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Propagation of partially coherent light with the
Maxwell–Debye equation

Josselin Garnier

Laboratoire de Statistique et Probabilités, Université Paul Sabatier, 118 Route de Narbonne,
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We deal with the propagation of broadband Schell-model sources in nonlinear media with finite relaxation
time. The approach is based on a study of the Wigner distribution function and on a separation of scales
technique between the microscopic random fluctuations of the field and the macroscopic intensity profile. The
regime in which the nonlinearity is strong and slow is considered. Precise results are obtained for the small-
and large-scale characteristics of the pulse: optical intensity profile, speckle radius, and typical intensity pro-
file of the speckle spots. © 2003 Optical Society of America
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1. INTRODUCTION
We aim to study the propagation of a broadband pulse
with speckled intensity profile and to exhibit the main
small- and large-scale features relative to this propaga-
tion. The literature contains much research devoted to
the linear propagation of partially coherent beams,1

among which the Schell model sources characterized by a
complex degree of coherence between two points r1 and r2
in the source plane that depends only on the difference
r1 2 r2 have attracted attention. In particular Gaussian
Schell-model (GSM) sources characterized by Gaussian
distributions for both the optical intensity and the com-
plex degree of spatial coherence have been extensively
studied.2,3 This analysis came about mainly because the
GSM sources can be constructed in a laboratory4 and are
mathematically tractable to provide relevant insight into
the phenomena at hand. Analytical results are re-
stricted mainly to the GSM beams,2 twisted GSM beams,5

J0-correlated sources,6 and further incoherent superposi-
tions of Gaussian modes.7 These results can provide
qualitative insight into the propagation of other kinds of
partially coherent beam, but original behavior can be ex-
hibited especially when dealing with super-Gaussian
profiles.8

The literature with regard to the linear propagation of
partially coherent light is extensive. There are however
fewer papers that address nonlinear propagation. Propa-
gation of the GSM beams in dispersive and absorbing me-
dia has been studied by Wang and Wolf.9 The propaga-
tion of an intense partially coherent quasi-monochromatic
source in a two-dimensional Kerr medium was discussed
by Gross and Manasssah.10 The case of the instanta-
neous nonlinear Schrödinger equation was addressed by
Garnier et al.11 It was proved that the main contribution
of the instantaneous nonlinearity is to break the Gauss-
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ian property of the statistical distribution and to enhance
the local intensity fluctuations. Nayyar considered the
propagation of the autocorrelation function (AF) of a GSM
beam in a medium with third-order nonlinearity,12 in the
regime of rapid and weak nonlinearity. Here we consider
a different regime, in which the nonlinearity has a
greater amplitude but is slower than the coherence time
of the pulse, and we also consider sources with general
profiles and not only GSM sources.

Our analysis is based on a separation of scales tech-
nique, also referred to in the literature as the quasi-
homogeneous approximation.1 We do not perform an ex-
pansion for small nonlinearity as we consider the general
configurations in which diffraction and nonlinearity are of
the same order, so that coupling between the natural dif-
fractive spreading and the nonlinear self-focusing is effi-
cient. We address the nonlinear regime within a general
framework, when the degree of coherence and the overall
envelope of the optical intensity have arbitrary profiles.
Our main assumption is that the macroscopic radius of
the input beam is much larger than the correlation radius
of the microscopic random fluctuations of the field. In
the case of a slow response of the material we prove that
the Gaussian property of the statistical distribution is
preserved along propagation (note that we do not assume
it but we actually prove it in Section 4). Once this fact is
established, it remains to derive an equation for the
second-order moments that fully characterize the pulse
statistics, in that we can get from the AF both the macro-
scopic variations of the optical intensity, as well as the
statistical distribution of the random microscopic fluctua-
tions of the field. The analysis performed in Section 5
shows that it is convenient to work with the Wigner func-
tion, which is the local Fourier transform of the AF of the
field. Section 6 is devoted to the derivation of the nonlin-
2003 Optical Society of America
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ear hyperbolic system that governs the evolution of the
Wigner function. The integration of this partial differen-
tial equation provides answers for all the physically rel-
evant questions. In Section 8 we see that the results
strongly depend on the initial global and local shapes of
the initial AF.

