
whereB, is a constant that also parameterizes the dlﬁerentla}) (V1) =mass flowroy(D)ViedD), We get a closed form
equation thaf must satisfy xv/Ta octt/ Viec\ts

expression for the ablation velocity
(= D200 + f1"(x) + B,f'(x) = 0. (28) Cx Tt

V() =- .
- . - . vyC, Ru(t)p(t)
By definingg=f” we can write this equation in the simple . _ _
form g’+B,g'g"**Y*=0. The boundary conditions in terms The density-gradient scale length lig=|p/d,p|. From the
of g readg(x) — 1 asx— + andg(x) =|x| asx— —o. Using differential equation satisfied hyit is easy to establish that
the boundary condition ate#the equation governing can the minimum density-gradient scale Iength is reached at the

(32)

be integrated as point where the temperature valu€eTis[(v+ 1)/ v]T.(t), and
then
’ — =1/v _
g'() = ¥B,[g00 ™ - 1]. (29) g (Tx(t)>th(t)
The boundary condition ates thus imposes8,=1/v. The om Cr ™t \T(t) '

functiong is plotted in Fig. 1 forv=5/2. By substituting into where (v+1)"1/(C,1”"1)=6.86 for v=5/2. Note that this

Eq. (27) we obtain the local velocity result is consistent with the one obtained by Kull with the

CT(” well known isobaric mode'* The expressions of the ablation

VX—CTw(t)f(o)_ velocity and the minimum density-gradient length scale are

vYPRA(1) important because they play key roles in the growths of RT
instabilities, as we shall see in Sec. VI.

Vioe(t) = =

Note thatT..(t)f(0) is the exact temperature at the edge
=R,(t) while the density at this point isp,.(t)
=T(t)pc()/[T..(1)f(0)]. The mass flow at the edge of the V. SHELL MODELS

hotspot is accordingly The previous sections demonstrate that local and global

CXT(0)" pe(t) hydrodynamic quantities are functions of the hotspot pres-
VXC—pC, surep(t). Additional equations must be exhibited to close the
vyR(OP() system. These equations result from the coupling of the

o . - ... _hotspot with the shell surrounding the hotspot. A first model
which is independent of the precise definition of the position L L ; .
i . consists in approximating the shell by a thin and incompress-
of the edge, i.e., the mass flow is locally constant. We als

L Yle layer of high-density materi&lThe shell motion is then
get the variation of the mass of the hotspot deduced from Newton’s law which provides the additional
ey — 2 equation required to close the system. This simple model was
Mi(t) = = 4Ry (U pioc() VeV analyzed in Ref. 2 but as discussed in Ref. 3 the comparisons
_AmC, xT(t) " p(HR,(1) 30 with numerical simulations do not exhibit good agreement.
o yp(t) ' 30 The main reason is that shells are thick and compressible in
ICF. Furthermore, a return shock is created at the edge of the
The identity proved in the following lemma shows that Eq. hotspot and travels through the shell, which is not a uniform
(30) is the same as E@12). In other words the compatibility medium anymore but exhibits two regions with different
equations for the macroscopic self-similar profile and for thecharacteristics. In Ref3 a thick shell model is introduced
microscopic local profile are identical. They are satisfied si-and results are proposed and discussed without derivation.
multaneously. As we have shown that the self-similar profileThe goal of this section is to derive and generalize this
is attractive, this property also holds true for the local profile.model. In particular we derive the equations for arbitrary

Pioc(DVioc(t) = -
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adiabatic exponents in the gaseous hotspot and the solid
shell, and we consider a different profile for the free-falling  Ps(t) = ps(Rs,t)
shell material. We also discuss the validity of the model by
pointing out the underlying hypotheses.

