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Abstract. We consider an active source embedded in a randomly layered medium. We study
the cross-correlation functions of the signals recorded at a series of points located at the surface. We
show that this information can be processed to locate the source inside the medium. The analysis is
based on a separation of scales technique and limit theorems for random differential equations. The
statistical stability of the imaging method is proved. The analogy with the time-reversal of waves
is enlightened, but the main difference is also put forward: we propose a passive way of imaging an
unknown medium without the use of any active device. We finally extend these ideas for the location
of a scatterer illuminated by a controlled source located at the surface or by a set of unknown sources
generating random noise.
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1. Introduction. Imaging in complex media is a difficult but exciting problem,
with many potential applications [30]. We consider the problem of the source local-
ization when the source is embedded in a randomly layered half-space. We study the
statistical properties of the signals recorded at the surface. We focus our attention on
the cross-correlation function between the signals recorded at two observation points.
From the exact statistical description of this function, we propose a way to recover
the precise location of the source from a data set consisting of the signals recorded
at five (or more) observation points. We then extend this technique to the case of a
point scatterer embedded in the random half-space and illuminated by a known or
unknown source, or by a set of known or unknown sources.

The waves recorded at the observation points have scattered from the random
heterogeneities of the medium. We shall first consider configurations where a coherent
front pulse can be detected. According to the O’Doherty Anstey theory [24], this front
pulse is spread out and shifted due to multiple scattering. In particular a random
time shift makes it difficult to recover precise information about travel times. We shall
also consider configurations where the signal arriving at the surface is so noisy that no
coherent or ballistic front can be detected. Information about an individual scatterer
could be understood to be lost in such a case. However time-reversal experiments
[15, 16] and the explanations by Clouet and Fouque [11] extended by Papanicolaou
et al. of the self-averaging property of time-reversal for broadband signals [5, 3] have
shown that multiple scattering is not always a nuisance. The utility of time-reversal
for imaging has been pointed out recently [6, 17]. Unfortunately it is not always
possible to perform real time-reversal experiments, in geophysics for instance, as it
requires very specific active devices. In this paper we shall see that cross-correlation
functions of recorded noisy signals are useful to image a random medium. The first
mathematical guess is that a cross-correlation function is in some sense close to achieve
a time reversal experiment [35, 26], as it involves the product of two Green’s functions,
one of them being complex-conjugated.

We should mention that the idea to exploit the cross-correlation of noisy signals to
retrieve information about ballistic wave motion has first been proposed in seismology
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and helio-seismology [25, 13]. First explanations and conditions of applicability are
proposed and criticized by physicists [8, 22, 31]. Using recent tools developed for the
analysis of time-reversal experiments, we are able to give more mathematical insight
into this issue and to enlighten the key points. In particular, we shall see that the
source needs to be broadband to ensure the statistical self-averaging property.

In the regime of separation of scales a framework for the analysis of acoustic waves
propagating in randomly layered media has been set forth in [1]. The scale regime we
consider corresponds to wavelengths that are large relative to the correlation length of
the medium, but short relative to the depth of the source. We consider linear acoustic
waves propagating in three spatial dimensions

ρ
∂~u

∂t
+∇p = ~F,(1.1)

1

K

∂p

∂t
+∇·~u = 0,(1.2)

where p is the pressure, ~u is the velocity, ρ is the density of the medium, and K the bulk
modulus. The forcing term ~F is due to the source. In this paper the three-dimensional
spatial variable is denoted by ~r = (x, z), where we distinguish the transverse spatial
coordinates x = (x, y) and the longitudinal coordinate z. We assume that the density
is constant and the bulk modulus is randomly fluctuating along the z-coordinate only
in the slab (−L, 0). Note that we can choose L large enough so that the termination
of the slab does not affect the wave field at the surface z = 0 over the time window
that we consider. More explicitly, the coefficients of the medium are described by

ρ ≡ ρ0,(1.3)

1

K
=





1

K0

(
1 + ν(

z

ε2
)
)

if − L < z < 0,

1

K0
if z > 0 or z < −L,

(1.4)

where ν is a zero-mean mixing process and ε2 is a small dimensionless parameter that
characterizes the ratio between the correlation length of the medium and the typical
depth of the source. Note that the fluctuations of the medium are not assumed to
be small. The average velocity is given by c0 =

√
K0/ρ0. A point source located at

(xs, zs), zs < 0, generates a forcing term ~F (see Figure 1.1)

~F(t,x, z) = ~fε(t)δ(x − xs)δ(z − zs).(1.5)

We shall first address the case where the source emits a short pulse at time ts:

~fε(t) =

(
fx
fz

)
(
t− ts

ε
).(1.6)

The time duration of the source is scaled by ε which is large compared to the cor-
relation length of the medium (of order ε2) and small compared to the travel times
between the source and the observation points (of order 1).

We shall also address the case where the point source emits a stationary random
signal with Gaussian statistics

~fε(t) = ε
1
2

(
fx
fz

)
(
t

ε
).(1.7)
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Fig. 1.1. Emission from a point source. The signal is recorded at different observation points
O1 = (x1, 0), O2 = (x2, 0),... distributed at the surface z = 0.

characterized by its autocorrelation matrix

G(t) = (〈fi(0)fj(t)〉)i,j∈{x,y,z} ,

where 〈·〉 stands for an averaging with respect to the statistical distribution of the

source. Note that the amplitude factor ε
1
2 has no importance since the propagation

equations are linear. This factor has been added to ensure that the energy released
by the source during a time interval of order 1 is of the same order as in the case of
the short pulse (1.6). The power spectral density matrix Ĝ(ω) of the signal ~f is equal
to the Fourier transform of the autocorrelation matrix of the stationary process f

Ĝ(ω) =

∫
G(t)e−iωtdt.

It is a non-negative definite matrix. Its entries are even, real-valued functions because
Gij are even, real-valued functions. We shall assume that ω 7→ ω2|Ĝ(ω)| belongs to

L1. As a consequence of the Bochner theorem, the process ~f can be represented as
the stochastic integral

~f(t) =
1√
2π

∫
eiωtĝ(ω)d ~Wω,(1.8)

where ĝ is a square root of Ĝ, i.e. a 3× 3 matrix such that ĝ(ω)T ĝ(ω) = Ĝ(ω). ~Wω

is a C3-valued Gaussian process

~Wω =
~W1

ω + ~W1
−ω

2
+ i

~W2
ω − ~W2

−ω

2
,

where ~W1 and ~W2 are two independent three-dimensional Brownian motions. Note

that ~Wω satisfies ~Wω = ~W−ω and
〈
dWiωdWjω′

〉
= δijδ(ω − ω′)dωdω′.