2. MAXWELL–DEBYE EQUATION
A light pulse can excite material oscillation modes with
different physical origins. As a result they cover an enor-
mous frequency bandwidth that ranges from 1015 s21

(electronic oscillations) to 1 s21 (thermal oscillations).
The most common contribution to the optical nonlinearity
is the nonresonant electronic Kerr effect, which is usually
small and fast. But light can also couple to material
waves by inducing dipoles in the atoms or the molecules
making up the material. These phenomena are both
stronger and slower than the electronic one. We might
think of molecular reorientation (;1012 s21), electrostric-
tion (;109 s21), or else thermal nonlinearities
(;1 –106 s21). In 1912 Debye was the first to address
the problem of reorientation of polar molecules in an elec-
tric field.13 As a result of this pioneering study the inter-
action of an electromagnetic wave in nonresonant media
with finite response time tR is modeled by the coupled
field–matter equations known as the Maxwell–Debye
equation:14
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where z is the wave-propagation axis and D' is the or-
thogonal Laplacian operator (]2/]x2) 1 (]2/]y2) that de-
scribes the diffraction of the wave in the transverse plane.
We denote by r the vector that consists of the transverse
coordinates (x, y) and by t the local time in the moving
pulse time frame. n0 is the unperturbed value of the in-
dex of refraction and nnl is the optical nonlinear coeffi-
cient that governs the response of the medium to the
wave amplitude. tR is the relaxation time of the me-
dium. Note that Eq. (2) can be solved in terms of the
pulse intensity:

nnl~z, r, t ! 5
n2

tR
E

2`

t

uEu2~z, r, s !exp@~t 2 s !/tR#ds.

(3)

We study the propagation of partially coherent light
whose statistical characteristics are locally stationary.
More precisely, we consider an incident field E0 whose
temporal and spatial slowly varying envelopes are deter-
ministic, with spatial radius r0 (the so-called beam ra-
dius) and temporal duration t0 (the so-called pulse dura-
tion). These scales are referred to in the following as the
macroscopic scales. The incident pulse also has fast
varying random fluctuations, with characteristic scales r0
(the so-called correlation radius) in the spatial domain
and t0 (the so-called coherence time) in the temporal do-
main. These scales are referred to in the following as the
microscopic scales. The random fluctuations of the inci-
dent pulse are assumed to obey Gaussian statistics. In
particular the spatial intensity distribution is a speckle
pattern,15 and the field is a Schell-model source.1 The
distribution of the input field is characterized in the
z 5 0 plane by the AF of field E0(r, t) 5 E(z 5 0, r, t)
defined by

C0,r,t~r, t! 5 ^E0~r1 , t1!E0* ~r2 , t2!&, (4)

where r 5 (r1 1 r2)/2, r 5 r2 2 r1 , t 5 (t1 1 t2)/2,
t 5 t2 2 t1 , and the angular brackets represent statisti-
cal averaging. We can assume, for example, that the AF
has a locally Gaussian shape, so that expression C0,r,t can
be taken to be equal to

C0,r,t~r, t ! 5 I0~r, t !expS 2
uru2

r0
2 2

t 2

t0
2D . (5)

I0 ª I0(0, 0) is the mean intensity of the field at the cen-
ter of the beam. r ° I0(r, t) and t ° I0(r, t)] describe,
respectively, the spatial and temporal shapes of the slowly
varying envelope of the intensity. For the numerical ex-
periments we also assume that I0(r, t) is of the form

I0~r, t ! 5 I0 expS 2
urup

r0
p 2

tq

t0
qD , (6)

where p and q are even integers. If p is equal to 2, the
slowly varying envelope of the intensity has a Gaussian
shape (this case corresponds to the so-called GSM
source2), and if p is larger than 2 the envelope has a
super-Gaussian shape.