Yst1
Vs~ 1
Ps(t) = pri(Rs, D[vs = Uit (Rs D IIRS — gt (R, 1],

o ys— 1 Yt 1
A. The thick shell model Ri(t) = - > ug(Rg 1) + 5 Us:

An accurate model should take into account the returmp, the shocked shell regioR, <r <R the dynamics is gov-

shock in the cold unperturbed shell. The deceleration phasgeq by the equations of motigh)~3) in absence of heat
actually starts when the shock reflected from the center of the,nquction and nuclear reaction. We cannot assume anymore

capsule interacts with the incoming shell. We thus consideg g,psonic flow, so that these equations are equivalent to

that the shock starts at time 0 from the edge of the NOtSPQEer equations. Let us introduce the shocked shell mass
and propagates within the shell. We denoteRgyhe location

of the shock. Three regions can be distinguished which are as _ Re 2
) Mg=4m | pradr.
follows: Rn
(1) r <Ry(t) corresponds to the hotspot. The hotspot mass is negligible with respect to the shell mass,

(2) Ry(t) <r <R(t) corresponds to the shocked shell.  so the integration domain can be sef{@R.] with a negli-
(3) r>Ry(t) corresponds to the cold unperturbed shell,gible error. By differentiating this identity and using the mass
whose pressure is much lower. conservation equation we fid .= 4mR2p4(t)(R,—vy). From

Let us first consider the outer region- Ry(t). The shell  the expression of(t) in terms ofpy we get
is in free-fall conditions, with an evanescent pressure. This

r 2 ’
region is not yet perturbed by the hotspot. By assuming a Mgs= 4mRspii(t,RI[Rs = Ut (LRI 1. (35

uniform implosion velocity profile and by integrating the \we introduce the average velocity of the shocked shell
equations of motion in spherical geometry, we get with an

ivi 471(pu Rs
evanescent pressure and heat conductivity that; foR(t), Uee= {p >, (ou=| puridr.
Mss Ry
Ui (t.r) == Vi, (33 Once again, as the hotspot mass is much smaller than the
shell mass, we can set the integration domaifOtdz,]. We
then differentiate/pu) and use the momentum conservation
MSh _(r+ V|t - RO . . .
pr(t,r) = > Po , (39 equation and the expressions®f v, andps. We obtain
4 Ao AO R

. . . . . _— (pu)" = pyr (1, R)ugr (t, RI[RS — uge (1, R ] + Zf prdr.
whereV; is the implosion velocityMg, is the initial shell 0
mass,R; is the initial location of the shell inner surface, and

Ay is the initial shell thickness. The normalized density pro—;rhe flrs;c'ivlt,err?hm the r:jgtht-hand S'?e Ean _be Ii_xr:jr%ssed n
file pg is such thajpy(x)=0 for x<0, py(x) >0 for x>0, and erms ofVlss The second term can aiso be simpliied because
o— _ the volume insiddR; is occupied mostly by the hotspot. This

Jopgdx=1. o . _is equivalent to assumis—R,<R;, which holds true at the
The shock propagation is governed by the Rankine-~ =1 : '
: . beginning of the deceleration phase, but has to be chezked
Hugoniot relation¥ g P
posteriori during the whole phase. As a result the second

term can be approached by@prdr. Furthermore the pres-

[pul =R¢[p], sure is almost uniform in the hotspot so that we finally obtain
4m{pu)’ = Mg (t,RY) + PRy
[p+pu?] = R[pul, The average velocity thus satisfies
(MsUsd” = Mg (t,Ry) + 4pR;. (36)
[yspqu Ys— 1pu3] = Rs'[p’f Ys— 1pu2]. The velocity profile is not easy to compute because all
2 2 quantities in the Euler equations are of the same order in the

shocked shell. Consistently with the hypotheRis R, <R,
We denote byy, the adiabatic exponent in the shell in con- we assume that the fluctuations of the velocity flow inside
trast with the valueyy in the gaseous hotspot. In front of the the shocked shelR,<r <Rs are small and we accordingly
shock the pressure is evanescent, so we m(wg)zo, adopt the uniform profilau(t,r)=R/(t). We shall see in the
u(RY) =ux(Rs, 1), p(RY) =py(Rs,t). Behind the shock the pres- following section another model that takes into account an
sure, velocity, and density are denoted pyt)=p(R;,t), affine variation of the velocity flow. In case of a uniform
ve(t)=u(R;,t), and pgt)=p(R;,t). Substituting into the profile we havevt)=R/(t) and the average velocity is
Rankine—Hugoniot relations we obtain Usdt) =R{(t) as well. By grouping the last identity with Egs.
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(35) and (36) and by introducing the velocity of the shell
inner surfaceJ, =Ry (t), we get a system of five differential
equations with five unknown variabld®, R, Up, Mg, p).