In Section 2 we derive an integral representation for the field at the surface. The
integral representation is obtained by taking a Fourier transform in the time and
lateral space coordinates. This reduces the problem to a family of one dimensional
problems that can be analyzed by decomposing the wave field into right and left going
waves. In Section 4 we address the case where the point source emits a short pulse.
We study the propagation of the front pulse and show that the random arrival times of
the front pulses at five (or more) observation points are sufficient to detect the source
location without any error. In Section 5 we consider the case of a stationary source
signal. We carry out a careful stationary phase analysis combined with standard
diffusion approximation results in the limit of ε small. This gives a stochastic limit
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for the cross-correlation function of the recorded field. The explicit expressions allow
us to remove the random part and to propose a procedure to get the source location
without any error. Finally in Section 6 we revisit our analysis in the case of an
embedded scatterer illuminated by a source or a set of sources located at the surface.

2. The integral representation of the field.

2.1. Emission of a short pulse from a point source. In the scaling that we
consider the typical wavelength of the source is of order ε and we use the following
specific Fourier transform and its inverse with respect to the time and the transverse
spatial coordinates

p̂(ω, κ, z) =

∫ ∫
p(t,x, z)ei ω

ε
(t−κ·x)dtdx,

p(t,x, z) =
1

(2πε)3

∫ ∫
p̂(ω, κ, z)e−i ω

ε
(t−κ·x)ω2dωdκ.

Taking the scaled Fourier transform gives that ~̂u = (v̂, û) and p̂ satisfy the system

−ρ0
iω

ε
v̂ + i

ω

ε
κp̂ = εf̂x(ω)ei ω

ε
(ts−κ·xs)δ(z − zs),(2.1)

−ρ0
iω

ε
û +

∂p̂

∂z
= εf̂z(ω)ei ω

ε
(ts−κ·xs)δ(z − zs),(2.2)

− 1

K(z)

iω

ε
p̂ + i

ω

ε
κ·v̂ +

∂û

∂z
= 0,(2.3)

where f̂ is the ordinary unscaled Fourier transform of the pulse profile

f̂(ω) =

∫
f(t)eiωtdt, f(t) =

1

2π

∫
f̂(ω)e−iωtdω.

We deduce that (û, p̂) satisfy the following closed system for −L < z < zs and
zs < z < 0

∂û

∂z
+

iω

ε

(
− 1

K(z)
+
|κ|2
ρ0

)
p̂ = 0,(2.4)

∂p̂

∂z
− iω

ε
ρ0û = 0,(2.5)

with the jumps at z = zs given by

[û]zs
:= û(ω, κ, z+

s )− û(ω, κ, z−s ) = ε
κ·f̂x(ω)

ρ0
ei ω

ε
(ts−κ·xs),(2.6)

[p̂]zs
:= p̂(ω, κ, z+

s )− p̂(ω, κ, z−s ) = εf̂z(ω)ei ω
ε
(ts−κ·xs).(2.7)

We introduce the right and left propagating wave modes a and b which are defined by

p̂(ω, κ, z) =

√
I0(κ)

2

(
a(ω, κ, z)ei ω

ε
ζ0(κ)z − b(ω, κ, z)e−i ω

ε
ζ0(κ)z

)
,(2.8)

û(ω, κ, z) =
1

2
√

I0(κ)

(
a(ω, κ, z)ei ω

ε
ζ0(κ)z + b(ω, κ, z)e−i ω

ε
ζ0(κ)z

)
,(2.9)
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where κ = |κ|, ζ−1
0 (κ) is the average longitudinal velocity and I0(κ) is the acoustic

impedance:

ζ0(κ) =

√
1− c2

0κ
2

c0
, I0(κ) =

ρ0

ζ0(κ)
.

Here we only consider propagating modes and ignore evanescent modes meaning that
κ < c−1

0 . The system for a and b can be written as

∂

∂z

(
a
b

)
(ω, κ, z) = Qε(ω, κ, z)

(
a
b

)
(ω, κ, z)(2.10)

where the complex 2× 2 matrix Qε is given by:

Qε(ω, κ, z) =
iωζ0(κ)

2ε(1− c2
0κ

2)
ν(

z

ε2
)

(
1 −e

−2iωζ0(κ)z
ε

e
2iωζ0(κ)z

ε −1

)
.(2.11)

Using the definitions (2.8) and (2.9) of a and b and the expressions (2.6) and (2.7) for
the jumps in û and p̂ we deduce the jumps at z = zs for the modes a and b

[a]zs
= εei ω

ε
(ts−κ·xs−ζ0(κ)zs)Sa(ω, κ),(2.12)

[b]zs
= εei ω

ε
(ts−κ·xs+ζ0(κ)zs)Sb(ω, κ),(2.13)

with the source contributions given by

Sa(ω, κ) =

√
I0(κ)

ρ0
κ·f̂x(ω) +

1√
I0(κ)

f̂z(ω),(2.14)

Sb(ω, κ) =

√
I0(κ)

ρ0
κ·f̂x(ω)− 1√

I0(κ)
f̂z(ω).(2.15)

The system for a and b is completed by the boundary conditions at z = 0 and z = −L
that are shown in Figure 2.1. We assume that no energy is coming from +∞ and
−∞, so that we get the radiation conditions

a(ω, κ,−L) = 0, b(ω, κ, 0) = 0.

The quantity of interest is the wave field at the surface which is completely charac-
terized by a(ω, κ, 0) since b(ω, κ, 0) = 0.

We transform this boundary value problem into an initial value problem by intro-
ducing the propagator Y (ω, κ, z0, z), −L ≤ z0 ≤ z ≤ 0, which is a family of complex
2× 2 matrices solutions of

∂Y

∂z
= Qε(ω, κ, z)Y, Y (ω, κ, z0, z = z0) = IdC2 .