On the one hand we prove that the Gaussian property
of the statistics of the field is conserved by Eqs. (1) and (2)
within the framework we consider. We then focus on the
evolution of the four-dimensional AF:

Cz,r,t~z, r, t! ª ^E~z1 , r1 , t1!E* ~z2 , r2 , t1!&, (7)

where z 5 (z1 1 z2)/2, z 5 z2 2 z1 , r 5 (r1 1 r2)/2, r
5 r2 2 r1 , t 5 (t1 1 t2)/2, and t 5 t2 2 t1 . This func-
tion is particularly relevant because it provides the beam
radius and the pulse duration as well as information
about the statistical distribution of the microscopic hot
spots.

3. SEPARATION OF THE TIME SCALES
To obtain an accurate description of the evolution of the
statistics of the hot spots, we intend to study the evolu-
tion of the autocorrelation function. It does not seem
possible to get a closed-form equation that governs the
evolution of the AF, because nonlinearity makes the
nth-order correlation depend on the (n 1 2)th-order cor-
relation. Several authors considered the case when the
characteristic distance over which the nonlinear interac-
tion between the field and the fluctuations of k0nnl(E)/n0
takes place is much greater than the size of the region of
longitudinal field correlation z0 5 k0r0

2, which is deter-
mined by the length of diffraction spreading of a charac-
teristic inhomogeneity in the cross section of an incoher-
ent beam.12,16,17 Under such conditions the statistics are
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only slightly affected by the nonlinear effect, so that the
fourth-order moments can be deduced from the second-
order moments according to the simple rules that are
valid for Gaussian processes18 and a closed-form equation
for the AF can be obtained. Our framework is different
because we take into consideration the slow nonlinear
mechanism whose strength is much higher than the
almost-instantaneous Kerr effect.

The first hypothesis is that coherence time t0 of the in-
put pulse is shorter than relaxation time tR of the me-
dium. As a consequence the medium averages out the
fast oscillations by Eq. (3). The nonlinear index nnl de-
pends only on the locally time-averaged intensity, which
is equal by ergodicity to the local statistical average of the
intensity. We thus have

nnl~z, r, t ! 5
n2

tR
E

2`

t

^uEu2&~z, r, s !exp@~t 2 s !/tR#ds.

Furthermore, assuming that pulse duration t0 is longer
than tR , we have ^uEu2&(z, r, s) . ^uEu2&(z, r, t) for
ut 2 su & tR and the nonlinear index of refraction has the
form

nnl~z, r, t ! 5 n2^uEu2&~z, r, t !, (8)

so that the field obeys the partial differential equation
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which simply corresponds to original Eqs. (1)–(3), where
the statistical average was substituted for the time aver-
age.

4. GAUSSIAN PROPERTY
We now prove that, if E0( • ) has Gaussian statistics,
then E(z, • ) also has Gaussian statistics. Note that
this is not obvious as the propagation is nonlinear and
nonlinearity usually breaks the Gaussian property. As
an example, for the instantaneous nonlinear Schrödinger
equation, where nnl 5 n2uEu2, Garnier et al. proved11 that
the main effect of the nonlinear propagation was to de-
stroy the Gaussian property of the statistics by the addi-
tion of a nonlinear phase fNL 5 k0n2uE0u2z/n0 , whereas
the main effect on the intensity distribution was a con-
trast enhancement that showed that the fourth-order cor-
relation function differed from the standard sum of prod-
ucts of second-order correlation functions that correspond
to a Gaussian process.

We give complete proof of the conservation of the
Gaussian property as we believe it is important to show
that this is a result and not an assumption. The proof is
based on two well-known propositions of the mathemati-
cal probability theory.

(1) The characterization of Gaussian processes: The
statistical distribution of a zero-mean Gaussian process if
fully characterized by an AF.

(2) The central-limit theorem: If Xj , j 5 1,..., N are
independent zero-mean processes (not necessarily Gauss-
ian) with the same AF, C, then the normalized sum
1/AN( j51

N Xj converges as N → ` to a zero-mean Gauss-
ian process with AF C.