Phys. Plasmas 12, 012704 (2005)

Ry
Rh

_ Ha
Vs

a(t):<319—2) (1) - Lept).

s

By choosing a model for the flow in the free-fall shell, the we finally rewrite the velocity profilg38) with this addi-
system can be closed and integrated. Let us adopt the modgbnal identity and geti(t,r)=R}(t) + a(t)[r —Ry(t)].

(33) and (34). We introduce dimensionless variablég
=Ry/Ro, Ry=Ru/Ro, Up=Up/V;, p=p/po, Mss=Msd Mg, and
7=Vit/R, so that the system reads B5=U,

_1RP_ M

h=r— - —1Up+1],
GOMSS MSS
S _Ys—1l ystl—
=——+—U ,
R="5 > Un

with the initial conditions R(0)=1, R,(0)=1, U,(0)=0,

M {0)=0, andp(0)=1. In the above equations the prime
indicates a derivative with respect to This analysis shows
that there are only three independent parameters

:MO" RO

_ MshVi2 EZ —
v, ¥ fo= Ay’

 AmpoRy

€, is proportional to the ratio of the initial kinetic energy of
the shell over the initial internal energy of the hotspiy.is
the initial shell aspect ratioY, characterizes the reaction
rate.

€ @ (3 7)

B. Refinement of the thick shell model

We shall use the mass conservation equation to get the
density profile. Let us introducg(t,r)=r?p[t,r+R(t)] and
U(t,r)=ult,r +Ry(t)]. Taking into account the velocity profile
that we have just derived, satisfies

vS_qu )@_'_US_Riil'ﬁ
Re-Ry /ar Rs—Ry
with the initial condition atr=0: ﬁ(t,r:O):Rg(t)pS(t). The

solution can be computed explicitly and turns out to be an
affine function

r?p(t,r) = {REps(t) + [ — R(1)1B(1)}

B can be identified easily as a function of the shocked shell
massM¢, We get

s = —rapdd M)
Ry(t) = Ry(t) 2Rt - Ry()]*’

We now express the average shocked shell velddity
as a function of the other quantities. Let us denptgr)
=p(t,r)r2. In the shocked shell region the velocity and
densityp are affine functions. By integrating these functions
we get

p+<US—Ré+

:O,
ot

(40)

a(t) B(t)
12uy5(t) p1/o(t)

where py»(t) anduy,(t) are the values op andu at [Ry(t)
+Ry(t)]/2. However,a and B are of the same order as
Uyl R, andpy o/ (R—Ry,), respectively. By using the assump-
tion that the thicknesBR;—R;, of the shocked shell is smaller
thanR,,, we can safely make the approximatiog= u,,,. By
Eq. (38) we thus havéJ=[v4(t) +R}(t)]/2. Combining with

Usdt) =ugp(t)| 1+ (Re=Ry)?|,

In the preceding section we have assumed a unifornfrd. (39) yields

profile for the velocity flow inside the shocked sh&l(t)

<r<Rt). In this section we refine this model by assuming

an affine function for the velocity profile. Taking into ac-
countult,R,(t)]=R/(t) we write

= Rn(t)

M= RO R DR

[vs(t) = Ry(D)]. (38)

Uadt = Ri() + SR - Ry0)].

(41)

By grouping Eqs(9), (35), (36), and(41), and by introduc-
ing the velocity at the edge of the hotspdt=R/(t), we get

a system of five first-order differential equations with five
unknown variablesRs, Ry, U, Mg, p). By choosing the free

Using the energy conservation equation and the relatiofodel (33) and (34) for the shell, we get a closed system

uft, Ry (1) ]=R/(t), the slope ofu at R, can be identified
au __ Pl oR
pe [t.Ra(D)]= ysp(t) 2Rh ®.

Comparing with Eq(38) we get the expression of which
can be simplified using Eq9)

vs(t) = Ry(1) + a(O[R(t) — Ry(1)],

where

(39

describing the shell and the hotspot. We introduce dimen-
sionless variablesR;=Ry/Ry, R,=Ry/Ry, Up=Un/Vi, p
=p/po, Ms=Msd Mgp, and7=V;t/R, so that the system reads

asR|=Uy,
Uy, + (31‘1 - 2)
Vs

Y. |5 =
ys%p:|[Rs Rh] )

75_1+ Yst+1
2

P
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FIG. 3. Velocity profiles for the NIF capsulé,=40 pum.
800 |
only the shocked shell part acts as a piston while the return
T 600 shock has not crossed the whole shell.
@ We consider the averaged parameters at the beginning of
Q- 400 f the deceleration phase for the direct-drive NIF-like capsule
studied in Ref. 2: Mg =1.1 mg, p(0)=0.9 Gbar, R,(0)
200 | =240 um, V;=385 um/ns. We assume a density profile for
the free-falling shell material of the typpy(x)=4x2exp
(-2x). We also have c¢,=10* m?s?K™, x=6