By using the particular form of the matrix Qε in (2.11) we can show that if the column
vector (α, β)T is solution of equation (2.10) with the initial conditions

α(z0, z = z0) = 1, β(z0, z = z0) = 0,(2.16)

then the column vector (β, α)T is another solution linearly independent of the first
solution, so that the propagator matrix Y can be written as

Y (z0, z) =

(
α β
β α

)
(z0, z).
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Fig. 2.1. Boundary conditions at z = −L and z = 0 corresponding to the emission from the
point source located at depth zs.

The boundary conditions at z = −L and z = 0 then imply

Y (−L, zs)

(
0

b(−L)

)
=

(
a(z−s )
b(z−s )

)
, Y (zs, 0)

(
a(z+

s )
b(z+

s )

)
=

(
a(0)
0

)
.(2.17)

The system determined by (2.12,2.13,2.17) whose unknown are b(−L) and a(0)
can be solved, and we get:

a(ω, κ, 0) = εei ω
ε
(ts−κ·xs)

[
e−i ω

ε
ζ0(κ)zsTg(ω, κ, zs)Sa(ω, κ)

+ei ω
ε

ζ0(κ)zsRg(ω, κ, zs)Sb(ω, κ)
]
,(2.18)

where Rg and Tg are the coefficients defined by:

Rg(ω, κ, z) =
β
α (ω, κ,−L, z)

α(ω, κ, z, 0) + β(ω, κ, z, 0) β
α (ω, κ,−L, z)

,(2.19)

Tg(ω, κ, z) =
1

α(ω, κ, z, 0) + β(ω, κ, z, 0) β
α (ω, κ,−L, z)

.(2.20)

These coefficients are generalized versions of the coefficients used in [1] as we explain
now. The transmission and reflection coefficients T (ω, κ,−L, z) and R(ω, κ,−L, z)
for a slab [−L, z] (see Figure 2.2) are given in terms of α and β by

R(ω, κ,−L, z) =
β

α
(ω, κ,−L, z), T (ω, κ,−L, z) =

1

α
(ω, κ,−L, z).

We also introduce R̃ and T̃ defined as the reflection and transmission coefficients for
the experiment corresponding to a right-going input wave incoming from the left (see
Figure 2.3). They are given in terms of α and β by

R̃(ω, κ, z, 0) = −β

α
(ω, κ, z, 0), T̃ (ω, κ, z, 0) =

1

α
(ω, κ, z, 0).

We can express the coefficients Rg and Tg in terms of the usual reflection and
transmission coefficients for which the asymptotic analysis of the moments has been
carried out in [1] and will be used in subsequent sections:

Rg(ω, κ, z) =
T̃ (ω, κ, z, 0)R(ω, κ,−L, z)

1− R̃(ω, κ, z, 0)R(ω, κ,−L, z)
,(2.21)

Tg(ω, κ, z) =
T̃ (ω, κ, z, 0)

1− R̃(ω, κ, z, 0)R(ω, κ,−L, z)
.(2.22)
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Fig. 2.2. Reflection and transmission coefficients.
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Fig. 2.3. Adjoint reflection and transmission coefficients.

We denote the wave at the surface z = 0 by (uo, po). By taking an inverse Fourier
transform we finally obtain the integral representations

po(t,x) =
1

(2πε)3

∫ √
I0(κ)

2
a(ω, κ, 0)e−i ω

ε
(t−κ·x)ω2dωdκ,(2.23)

uo(t,x) =
1

(2πε)3

∫
1

2
√

I0(κ)
a(ω, κ, 0)e−i ω

ε
(t−κ·x)ω2dωdκ,(2.24)

vo(t,x) =
1

(2πε)3

∫ √
I0(κ)

2ρ0
κa(ω, κ, 0)e−i ω

ε
(t−κ·x)ω2dωdκ.(2.25)

2.2. Emission of a random noise from a point source. In this subsection
we revisit the derivation of the integral representation of the wave field in the case
where the point source emits a stationary random signal with Gaussian statistics.
The spectral representation of the signal is given by (1.8), so that we must adapt the
integral representation of the field observed at the surface. If we focus our attention
on the pressure field, then we get

po(t,x) =
1

(2π)
5
2 ε

3
2

∫
Tg(ω, κ, zs)~Sa(ω, κ)ei ω

ε
(−κ·xs)−i ω

ε
(t−κ·x)−i ω

ε
ζ0(κ)zsω2dκd ~Wω

+
1

(2π)
5
2 ε

3
2

∫
Rg(ω, κ, zs)~Sb(ω, κ)ei ω

ε
(−κ·xs)−i ω

ε
(t−κ·x)+i ω

ε
ζ0(κ)zsω2dκd ~Wω,(2.26)

where

~Sa(ω, κ) =
1

2

(
I0(κ)

ρ0
κ

1

)
·ĝ(ω), ~Sb(ω, κ) =

1

2

(
I0(κ)

ρ0
κ

−1

)
·ĝ(ω).(2.27)

The velocity field (vs, us) has a similar expression.

3. Source localization in random media: a brief review. Localization of an
acoustic source in the ocean or the earth is often limited because of lack of knowledge
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of the physical properties of the medium. It is an important issue to determine
how medium uncertainties transfer to uncertainties for source localization. It is also
a challenge to propose an efficient approach that gives a robust source localization
without requiring an exact knowledge of the medium.

The so-called matched field method estimates source range and depth by matching
acoustic fields measured at an array of sensors with simulated fields computed for a
grid of possible source locations using a numerical propagation model [34, 2]. The
source position is estimated as the position of the maximum match. Matched field
methods require good knowledge of the physical properties of the environment which
strongly affect the propagation of acoustic fields. However, environmental properties
are often poorly known and environmental uncertainty usually represents the limiting
factor in localization [29, 28]. Several approaches have been developed to address this
limitation.

In geoacoustic inversion a survey is carried out in a particular region. The goal is
to determine the physical parameters that are appropriate for subsequent localization
problems in the area. The inversion of the measured fields from a known source is a
strongly nonlinear problem. Huge effort has been applied using global search methods
such as simulating annealing [14], genetic algorithms [19], and hybrid inversions [20].
In the case where the medium is poorly known, the method of focalization addresses
environmental uncertainty by including the physical parameters of the medium as
additional unknowns in an augmented localization problem [12]. Bayesian approaches
are often used in such configurations [27, 33]. Our goal in this paper is to propose an
efficient procedure for source localization without knowing the medium. It is based
on our analysis of the statistical properties of the observed fields.