Consider N statistically independent versions of the in-
put field Ej,0 , j 5 1,..., N. We also introduce the sum
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where ẼN,0 is the sum of independent Gaussian processes,
so that it is a Gaussian process. Furthermore its AF is
C0 . Thus its statistical distribution is the same as E0 .
We denote by Ej the solution of evolution Eq. (9) starting
from Ej,0 . The Ej are statistically independent and iden-
tically distributed, but we still do not know whether they
are Gaussian processes. Let us introduce

ẼNª
1

AN
(
j51

N

Ej . (10)

The equation that governs the evolution of ẼN is
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However the Ej are identically distributed, so that

^uEju2& 5 ^uE1u2&, j 5 1,..., N. (11)

Furthermore
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Since the Ej terms are statistically independent we have

^uẼNu2& 5
1

N (
jÞl

^Ej&^El* & 1
1

N (
j51

N

^uEju2&.

The first sum on the right-hand side is zero as the Ej are
zero-mean processes, whereas the second sum is equal to
^uE1u2& by Eq. (11). Accordingly, the equation that gov-
erns the evolution of ẼN is
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In summary, ẼN is a solution of evolution Eq. (9) and it
starts from ẼN,0 that has the same statistical distribution
as E0 . Thus E and ẼN have the same statistical distri-
bution whatever z is. Note that this also holds true
whatever N is. Since ẼN is defined as the sum of Eq. (10)
of independent processes, the central-limit theorem can
be invoked to prove that as N → ` ẼN converges to a pro-
cess with Gaussian statistics. This definitively proves
that E has Gaussian statistics.

The Gaussian property of the field that we have just
put into evidence allows us to claim several interesting
statements. First the local contrast of the intensity dis-
tribution is 1 for every z (the contrast is defined as the ra-
tio of the standard deviation of the local fluctuations over
the mean intensity). This means that there is no fila-
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mentation. Furthermore the four-dimensional AF as de-
fined by Eq. (7) contains all the relevant information. In
particular, for a fixed time t the three-dimensional (3-D)
AF

g3-D~z, r; z, r!

ªCz,r,t~z, r, 0!

5 K ES z 1
z

2
, r 1

r

2
, t DE* S z 2

z

2
, r 2

r

2
, t D L (12)

contains all the information about the small- and large-
scale spatial structures of the beam. In particular it
gives the global radius of the optical intensity profile since
r ° g3-D(z, r; 0, 0) is precisely the overall envelope of
the optical intensity profile. This function also describes
the typical 3-D shapes of the speckle spots of the beam.
Indeed well-known results about Gaussian processes19

have established that the typical behavior of the field
around a local maximum located in situ (Z, R) is pre-
cisely given by the function (z, r) ° g3-D(Z, R; z, r):

uE~Z 1 z, R 1 r!u . uE~Z, R!u
ug3-D~Z, R; z, r!u

ug3-D~Z, R; 0, 0!u
.

(13)

This result holds true for values of (z, r) small enough so
that the right-hand side is larger than AI0.

From now on we assume that the input AF is of the
form

C0,r,t~r, t! 5 ft~t!g0~r, r!.

Substituting Eq. (7) into Eq. (9) immediately yields a four-
dimensional AF of the form

Cz,r,t~z, r, t! 5 ft~t!g3-D~z, r; z, r!,

where g3-D is the 3-D AF. This shows that the coherence
time and pulse duration are not affected by the propaga-
tion, as time does not appear explicitly in Eq. (9). Ac-
cordingly we can now focus our attention on the spatial
AF. We first study the transverse AF in Section 5 before
we address the 3-D AF.

5. WIGNER FORMALISM
We consider the solution of Eq. (9) starting from E(z
5 0, r) 5 E0(r), which is a field with Gaussian statistics
characterized by the Wigner function20

W0~r, k! 5
1

~2p!2 E exp~ik – r!g0~r, r!dr, (14)

where g0 is the AF,

g0~r, r! 5 K E0S r 2
r

2 DE0* S r 1
r

2 D L . (15)

We look for a closed equation for the Wigner function

W~z, r, k! 5
1

~2p!2 E exp~ik – r!g ~z, r, r!dr,

(16)

where
g ~z, r, r! 5 K ES z, r 2
r

2 DE* S z, r 1
r

2 D L . (17)

Note that we have

^uE~z, r!u2& 5 E W~z, r, k!dk. (18)

Straightforward algebra establishes that the evolution of
W is governed by the equation
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Operator L is defined by

LZ~r, k! 5 2iE exp~2ip–r!V̂~p!