X108mgs3K™, y=5/3, and y,=7/4. Finally pu,
=609.12x 10 m s g?, with 6 the absorbed-particle frac-
FIG. 2. Time evolutions of the hotspot radit® and pressuré¢b) for the tion. We plot ".1 Fig. 2 the time eVOIUtlon$ of thSpOt radius
NIF capsule. The thick shell model is numerically integrated for different and pressur.e_l.n the ca§@.40%. We C_OnSIder different Val_.
values of the initial shell thickness. ues for the initial shell thickness, which shows that the thin
shell modelA,< R, is too optimistic as pointed out in Ref. 3.
The velocity profile is plotted in Fig. 3 at different times.
The three main regions can be distinguished: hotgpot

(b)

— Eh 3 <Ry(t), shocked shelR,(t) <r <R((t), and free-fall shelk
Up=— 37\ —(3y 1- 2y > R4(t). The velocity profile is given by Eq15) in the part
Rh<2 —2—79> + RS<2—)/9 - 1) S r<Ry(t), by the affine profile(38) in the part Ry(t)<r

S S

<R(t), and by the free-fall velocity ¥ in the partr
. E;gh_asah v, = — >Rh(t). In particular, we can check posterior?the hy'pth-.
o E—— + 2 %z[H(Rs_ Rp) esis about the small fluctuations of the velocity profile inside
Ry Ys€o the shocked shell.
In the same way we study the nominal indirectly driven

o2 !
+§(§é - Uh)] + Aﬁ@ - '\A_SS Uh +1 LMJ capsul€e'® At the beginning of the deceleration phase
OMgs Mg we haveMg,=0.31 mg,p(0)=0.6 Gbar,R,(0)=120 um, V;
_ =390 um/ns, andA,=80 um. We plot in Fig. 4 the evolu-
. (3_%1 _ 1)% Y 5 R -R) tions of the hotspot radius and pressure for different values
275 ﬁh 2yees " ’ of the absorbedv-particle fraction. If6=78%, then the so-

lution blows up in finite time, which means that the quadratic
— - = approximation for the fusion cross section is not valid any-
Mgs=Ao(1 + Ro)pol Ao(Rs + 7= 1)1, more. This blow-up can also be interpreted as the ignition of
the capsule. The thick shell model can thus be used as a
simplified model for the determination of ignition criteria.

_ Up— Y,
P'=-3y,—=P+ P
R, €

with the initial conditions R(0)=1, R,(0)=1, Uy(0)=0, v HYDRODYNAMIC INSTABILITIES

M{0)=0, andp(0)=1. The three parameters of the problem A rough estimate of the linear RT growth rates for large
are Eq.(37). If A;— 0 then we recover the thin shell model. | modes can be obtained by using well-known planar
As soon as\,>0, the pressure and acceleration are reducedesults>** However a more accurate model should take into
compared to the thin shell model. This is due to the fact thatccount spherical convergence effects.
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FIG. 4. Time evolutions of the hotspot radite and pressurg¢b) for the

LMJ capsule. The thick shell model is numerically integrated for different
absorbedr-particle fractionst.

Unperturbed state. We consider a simplified mode

Phys. Plasmas 12, 012704 (2005)

studied in Ref. 15. Rankine—Hugoniot relations for the per-
turbed hydrodynamic variables can be expressed in absence
of density perturbation as

Rilpour1] = [a(Repomy)], (45)
Rilpy + 2Muy1] = [ po RER: 71 + 2[00 IRy 71, (46)
Ru[Ug] = = [0alaa(70), (47)
Ry sin(6)[ug,] = = [06d(m).. (489)

Assuming that the interface is an isotherm we get the supple-
mentary jump conditiotf