4. Embedded source emitting a short pulse. In this section we assume that
the source term ~fε(t) corresponds to a short pulse. The source is somewhere below
the surface (xs, zs < 0). We start by considering the case of a homogeneous medium,
as we shall study the problem of the source localization and contrast the homogeneous
and random configurations.

4.1. Homogeneous medium. We assume in this section that the medium is
homogeneous ν ≡ 0. The signal that can be recorded is a spherical wave emitted from
the source located in S = (xs, zs). Using the notation ~r = (x, z) and applying the
far-field approximation |~r−~rs| � ε the pressure signal is

phom(t,~r) =
1

4πc0ε|~r−~rs|2
(~r−~rs)·

(
f ′
x

f ′z

)(
t− ts − |~r−~rs|

c0

ε

)
,(4.1)

while the three-dimensional velocity field is

~uhom(t,~r) =
~r−~rs

4πρ0c2
0ε|~r−~rs|3

(~r−~rs)·
(

f ′
x

f ′z

)(
t− ts − |~r−~rs|

c0

ε

)
.(4.2)

Application to source localization. Assume that the source location S = (xs, zs) and
the source emission time ts are unknown. Assume that four observation points located
in Oj , j = 1, · · · , 4, at the surface record the pressure signals. We are thus able to
detect four arrival times

Tj = ts +
1

c0
|OjS|,
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where |OjS| is the physical distance between Oj and S. We can thus invert the four
arrival times to get the four unknowns (xs, zs, ts).

4.2. The coherent pulse front in the random case. The signals (2.23-2.25)
consist of a coherent front wave of duration of the order of ε corresponding to the
duration of the source, and a long noisy coda part that is caused by the multiple
scattering by the layers. In this section we compute the expression of the coherent
front pulse that can be recorded at the surface. The front pulse emitted by the
source propagates through the random medium and its propagation is governed by
the well known O’Doherty Anstey (ODA) theory [24]. In Section 4.1 we computed
this front pulse in homogeneous medium. We now revisit these results in presence
of randomness. In this case the front pulse is modified in two ways. First its shape
spreads out in a deterministic way due to multiple scattering. This spreading can be
described in terms of the convolution ODA kernel KODA [10, 21, 4, 18]. Second the
wave itself is not anymore deterministic but a random time shift can be observed and
described in terms of a standard Brownian motion Bz. To sum-up, the pulse front
that can be recorded at the surface z = 0 is

po(t,x) =
1

(2π)3ε2

∫ √
I0(κ)

2
e−i ω

ε
(t−ts−κ·(x−xs)+ζ0(κ)zs)K̂ODA(ω, κ)Sa(ω, κ)ω2dωdκ

where

K̂ODA(ω, κ) = exp

(
i
√

γ(ω, κ)Bzs
+

γ(ω, κ)zs

2

)
,(4.3)

γ(ω, κ) =
γ0ω

2

2c4
0ζ0(κ)2

, γ0 =

∫ ∞

0

E[ν(0)ν(z)]dz.(4.4)

The rapid phase −ω (t− ts − κ·(x− xs) + ζ0(κ)zs) is involved in the integral repre-
sentation of po. A stationary phase argument shows that the leading order contribu-
tion is associated with the stationary point κ = x−xs√

|x−xs|2+z2
s

. In the case γ0 = 0, the

expression of po reduces exactly to (4.2) with z = 0. If we denote the pressure in the
homogeneous medium by phom, then in presence of randomness γ0 > 0 the pressure
field can be written as the convolution with a Gaussian kernel

po(t,x) =
[
phom(·,~r = (x, 0)) ∗ Nx

](
t−

√
γx√
2c0

Bzs

)
,

where

Nx(t) =
c0√

γx|zs|π
exp

(
− c2

0t
2

γx|zs|

)
, γx = γ0

|x− xs|2 + z2
s

z2
s

.(4.5)

4.3. Application to source localization. We are able to detect the arrival
times at each observation point

Tj = ts +
1

c0
|OjS|+ ε

√
γxj√
2c0

Bzs
.

We aim at inverting these equations to determine the source location. The situation
seems more complicated than in the homogeneous case because of the presence of
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the random time shifts. However these unknown shifts can be removed. From the
expression of γx, we can write

Tj = ts +
1

c0
|OjS| (1 + Zs) , Zs = ε

√
γ0√

2|zs|
Bzs

.(4.6)

The analysis shows that Zs does not depend on the observation point. We are thus in
a position to propose a way to compute the source location that will be error-free if
we have five observation points. This procedure consists in inverting the five arrival
times to determine the source location S = (xs, zs), the source emission time ts, and
the random delay Zs. It is described and discussed in the next subsection.

4.4. Numerical simulations. In this subsection we perform numerical simu-
lations of the acoustic equations to check our theoretical predictions. We consider a
medium with a constant-stepwise bulk-modulus. This means that the bulk modulus is
constant in each elementary layer with width δz. In each layer ν takes a value which
is equal to ±σκ with probability 1/2. The source located in (0, zs) emits a signal with
duration tc. The time profile of fz is the derivative of a Gaussian t exp(−t2/t2c), its
Fourier transform is (up to a multiplicative constant) ω exp(−ω2t2c/4). The two other
components fx and fy are zero. The vertical direction of the point source makes the
solution radially symmetric. This allows us to use polar coordinates and the one-
dimensional Hankel transform instead of the two-dimensional Fourier transform in
the transverse directions.

p̂(ω, k, z) =

∫ ∞

−∞

∫ ∞

0

p(t, r, z)J0(kωr)eiωtrdrdt,

p(t, r, z) =
1

(2π)3

∫ ∞

−∞

∫ ∞

0

p̂(ω, k, z)J0(kωr)e−iωtω2dkdω.

We apply the numerical routine proposed by Asch et al [1]. This code was designed to
address the difficulties inherent to multiple scales problems. It splits the problem into
a family of ordinary differential equations for the right- and left-going modes in the
(ω, k) space. It also avoids numerical instabilities due to the multiplication of large
exponentials in the transfer matrices. It turns out that the code provides accurate
results, so we simply adapt it to our case without fundamental improvement.