3 FZS r, k 1
p

2 D 2 ZS r, k 2
p

2 D Gdp, (20)

where V̂ is the Fourier transform with respect to r of

V~z, r! ª ^uEu2&~z, r! 5 E W~z, r, k!dk.

Let us write the input AF in the form

g0~r, r! 5 I0ḡ0S r

r0
,

r

r0
D ,

where r0 is the radius of the intensity envelope, r0 is the
correlation radius, and I0 is the mean intensity at the
beam center so that ḡ0(0, 0) 5 1. We consider the fol-
lowing dimensionless version of the Wigner function:

W~z, r, k! 5 I0r0
2W̄S z

z0
,

r
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, r0kD ,

so that
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,

]W

]z
~z, r, k! 5

I0r0
2

z0
F ]W̄

] z̄
~ z̄, r̄, k̄!G
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V~z, r! 5 I0@V̄~ z̄, r̄!# z̄5z/z0 , r̄5r/r0
,

V̄~ z̄, r! 5 E W̄~ z̄, r̄, k̄!dk̄,

V̂~z, p! 5 I0r0
2@VC ~ z̄, p̄!# z̄5z/z0p̄5pr0
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LW~z, r, k! 5 I0
2r0

2@L̄W̄~ z̄, r̄, k̄!# z̄5z/z0 , r̄5r/r0 ,k̄5kr0
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where the rescaled operator L̄ is defined by

L̄Z~ r̄, k̄! 5 2i E exp~2ip̄–r̄!VC ~p̄!FZS r̄, k̄ 1
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and VC is the Fourier transform of V̄. For the character-
istic propagation distance we chose

z0 5
k0r0r0

2
, (21)

that is, the length of diffraction spreading of a partially
coherent beam with macroscopic radius r0 and micro-
scopic correlation radius r0 .1,8 Finally, we denote

b̄ 5
n2I0k0

2r0
2

2n0
,

so that the equation that governs the evolution of the di-
mensionless Wigner function is

]W̄

] z̄
1

1

2
k̄ • ¹r̄W̄ 1 b̄

r0

r0
L̄W̄ 5 0. (22)

Note that b̄ can be written in terms of critical power
Pc 5 n0

2c/(4n2k0
2) and the typical power contained in a

speckle spot P0 5 n0cI0r0
2/8 as

b̄ 5 P0 /Pc . (23)

6. SEPARATION OF THE SPATIAL SCALES
We shall now use the second scaling hypothesis that the
typical length scale of the random fluctuations of the field
is much smaller than the radius of the beam envelope:
r0 @ r0 . In such conditions operator L̄ can be simplified
to

L̄Z~ r̄, k̄! 5 2i
r0

r0
E exp~2ip̄–r̄!VC ~p̄!@¹k̄Z~ r̄, k̄! • p̄#dp̄

so that integration by parts yields

L̄Z~ r̄, k̄! 5
r0

r0
¹r̄V̄ • ¹k̄Z~ r̄, k̄!. (24)

Substituting Eq. (24) into Eq. (22) we determine that the
equation that governs the evolution of the Wigner func-
tion is a Liouville–Vlasov type in phase space:

]W̄

] z̄
1

1

2
k̄ • ¹r̄W̄ 1 b̄¹r̄V̄ • ¹k̄W̄ 5 0, (25)

where V̄( z̄, r̄) 5 *W̄( z̄, r̄, k̄)dk̄.
Equation (25) is the most important result of this pa-

per. It gives a simple and efficient way to predict the be-
havior of a partially coherent pulse in a slow nonlinear
medium. It is a nonlinear hyperbolic system that is
likely to involve shock formation. In Section 7 we see
that this is indeed the case if the nonlinearity is strong
enough. The reader would be surprised to learn that
such a singularity arises because we have pointed out
that there is no possible singularity in Eq. (9). The rea-
son is that a shock within the framework of the separa-
tion of scales simply means that the global envelope has a
sharp edge whose length scale has the same order of mag-
nitude as the microscopic random fluctuations. Accord-
ingly, Eq. (25) accurately describes the nonlinear propa-
gation although there is no shock. When the shock
arises, our approach fails because the separation of spa-
tial scales technique is no longer valid, and one should
compute the propagation of the Wigner function with Eq.
(9).