X

W

where ¢ is a solution to the Laplace equatidny=0. The
partial derivativesd,u, can be evaluated from the unper-
turbed velocity profiles. Besides, in spherical geometry and
in the case of a single-mode perturbation we hgwea' so
that the supplementary jump condition reads as

d

0

[ur, 1+ o] = = mlvel = ~(Ry),

-2
- ﬁ mlvol-
Linearized perturbed system. The linearized mass con-
servation equation readg p;/ pg) +Ugd,(p1/ po) =0. Using the
arguments of Refs. 16 and 17 we neglect density perturba-
tions and pujp,=0. The momentum and energy equations in
spherical coordinates take the form

(49)

where the density of the unperturbed state is uniform in each

region delimited by the interface=R;(t). By integrating the
mass conservation equation in each region

u(t,r)=—-—-r, (42)
3p)
’ 2 ’
pe Rh( . Rapt )
tr)=——r+—| R +—"F+pg], 43
Ug(t,r) 3pEr 2\Rat g Vg (43)

where subscripE (resp. ) denotes the external outéesp.
innen region. Jump conditions impose
[povol =0, [po+ pevl =0, (44)
where u[t, Ry 1=Ry(0+0(1) and ug(t,Ry())=R}(1)
+ve(t). We denote the mass flow byp=pgve=pjv;. In the
following we carry out the stability analysis of this hydrody-

namic configuration. The perturbed interface is parameter-

ized asr=R;(t)+n,(t,0,¢). We expand all hydrodynamic
variables in the inner and outer regionsuasuy+uy, ... with
Up given by Eqgs(42) and(43) and we consider the linearized
evolution problem for the perturbed variabies ..., andz;.

Perturbed jump conditions. The stability of solutions of
nonlinear hyperbolic systems of conservation laws has been

Downloaded 06 Jan 2005 to 132.165.76.3. Redistribution subject to AIP

p
&t(url) + 19r(U0U91) + 0r<_l> =0,
| Po
Yo 1 (Pu)_
(Up,) + ; dr(rug,) + r%( p0> =0,

Uo 1
a(ug,) + Tar(ruq&l) + Tsin)

r
sin( )

Solution in the outer region. The vorticity created by the
instability at the interface is not convected toward this region
so that we can consider that the flow is irrotational. Introduc-
ing the velocity potentiali; =V ¢ the linearized energy con-
servation equation imposes the Laplace equatign=0. By
considering a single-mode perturbatidpm), the general so-
lution that does not blow up at infinity is/(t,r,6,¢)
d(t)r'"P"coq 6)]€M?. The perturbation of the pressure is
given by p,/ pg=diif1 +Ugd, 4. The perturbations of the ve-
locity and pressure are thus of the form

a(r?u, ) + {9 sin(B)up,] + d4(ug,)} = 0.

Uy (t,r,6,¢) =T (t,r)PTcog 6)]em?, (50)

u01(t1r! 91 ¢) :Tjﬁl(t!r)aﬁplm[coia)]eimgbr (51)
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m im ~ - _ 1 A B 1 C
Ug, (L7, 6,0) =Ty, (&, r) ( P [cog6)]e™?, (52 Ug[t,Ry()7] = I—(a + Eh) “I+1R) (60)
pl(t! r, 01 ¢) :El(ti r) le[coi 0)]eim¢, (53) B A' "
Where’[jd) =T, palt,R(t) =~ Pl(t)(l_ + EhA> , (61)
T, [t,R,(1)"]= R(t) (54) andﬁ¢l:1701. Note that three parameters appear, but there are

actually only two free parameters because by differentiating
B+C we get the additional identity

D
- L )
uﬁl[taRh(t) ]_ (l + 1)Rh(t), (55) L _E__ (p_lf+ 5{1) l(B+C)r B B+C (62)
l+1 | 3pp Ry MI+1) 1(1+1)°
DI
Pt Ry(D)F] = pE(t)(— ——D)(t) (56) Interface motion. We substitute the expressions of the
1 Ry modes (54)<56) and (59)—«61) into the jump conditions
D(t)=-(1+1)d(t)R,(H)™"X(t) is an arbitrary function. (45—49). Combining with Eq(62) we get a system of four

Solution in the inner region. The vorticity denoted by €quations with four unknowng, B+C, D, and 7,;. We thus
w=V Xu, is convected from the interface toward this re- gét a compatibility equation that governs the growthef
gion. The evolution equation af, combined with a vanish- Taking into accounpg> p; the interface motion in terms of

ing initial condition establishes tha; =0. The¢ component  the rescaled elevatiof;=Rype7; can be written as a
is found to satisfy second-order differential equation