The configuration is zs = −30, tc = 2, L = 50, δz = 0.1, ρ0 = 1, K0 = 1, and thus
c0 = 1. There is accordingly a stack of 300 layers between the source and the surface.
The (ω, k) space is discretized on a grid with size 256× 4096. The observation points
are O1 = (0, 0, 0), O2 = (5, 0, 0) O3 = (0,−5, 0), O4 = (−10, 0, 0), and O5 = (15, 0, 0).

We first test our code in absence of inhomogeneities σκ = 0. In Figure 4.1a we
plot the recorded signals. All signals have the same shapes and are time-delayed by
the travel-times from the source to the observation points. Eq. (4.1) predicts that
the profiles of the recorded signals should be the second derivative of a Gaussian
(1−2t2/t2c) exp(−t2/t2c), which is almost the case in the numerical simulations. There
is a slight departure (asymmetry) due to the fact that the far-field condition |SOj | �
c0tc is only fulfilled with an accuracy of ∼ 0.1. We can detect the maxima of the
recorded signals. We get T1 = 30.02, T2 = 30.42, T3 = 30.42, T3 = 31.64, and
T4 = 33.56, while the theoretical values should be T1 = 30, T2 = 30.41, T3 = 30.41,
T4 = 31.62, and T5 = 33.54.

We have also performed numerical simulations with two different realizations of
the random medium with σκ = 0.8. In Figure 4.2a we compare the signals recorded
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Fig. 4.1. Signals recorded at the observation points. Picture a: homogeneous medium. Picture
b: random medium, σκ = 0.8 You can observe the resemblance between the two signals up to a time
shift.
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Fig. 4.2. Signals recorded at the observation point 04. Picture a: comparisons between the signal
obtained from a homogeneous medium and the signals obtained from simulations with two different
realizations of the random medium, σκ = 0.8. Picture b: Comparisons between the theoretical front
pulse obtained by the ODA theory and the signals obtained from simulations (and time-shifted by
the user to remove the random time shifts). The front pulse can be seen to be perfectly predicted.

at the same observation point 04, in absence of randomness, and with two different
realizations of the random medium. The recorded signals in presence of randomness
contain a short coherent front signal and a small-amplitude long coda. We can thus
check the ODA theory as the shapes of the recorded signals are obviously determin-
istic in that they do not depend on the particular realization of the medium, while
the coda is changing when the medium is changed. We can even check the ODA
theory quantitatively. In Figure 4.2b we take the signal corresponding to the ho-
mogeneous case, convolute it with the deterministic ODA kernel (4.5), and compare
the convoluted signal with the random recorded signals time-shifted to allow better
comparison. The agreement is indeed excellent. Finally, in Figure 4.1b we plot the
signals recorded at all observation points for the first realization of the medium. We
can detect the maxima of the recorded signals. We get T1 = 30.36, T2 = 30.78,
T3 = 30.78, T3 = 32.0, and T4 = 33.94.

We would like now to invert the data (the arrival times of the pulse fronts) in order
to get the source location and emission time. We first apply the usual deterministic
localization procedure with the five observation points. We minimize the matching
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function

f(x, z, t) =

5∑

j=1

∣∣∣∣
√
|x− xj |2 + z2 − c0(Tj − t)

∣∣∣∣
2

over x ∈ R2, z ∈ R−, and t ∈ R. The minimum is reached at (x̂s, ẑs, t̂s) where (x̂s, ẑs)
is the estimated source location and t̂s is the estimated source emission time. In the
homogeneous case σκ = 0, we have got x̂s = (0, 0), ẑs = −29.95, and t̂s = 0.05.
We can observe a small error with respect to the true position which is compatible
with the numerical accuracy of our simulations. In the random case we have got
x̂s = (0, 0), ẑs = −29.65, and ts = 0.7. We can now observe an error of about 0.5
with respect to the true position which is expected, because in this case γ0 = 0.019
and Var(Tj) = γ0|OjS|2/(2|zs|) ∼ γ0|zs|/2 ∼ 0.5.

Let us now apply an alternative localization procedure taking into account the
random delay. The matching function is

f(x, z, t, η) =
(
1 + αη2

) 5∑

j=1

∣∣∣∣
√
|x− xj |2 + z2(1 + η)− c0(Tj − t)

∣∣∣∣
2

,

with x ∈ R2, z ∈ R−, t ∈ R, and η ∈ (−1, 1). The parameter η models the random
delay according to the asymptotic form (4.6). The regularizing factor 1+αη2 ensures
that the optimization effort is put onto the source localization and not on the random
delay. The parameter α should be chosen by the user, but it can also be helpful to
have a guess of the magnitude of Zs. In our case we expect |Zs| ∼ 0.02 so we have
chosen α = 1000 but the exact value is not critical. In the homogeneous case we get
the same estimated point as the one obtained with the first procedure. In the random
case, with the same data as the ones used for the application of the first procedure,
we have got x̂s = (0, 0), ẑs = −30.1, and t̂s = −0.1 which is better than the estimates
obtained with the first procedure in the random case, and of the same accuracy as
the result obtained in the homogeneous case.

5. Embedded source emitting a stationary random signal. In this section
we assume that the source term ~fε(t) is a stationary random noise. In such conditions
no front pulse can be detected, as the recorded signals are themselves stationary.
However we shall see that the cross-correlation function between the signals recorded
at two observation points gives useful information, in the sense that 1) it depends on
the position of the source and 2) it is statistically stable with respect to the statistical
distribution of the medium and with respect to the statistical distribution of the noise
emitted by the source.