Note that dimensional analysis puts into evidence that
the interesting nonlinear regime occurs when b̄ is of order
one, that is to say when the mean power of a speckle spot
is of the order of the critical power. Within this frame-
work the diffraction effects and the nonlinearity are of the
same magnitude. If the nonlinearity is much weaker, it
can be neglected and the analysis performed in the linear
regime is valid.8 If the nonlinearity is much stronger, the
diffractive effect can be neglected and the main effect is a
spectral broadening induced by self-phase modulation.

7. THREE-DIMENSIONAL
AUTOCORRELATION FUNCTION
The above analysis gives us access to the transverse AF
through a Fourier transform

g ~z, r, r! 5 E W~z, r, k!exp~2ik – r!dk.

We can then get the full 3-D AF as defined by Eq. (12) by
solving the equation

i
]g3-D

]z
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2k0
Drg

3-D 1
k0n2

n0
V~z, r!g3-D 5 0, (26)

starting from g3-D(z, r; z 5 0, r) 5 g (z, r, r). Note
that the macroscopic variables z and r play the roles of
frozen parameters in this equation, which reads as a
Schrödinger-like equation in the constant potential V.
Let us consider the 3-D Wigner transform

W3-D~z, r; k, k! ª

1

~2p!3 EE exp~ik – r

1 ikz!g3-D~z, r; z, r!drdz.

In the phase space Eq. (26) reads as

Fk 2
1

2k0
uku2 1

k0n2

n0
V~z, r!GW3-D 5 0,

E W3-D~z, r; k, k!dk 5 W~z, r, k!,

whose solution is

W3-D~z, r; k, k! 5 W~z, r, k!d @k 2 K~z, r, k!#, (27)

K~z, r, k! 5
1

2k0
uku2 2

k0n2

n0
V~z, r!, (28)

where d is the Dirac distribution. Taking the inverse
Fourier transform establishes

g3-D~z, r; z, r! 5 E dkW~z, r, k!

3 exp@2ik – r 2 iK~z, r, k!z#. (29)

In summary, we have proved that the statistical distri-
bution of the partially coherent beam is Gaussian. It has
zero mean and its 3-D AF is given by Eq. (29), where W is
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the solution of the nonlinear partial differential Eq. (25).
We have thus completely characterized the small- and
large-scale behavior of the pulse.

8. NUMERICAL INTEGRATION
Here we present numerical experiments of the nonlinear
partial differential Eq. (25). For simplicity and good
resolution we assume circular symmetry for the statisti-
cal distribution. This is valid as soon as the initial
Wigner distribution W̄0( r̄, k̄) depends only on the moduli
of k̄ and r̄ and on the angle between k̄ and r̄. In such
conditions the Wigner function W̄( z̄,.) depends only on
three variables instead of four, that is to say, r̄ 5 ur̄u,
k̄ 5 uk̄u, and u is the angle between r̄ and k̄: cos(u)
5 (r̄ – k̄)/(ur̄uuk̄u). In these variables Eq. (25) reads

]W̄

] z̄
1

1

2
k̄F cos~u!

]W̄

] r̄
2

1

r̄
sin~u!

]W̄

]u
G

1 b̄
]V̄

] r̄ F cos~u!
]W̄

]k̄
2

1

k̄
sin~u!

]W̄

]u G 5 0.
Let us introduce the variable u 5 cos(u). We then get a
conservative form for the nonlinear partial differential
equation

]W̄

] z̄
1

]

] r̄
S uk̄

2
W̄ D 1

]

]k̄
S b̄u

]V̄

] r̄
W̄ D

1
]

]u F ~1 2 u2!S k̄

2 r̄
1

b̄

k̄

]V̄

] r̄ D W̄G 5 0.