[at + anr + (3on)](rw¢) =0. (57) _ -~ |+1 , |~
7t Kyt K2‘AtﬁRﬁ 7=0, (63

Using the linearized conservation equations we get that
andp; can be written in the forni50)—«53), so thatw, reads

as A2-1 R pL

0 LT, 0,6) = By(t,1)3,PTcod 6)]ém?, TRy BT Ry pe)
while the radial velocity and thé component of the vortic-
ity satisfy the differential equation . {(I2+I +7)( + 1)v N 712+ 6l + 5&’
2—VE 2 |
(%) =11+ 1T, =1(1 + D, (58) IR, IRy Ry

2 L o129~ 2y
Equation(57) imposes thal(t,r)=p,(t)rF[p,(t)r®] whereF + 3+1+1pg  27-31-2vg

is an arbitrary function. The solution to E:8) bounded at IRn  pe IRy ve
0 then reads as

=~ i+ s A= UTUE
- -1, > :
U, (t,r) =a(tr Y@ r ( ) F(s)ds "ot
[(1+1) (&(s)0+Dr3 The first terms ofk; and «, are standard and correspond to
- —3(2| ; 1)ff <E) F(s)ds ablative stabilization. The other terms are imposed by con-
0

vergence effects. The ablation velocity, the shell density

where&(t,r)=p,()r. By substitution we get the expressions Pe: the interface positioR, and velocityR; are well-defined
of the other components of the perturbed velocity and presduantities. The inner velocity, should be expressed in terms

sure. Finally, let us introduce of the other parameters to get a closed system. The self-
| consistent analysis proposed in Ref. 17 establishes that accu-
At) = at)Ry(1), rate results are obtained when choosing
11+ 1 (1) s -1/3 t 1 1/v
B =~ S ) s w=20( k)
32+1)Jy \&b Hy \K(O)Lo(t)
I(1+1) [£0) g \0+D3 where k(t)=1/Ry(t) and L, is proportional to the minimal
Ct)=- 320+ 1) (%> (s)ds density-gradient length scale. For5/2 wehaveu,=1.05,
0 K,=1.57, andL;=0.12 g nyir,
where &(t)=p,()R,(1)3, the perturbations of the velocity, Assuming that the parameters of the shell implosion are
and pressur@, can be written as slowly varying over the time studied, we may assume a so-
lution of the form #;(t)=7,(0)exp(yrtt) Where ygr is the
Ta[t. R0 ]__+E+£ (59 linear RT growth rate, and Eq63) can be reduced to a
t R, R, R, second-order polynomial, which gives
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40 ~—ascioal growth rate is plotted in Fig. 6, and we find that the cutoff
- Betti mode number id=30. We expect to be able to perform
Eq. (64) numerical simulations in the near future for this case and to
num. get the growth rates of low modes. The overall result with
the considered data is that the linear deceleration-phase RT
growth rates for the indirectly driven LMJ capsule are
smaller than the ones of the direct-drive NIF-like capsule.
s VIl. CONCLUSION
% 20 40 60 80