5.1. The cross-correlation function. We assume that we record the pressure
field at two observation points x1 and x2 during some time window. We compute the
cross-correlation function (CCF)

C(t0 + εσ) =

∫ ∞

−∞

po(t,x1)po(t + t0 + εσ,x2)G(t)dt,(5.1)

where G stands for the time window function. For instance, we may think at G(t) =
1[0,T0](t) but we only need G to belong to L1 ∩ L2. Considering the integral repre-
sentation (2.26) of po, we observe that the CCF can be written as the sum of four
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integrals, with crossed terms TgTg, TgRg , RgTg, and RgRg , respectively. Let us con-
sider the first one and take the expectation with respect to the distribution of the
source signal. We get

〈CI〉 (t0 + εσ) =
1

(2π)5ε3

∫
D(ω, κ, κ′)Tg(ω, κ′, zs)Tg(ω, κ, zs)e

iωσei ω
ε

t0

×ei ω
ε
(κ−κ

′)·xs+i ω
ε
(κ′·x1−κ·x2)+i ω

ε
(ζ0(κ)−ζ0(κ

′))zsω4dκ
′dκdω,(5.2)

where

D(ω, κ, κ′) =
1

4

(
I0(κ)

ρ0
κ

1

)
·Ĝ(ω)

(
I0(κ′)

ρ0
κ
′

1

)
×
∫ ∞

−∞

G(t)dt.(5.3)

5.2. The stationary phase. In the integral representation (5.2) we use polar
coordinates (µ, θ) and (µ′, θ′) for κ = µeθ and κ

′ = µ′eθ′ , where we denote by eθ the
unit column vector (cos(θ), sin(θ))T . We also parameterize the observation points x1

and x2 relatively to the source offset: x1 = xs + r1eθ1 , x1 = xs + r2eθ2 . We get

〈CI 〉 (t0 + εσ) =
1

(2π)5ε3

∫
D̃(ω, µ, µ′, θ, θ′)Tg(ω, µ′, zs)Tg(ω, µ, zs)e

iωσ

×ei ω
ε [r1µ′ cos(θ′−θ1)−r2µ cos(θ−θ2)+(ζ0(µ)−ζ0(µ′))zs+t0]ω4µ′µdθdθ′dµ′dµdω,(5.4)

where D̃(ω, µ, µ′, θ, θ′) = D(ω, µeθ, µ
′eθ′). We apply a stationary phase argument.

We find that there exists a stationary map given by

µ′c =
1

c0

r1√
r2
1 + z2

s

, µc =
1

c0

r2√
r2
2 + z2

s

, θ′c = θ1, θc = θ2,

only if t0 − r2µc + zsζ0(µc) + r1µ
′
c − zsζ0(µ

′
c) = 0, which also reads as t0 = tc with

tc =
1

c0

(√
r2
2 + z2

s −
√

r2
1 + z2

s

)
.(5.5)

We then find that, to leading order in ε,

〈CI〉 (tc + εσ) =

∫
DI(ω)Tg(ω, µ′c, zs)Tg(ω, µc, zs)e

iωσω2dω,

where

DI(ω) =
1

(2π)2
1

c2
0

|zs|3
(r2

1 + z2
s )(r2

2 + z2
s)

D̃(ω, µc, µ
′
c, θc, θ

′
c).(5.6)

depends only on ω, x1, x2, and (xs, zs). We get similar expressions for the three other
components of 〈C〉 which depend on the products TgRg, RgTg, and RgRg.

5.3. Statistical distribution with respect to the medium.

5.3.1. Tightness. We first address the tightness of the process.
Lemma 5.1. For any t0 ∈ R, the process (〈CI〉 (t0 + εσ))−∞<σ<∞)ε>0 is a tight

(i.e. weakly compact) family in the space of continuous trajectories.
Proof. We must show that, for any δ > 0, there exists a compact subset K of the

space of continuous bounded functions such that:

sup
ε>0

P(〈CI〉 (t0 + ε·) ∈ K) ≥ 1− δ.
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On the one hand the generalized transmission coefficient can also be rewritten as Tg =
α(−L, zs)/α(−L, 0) = T (−L, 0)/T (−L, zs) which shows that |Tg| ≤ 1 so 〈CI〉 (t0 +εt)
is uniformly bounded by:

| 〈CI 〉 (t0 + εσ)| ≤
∫
|DI(ω)|dω.(5.7)

The right-hand side is a finite quantity because |DI(ω)| ≤ K|Ĝ(ω)| where K depends
only on x1, x2, and (xs, zs) and ω 7→ ω2|Ĝ|(ω) is in L1 by assumption. On the other
hand the modulus of continuity

Mε(δ) = sup
|σ1−σ2|≤δ

| 〈CI 〉 (t0 + εσ1)− 〈CI 〉 (t0 + εσ2)|

is bounded by

Mε(δ) ≤
∫

sup
|σ1−σ2|≤δ

|1− exp(iω(s1 − s2))||DI(ω)|dω,

which goes to zero as δ goes to zero uniformly with respect to ε.

5.3.2. Convergence of the finite-dimensional distributions. The uniform
boundedness (5.7) implies that the finite-dimensional distributions of the process
〈CI 〉 (t0 + ε·) will be characterized by the moments

E[〈CI 〉 (t0 + εσ1)
p1 . . . 〈CI〉 (t0 + εσk)pk ](5.8)

for every real numbers σ1 < . . . < σk and every integers p1, . . . , pk. We have seen that
〈CI (t0 + εσ)〉 is at most of order

√
ε if t0 6= tc, so that its moments are vanishing. We

accordingly address the relevant case t0 = tc.
First moment. The computation of the expectation of 〈CI (tc + εσ)〉 is reduced

to the computation of the expectation of

Uε
g (ω) = Tg(ω, µc, zs)Tg(ω, µ′c, zs).

Using the representation (2.22) of the generalized coefficient Tg in terms of the usual
reflection and transmission coefficients, we obtain the series expansion

Uε
g (ω) =

∞∑

n,m=0

R
n

Rm R̃
n
T̃ R̃

m

T̃ ,

where R
n

is evaluated at (ω, µc,−L, zs), Rm is evaluated at (ω, µ′c,−L, zs), R̃
n
T̃ is

evaluated at (ω, µ′c, zs, 0), and R̃
n

T̃ is evaluated at (ω, µc, zs, 0). As ε → 0 the prop-
agators between −L and zs and between zs and 0 become independent. Accordingly
we shall obtain the limit of E[U ε

g (ω)] as ε → 0 by looking at the limits of E[R
n
Rm]

and E[R̃
n
T̃ R̃

m

T̃ ]. Two cases should be distinguished.
1) If µc 6= µ′c. Let us consider the moment E[R

n
(ω, µc,−L, zs)R

m(ω, µ′c,−L, zs)].
As µc 6= µ′c, it goes to zero if (n, m) 6= (0, 0) (see Appendix A.1). Accordingly the

limit of the expectation of U ε
g (ω) is equal to the limit of E[T̃ (ω, µ′c, zs, 0)T̃ (ω, µc, zs, 0)].