We applied a second-order upwind Van Leer scheme21 for
the numerical resolution. In Appendix A we provide
more details about the numerical method that we used.

Figures 1 and 2 plot the evolution of the intensity pro-
files r ° gz(r, 0)/I0 of partially coherent pulses for differ-
ent positions along propagation axis z and for different in-
put powers. We first consider a GSM source

g0~r, r! 5 I0 expS 2
uru2

r0
2 2

uru2

r0
2 D ,

which corresponds to the dimensionless Wigner function

W̄0~ r̄, k̄! 5
1

4p
expS 2ur̄u2 2

uk̄u2

4
D .
Fig. 1. Intensity profiles of the partially coherent beams in dimensionless variables. The initial profile has a Gaussian shape: (a)
b̄ 5 0 (linear regime), (b)–(f ) b̄ 5 0.70, 0.98, 1.25, 1.41, 2.11, respectively.
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Fig. 2. Same as Fig. 1 but the initial profile has a super-Gaussian shape with order 2n 5 6.
The accuracy of the numerical scheme was first checked
by a comparison of the numerical results in the linear re-
gime (or equivalently for weak nonlinearity) with the
closed-form expressions that are available8 [see Fig. 1(a)].
We also consider nonlinear regimes in which self-focusing
of the beam is noticeable [see Figs. 1(b)–1(f )]. A weak
nonlinearity b̄ 5 P0 /Pc , 1 involves a delayed spreading
of the beam profile. Note that a moderate nonlinearity
could help the beam to maintain its shape for quite a long
propagation distance [Figs. 1(b) and 1(c)]. However, it
will eventually either spread out or collapse. Note also
that it could happen [Fig. 1(d)] that the beam first focuses
before spreading out. It might also experience a compli-
cated transitory regime before it collapses [Fig. 1(e)]. A
strong nonlinearity b̄ . 1.5 [Fig. 1(d)] is more dramatic
in that the beam self-focuses and a singularity appears
(in the sense discussed in Section 6).

We also address the case of a super-GSM, whose input
AF is

g0~r, r! 5 I0 expS 2
uru6

r0
6 2

uru2

r0
2 D .

In the absence of nonlinearity we put into evidence the
previously known result that the super-Gaussian shape is
not preserved along the propagation [Fig. 2(a)]. We first
observed that in case of weak nonlinearity, the intensity
increases slightly at the beam center whereas the profile
becomes Gaussian and finally the beam spreads out as
the GSM source [Fig. 2(b)]. When b̄ . 1, the beam main-
tains a super-Gaussian shape for quite a long propagation
distance before spreading out [Fig. 2(c)]. In the case of a
strong nonlinearity, the picture is quite different from the
GSM case. In fact, it is obvious that the profile edges be-
come sharp and that a focusing ring arises. The ring for-
mation could take a while for moderate nonlinearity
[Figs. 2(d) and 2(e)] whereas it is rapid for a strong non-
linearity [Fig. 2(f )]. This mechanism can be explained by
some heuristic arguments. The medium is sensitive only
to the macroscopic intensity profile. The nonlinearity in-
volves the generation of a waveguide whose shape is im-
posed by this profile. Within this waveguide the speckle
spots follow the gradient of the induced index of refrac-
tion. They have no reason to be affected at the beam cen-
ter as the gradient of the index is close to zero, but they
are pushed along the flanks of the waveguide to the area
that corresponds to the index maximum. Accordingly the
macroscopic intensity profile that results from the super-
position of all the speckle spots becomes higher on the
ring.
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9. CONCLUSION
We have addressed the problem of the propagation of a
partially coherent pulse in a nonlinear medium with slow
nonlinearity. We have shown that the Gaussian property
of the statistical distribution of the field is preserved if
the coherence time of the pulse is shorter than the relax-
ation time of the medium. We have exhibited a closed-
form equation that governs the evolution of the Wigner
function that reads as a nonlinear hyperbolic system in
phase space. We have shown that the linear diffraction
and the nonlinear phenomena are in competition when
the mean power of a speckle spot is of the order of the
critical power of the medium. A moderate nonlinearity
can help to maintain the initial intensity profile over one
diffraction length or more. This regime is only transitory
and is followed by a beam spreading or a beam collapse.
In the case of strong nonlinearity we have shown various
self-focusing processes that depend on the initial inten-
sity profiles. In the particular case of a super-Gaussian
intensity profile, we observed the apparition of a focusing
ring.