| We have carried out a multiscale analysis of the hotspot
during the deceleration phase of ICF capsules which gives
oo R iﬁgtgsratfe(‘j’isctg“do‘:)e ’:Ei“s“bv%tfg t?g4gegﬁijefgti0:3f2?:;§e°f dnformation at a macroscopic level, useful for ignition crite-
formulas ngglecting cponvergencg effects. Th(lse theoretica)|/ predictions alréa for mStanqe' as well as microscopic detail, necessary for
compared with numerical results addressing this cap@ué. 3. the computations of RT growth rates. We have shown that
the flow inside the hotspot converges towards a self-similar
profile whose dynamics depends on the hotspot uniform
, " K h P ressure. We have exhibited that the hotspot is separated
Yar = VA + DRYR, + 1514~ iy = El - 2%} - i' (64) ?rom the shell by a thin layer that also posSesses apmicro-
scopic self-similar profile. The derivation of a closed system
Let us consider the direct-drive NIF-like capsule studied inrequires the coupling of the flows inside the hotspot and in
Ref. 3 in the last moment&he last 100 psbefore stagna- the shell. We have discussed and generalized a thick shell
tion. The authors givé&;, =3100um/ns, vg=-18 um/ns,  model originally proposed by Betet al? that takes into
Lgmin=1.5um, Ry=65um, leading to a Froude number account the return shock that propagates through the shell.
Fr=0.5. We also take’=5/2 and theémplosion velocity is  As a result we have derived a closed system of ordinary
typically aroundR;=-200um/ns. Feeding Eq(64) with  jfferential equations governing the hotspot and shell dy-
these data, we can compute the RT growth ratg,ofigure  namics. Finally we have computed the linear growth rates of
F@Mr result with the classical fitting formulathe deceleration phase RT instability taking into account the
KRy/(1+KLgmin), k=I/R,, and the formula(61) (Ref. 3  stabilizing ablation and the spherical convergence.
obtained by Bettet al. taking into account ablation, thermal
conduction, finite densi radient, but neglecting conver-nckNOWLEDGMENTS
gence effects, 0.@%/(1+kLg,mm)—1.4k|vE|. The results of _
numerical simulations given in Ref. 3 are also reported. This ~ The authors thank P.-A. Raviart and L. Masse for useful
shows that the cutoff mode number lis=100, and that and stimulating discussions.
spherical convergence effects induce slight enhancements of
the RT growth rates for low modds=< 20. Note, h(_)wever_, APPENDIX: PROOF OF EQ. (22)
that the RT growth rates vary strongly with the implosion
velocity and acceleration, so that comparisons with numeri-  We prove in this Appendix the convergence of the mac-
cal simulations are not easy. roscopic temperature profile to the self-similar solution. We
Let us finally consider the nominal indirectly driven firstintroduce some notations.af<b andg:(a,b) ~R*is a
LMJ capsule. In the last 50 ps before stagnation we haveositive-valued function, then we introduce the Hilbert space
R,=1000um/ng, ve=-15um/ns, Lymn=1.5um, R,  L’[g(x)dx] equipped with the weighted norm

=40 um leading to a Froude number #10.6. The implo- b
sion velocity is typically aroundR,=-100um/ns. The ||f||§(x)dx—f f2(x)g(x)dx.
a
20 : ‘ : Proof of Eq.(22) with (u@,c'?). The energy decay of
— gg‘;is"’"’" the solution to a diffusion equation is a well-known phenom-
- Eg. (64) enon. Here the problem comes from the fact that the diffu-
sion coefficiemF?l(x) vanishes at the edge=1. However,
for v>1, the decay rate of the diffusion coefficient ensures
the convergence of the integpé} = [gF+(x) ™" Y2dx< . We
haveX,=2.01 forv=5/2. Wedefine the new spatial variable
1
X(x) = f F(x)""*2dy,
. L FEREN X
% 10 20 30 40

[ which is a one-to-one decaying function frof,1] onto

FIG. 6. RT growth rate vs mode number for the deceleration phase of tthO_r 0]. We t.hen define the new functiom(X, 7) = ¢[x(X), 7]
LMJ capsule. which satisfies
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with the boundary conditions(7,0) =w(7, X;)=0. The func-
tion g is

000 == = (In{FA{x00T).

By differentiating the squark?(dx)-norm ofw, we get after
a straightforward integration by part that

Xg
5 WIE, = - 2ol - j o/ (WA AX.
0

Using the standard estimaf@xwl|3, = (72/X3)|w|3, which
holds true for any smooth function ih?(dx) with zero
boundary condition&? we obtain g, Jwif3, < -\@|\w|3, with
A@= ﬂ2/X0+m|an[0x][g (X)/2]. A numerical estimate
yields min.ox [0’ (X)] 1.18 for »=5/2 so that \@

Phys. Plasmas 12, 012704 (2005)

NG
e 2«0, ')”F.‘r”_l(x)dx

which implies (22) with c¢=A;"\® and A\ =inf,J|a, ¢4

The infimum is taken over all smooth functions with
#(0)=(1)=0 and|¢fle-r1000=1. The operatoF¥(x) &2 is
self-adjoint in the spacd_z(FT’"l(x)dx) Using standard
spectral theory tools we can compute the spectral represen-
tation of this operator. The first eigenvalues afe—5.075,
\>=-15.22 A3=-30.28 forv=5/2. This spectral study dem-
onstrates thak®’=-\,=5.075.

[[&(r, ')||F;”‘1(x)dx$
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