This limit is computed in Appendix A.1 and we get

E[Uε
g (ω)]

ε→0−→ E
[
Teff(ω, µ′c, zs)Teff(ω, µc, zs)

]
,
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where

Teff(ω, µ, zs) = exp

(
i
√

γ(ω, µ)Bzs
+

γ(ω, µ)

2
zs

)
,(5.9)

γ is defined by (4.4), and B is a standard one-dimensional Brownian motion.
2) If µc = µ′c. By using the expressions of the limit values for moments of

reflection and transmission coefficients obtained in Appendix A.2, we get that

E

[
RnR

m
]

ε→0−→
{

0 if m 6= n,
Wn(ω, µc,−L, zs) if m = n,

E

[
R̃

n
T̃ R̃

m

T̃
]

ε→0−→
{

0 if m 6= n,

W̃n(ω, µc, zs, 0) if m = n,

where Wn and W̃n are described in Appendix A.2. We can then deduce that

E[Uε
g (ω)]

ε→0−→ Wg,1(ω, µc, zs),

where

Wg,1(ω, µ, zs) =
∞∑

n=0

Wn(ω, µ,−L, zs)W̃n(ω, µ, zs, 0).(5.10)

In the following we shall neglect this configuration. Indeed it is shown in [1] that the
reflection or transmission coefficients at two nearby slowness vectors are correlated
only if the moduli of these slowness vectors are close to each other at order ε. Accord-
ingly the configuration µc = µ′c happens only if µc = µ′c with an accuracy of order
ε, which means that |O1S| ' |O2S| with an accuracy of the order of the wavelength.
Such a case is so improbable that we can safely neglect it in practical configurations.

Higher-order moments. Let us now consider the general moment (5.8). Using the
representation (5.6) for each factor 〈CI 〉 (tc + εσj), these moments can be written as

multiple integrals over p =
∑k

j=1 pj frequencies:

E [〈CI〉 (tc + εσ1)
p1 . . . 〈CI 〉 (tc + εσk)pk ] =

∫
...

∫
E




∏

1 ≤ j ≤ k

1 ≤ l ≤ pj

Uε
g (ωj,l)




∏

1 ≤ j ≤ k

1 ≤ l ≤ pj

DI(ωj,l)e
iωj,lσj ω2

j,ldωj,l.

If we consider a set of n different frequencies ω1, · · · , ωn, then we get

E




n∏

j=1

Uε
g (ωj)


 ε→0−→ E




n∏

j=1

Teff(ωj , µ
′
c, zs)Teff(ωj , µc, zs)


 ,

where Teff is defined by (5.9). This shows the convergence of the finite-dimensional
distributions of (〈CI 〉 (tc + εσ))−∞<σ<∞ to the ones of the random function

∫
DI(ω)Teff(ω, µ′c, zs)Teff(ω, µc, zs)e

iωσω2dω.
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5.3.3. Convergence of the distribution. We have just established that the
process 〈CI 〉 (t0 + ε·) is tight and that its finite-dimensional distributions converge.
We have thus proved the following proposition

Proposition 5.2. The process 〈CI 〉 (t0+ε·) converges in distribution in the space
of the continuous functions as ε → 0 to 0 if t0 6= tc. If t0 = tc, it converges to

〈CI 〉 (tc + εσ)
ε→0−→(5.11)∫

DI(ω)eiωσ exp

[
i
(√

γ(ω, µ′c)−
√

γ(ω, µc)
)

Bzs
+

γ(ω, µ′c) + γ(ω, µc)

2
zs

]
ω2dω.

Proceeding similarly for the three other components of 〈C〉 which depend on the
products TgRg , RgTg, and RgRg , we get that these three components are vanishing
in the asymptotic framework ε → 0.

5.4. Statistical stability with respect to the source signal. We consider
in this section the second moment of the CCF, where the expectation is taken with re-
spect to the statistical distribution of the stationary source. Using the representation
(2.26) we get that
〈
CI (t0 + εσ)2

〉
=〈CI(t0 + εσ)〉2

+
1

(2π)10ε6

∫
· · ·
∫

D(ω1, κ1, κ4)D(ω2, κ2, κ3)|Ĝ(
ω1 − ω2

ε
)|2

×ei
ω1
ε

[(κ4−κ1)·xs+κ1·x1−κ4·x2+(ζ0(κ4)−ζ0(κ1))zs]ei
ω1
ε

(t0+εσ)

×ei
ω2
ε

[(κ2−κ3)·xs+κ3·x1−κ2·x2+(ζ0(κ2)−ζ0(κ3))zs]ei
ω2
ε

(t0+εσ)

×Tg(ω1, κ1, zs)Tg(ω1, κ4, zs)Tg(ω2, κ2, zs)Tg(ω2, κ3, zs)ω
4
1ω

4
2dκ1dκ2dκ3dκ4dω1dω2.

Applying a stationary phase argument, the most important contribution arises once
again when t0 is equal to tc given by Eq. (5.5), and it is equal to

〈
CI(tc + εσ)2

〉
= 〈CI(tc + εσ)〉2 +

∫ ∫
DI(ω1)DI(ω2)|Ĝ(

ω1 − ω2

ε
)|2

×Tg(ω1, µ
′
c, zs)Tg(ω1, µc, zs)Tg(ω2, µc, zs)Tg(ω2, µ

′
c, zs)ω

2
1ω

2
2dω1dω2.

A straightforward estimate shows that the second term is of order ε because the
integral over (ω1, ω2) ∈ R2 actually reduces to a narrow diagonal band of width ε due
to the |Ĝ(ω1−ω2

ε )|2. This holds true as soon as G belongs to L2, which is the case.
Accordingly, we have shown the following proposition.

Proposition 5.3. The CCF is a self-averaging quantity with respect to the
statistical distribution of the stationary source signal. More exactly,

〈
CI (t0 + εσ)2

〉
− 〈CI (t0 + εσ)〉2 ε→0−→ 0.