APPENDIX A: NUMERICAL SCHEME FOR A
NONLINEAR HYPERBOLIC SYSTEM
We detail the numerical scheme that we used to integrate
nonlinear partial differential Eq. (25). For the sake of
simplicity we drop the overbars. The following second-
order upwind Van Leer scheme is taken from the survey
by Leveque.21

1. Grids
Grid r: ri11/2 , i 5 0,..., I with uniform step dr; grid k:
kj11/2 , i 5 0,..., J with uniform step dk; grid u: ul11/2 ,
l 5 0,..., L with uniform step du; dual grid r:ri
5 1/2(ri11/2 1 ri21/2); dual grid k: kj 5 1/2(kj11/2
1 kj21/2); dual grid u: ul 5 1/2(ul11/2 1 ul21/2); ap-
proximation of W at point (ri , kj , ul): Wi, j,l ; approxi-
mation of W at (ri11/2 , kj , ul): Wi11/2, j,l ; approximation
of W at (ri , kj11/2 , ul): Wi, j11/2,l ; and approximation of
W at (ri , kj , ul11/2): Wi, j,l11/2 .

2. Discrete Evolution Equation
We implement a second-order conservative approximation
for Eq. (25):

]Wi, j,l

dz
1

ulkj

2dr
~Wi11/2, j,l 2 Wi21/2, j,l!

1
bul

dk

]Vi

]r
~Wi, j11/2,l 2 Wi, j21/2,l! 1

1 2 ul
2

du

3 S kj

2ri
1

b

kj

]Vi

]r D ~Wi, j,l11/2 2 Wi, j,l21/2! 5 0.

We used a second-order explicit Runge–Kutta method for
the z discretization of this equation.
3. Evaluation of Flux Wi11Õ2,j,l

Wi11/2, j,l 5 Wi, j,l 1
dr

2
sr

i if ul . g0,

Wi11/2, j,l 5 Wi11, j,l 2
dr

2
sr

i11 if ul , 0,

where sr
i is the limited slope

sr
i 5

1

dr
~Wi11,j,l 2 Wi, j,l!f~ur!,

ur 5
Wi, j,l 2 Wi21, j,l

Wi11, j,l 2 Wi, j,l
,

f~u! 5
u 1 uuu

1 1 uuu
.

4. Evaluation of Flux Wi, j11Õ2,l

Wi, j11/2,l 5 Wi, j,l 1
dk

2
sk

j if bul

]Vi

]r
. 0,

Wi, j11/2,l 5 Wi, j11,l 2
dk

2
s j11

k if bul

]Vi

]r
, 0,

where s j
k is defined as for the r flux.

5. Evaluation of Flux Wi, j11Õ2,l

Wi, j,l11/2 5 Wi, j,l 1
du

2
s l

u

if
kj

2ri
1

b

kj

]Vi

]r
. 0,

Wi, j,l11/2 5 Wi, j,l11 2
du

2
s l11

u

if
kj

2ri
1

b

kj

]Vi

]r
, 0,

where s l
u is defined as for the r flux.

6. Evaluation of Gradient ­Vi Õ­r
We use the identity V(r) 5 *W(r, k, u)kdkdu:

]Vi

]r
5

dkdu

]r (
j,l

kj~Wi11/2, j,l 2 Wi21/2, j,l!.

7. Boundary Conditions
It is necessary to have two fictitious points outside the
physical boundaries. On the left of r 5 0, we use the re-
lation W(z, 2r, k, u) 5 W(z, r, k, 2u). On the right
of r 5 rmax we use outgoing boundary conditions. On the
left of k 5 0, we use W(z, r, 2k, u) 5 W(z, r, k, 2u).
On the right of k 5 kmax we use outgoing boundary con-
ditions. At u 5 61, we use the reflecting boundary con-
dition ]W/]u 5 0.
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