5.5. Statement of the result. We can now state the main result of this section.
Proposition 5.4. Let tc be equal to (5.5). If t0 6= tc, then the CCF C(t0 + ε·)

converges to 0. If t0 = tc, then the CCF C(tc + ε·) converges in distribution to a
random function

C(tc + εσ)
ε→0−→

∫
DI(ω)(5.12)

× exp

[
iω

(
1

c0

√
γ0√
2

|O1S| − |O2S|
|zs|

Bzs
+ σ

)
− ω2

(
γ0

4c2
0

|O1S|2 + |O2S|2
|zs|

)]
ω2dω,
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where

DI(ω) =
1

(4πc0)2
|zs|

|O1S|2|O2S|2
(

~O1S·Ĝ(ω) ~O2S
)
×
∫ ∞

−∞

G(t)dt,

and B is a standard Brownian motion that is independent of the observation points.
In other words the CCF has a deterministic shape which is the inverse Fourier

transform of

1

(4πc0)2
|zs|

|O1S|2|O2S|2
(

~O1S·Ĝ(ω) ~O2S
)

exp

(
−ω2T 2

c

2

)
ω2

where

T 2
c =

γ0

2c2
0

|O1S|2 + |O2S|2
|zs|

It is accordingly the convolution of the autocorrelation function of the source signal
with a deterministic kernel. In the case where the source signal is a white noise, i.e.
the power spectral density matrix is constant Ĝ(ω) = Ĝ0, the shape of the CCF is

1

4(2π)3/2c2
0T

5
c

|zs|
|O1S|2|O2S|2

(
~O1S·Ĝ0

~O2S
)

(σ2 − T 2
c ) exp

(
− σ2

2T 2
c

)

The CCF has also a random center. The maximum of the CCF t 7→ C(t) is reached
at

T21 =
1

c0
(|O2S| − |O1S|)

(
1 + ε

√
γ0√
2

1

|zs|
Bzs

)
(5.13)

which is a random time depending on the particular realization of the medium.

5.6. Application to source localization. Assume that we have five observa-
tion points Oj , j = 1, · · · , 5. Our first aim is to compute the source location. From the
recorded signal we are able to detect the maxima of the CCF between Oj , j = 1, · · · , 4
and O5

Tj5 =
1

c0
(|OjS| − |O5S|) (1 + Zs) ,(5.14)

where Zs = ε
√

γ0/2Bzs
/|zs|. The analysis has shown that Zs does not depend on the

observation points. We can propose a way to compute the source location S = (xs, zs)
as well as the random delay Zs that is error-free. The four unknowns satisfy the four
independent relations (5.14) and can thus be inverted from the observed times Tj .

Note that the maxima of the CCF give the position of the source. The determin-
istic shape of the CCF gives the autocorrelation matrix Ĝ of the source. Indeed, once
the source location is known, by a Fourier transform of the CCF we can get for any
frequency ω the value of ~OjS·Ĝ(ω) ~OlS, j, l = 1, · · · , 5.

5.7. Numerical simulations. In this subsection we perform full numerical sim-
ulations to check our theoretical predictions. We consider the same medium as in
Subsection 4.4. The only difference is that the source emits a stationary random
signal with Gaussian statistics and power spectral density ω2 exp(−2ω2).

In Figure 5.1a we plot pieces of the signals recorded at the points O2 and O5. Of
course there is no front pulse as the source and the recorded signals are stationary
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Fig. 5.1. Picture a: Pieces of the signals recorded at the observation points O2 and O5. Picture
b: CCFs between the recorded signals.

random signals. In Figure 5.1b we plot the autocorrelation function of the signal
recorded at O2, as well as the CCF of the two signals recorded at O2 and O5. We
can detect the maxima of the CCFs. We get T12 = 0.42, T13 = 0.42, T14 = 1.64,
T15 = 3.56, T23 = 0, T24 = 1.22, T25 = 3.12, T34 = 1.22, T35 = 3.12, and T45 = 1.90.

If we apply the basic localization procedure considering the matching function

f(x, z) =

4∑

j=1

∣∣∣∣
(√

|x− xj |2 + z2 −
√
|x− x5|2 + z2

)
− c0Tj5

∣∣∣∣
2

,

then we get x̂s = (−0.1, 0) and ẑs = −29.45 (remember the true location is xs = 0
and zs = −30). We next apply our localization procedure taking into account the
random delay. We consider the matching function

f(x, z, η) =
(
1 + αη2

) 4∑

j=1

∣∣∣∣
(√

|x− xj |2 + z2 −
√
|x− x5|2 + z2

)
(1 + η)− c0Tj5

∣∣∣∣
2

.

By minimizing f we get x̂s = 0 and ẑs = −29.98. The accuracy turns out to be
as good as in the case of a source emitting a short pulse. Note that this series of
simulations has a large computational cost. Indeed, we face a difficult situation from
the numerical point of view. First we need a high precision in the locations of the
maxima of the CCF, which requires a fine sampling of the recorded signals with a
very small grid step δt, smaller than the coherence time tc of the source. Second we
need a long time window of duration T0, larger than the coherence time tc of the
source. This long time window insures an efficient ergodic averaging with respect to
the statistical distribution of the source which is necessary for an accurate estimate
of the CCF (Proposition 5.3). We have taken T0 = 2000 and δt = 0.05 (remember
the coherence time is about 4). With this value of T0 we are able to detect the
maximum of the CCF which is well above the noise level (see Figure 4.2b). With this
value of δt, we are able to locate the maximum of the CCF with a precision of about
δt/2. Note that these two problems are specific to the numerical simulations which
should resolve three different time scales (the sampling step, the coherence time of
the source, and the recording time window) as well as three different spatial scales
(the correlation length of the medium, the typical wavelength of the source, and the
typical depth of the source). They are not real problems in practical configurations
addressing physical signals. So we may consider that we have proved the efficiency of
our localization procedure.
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Fig. 6.1. Emission from a point source located at O = (0, 0). The scatterer position is S =
(xs, zs). The signal is recorded at different observation points O1 = (x1, 0), O2 = (x2, 0),....

6. Embedded scatterer illuminated by external sources. The analysis car-
ried out in the previous sections can be extended to the imaging of passive scatterers
embedded in a random half-space and illuminated by a source or a set of sources.

6.1. Illumination by a source emitting a short pulse. A source located at
the surface at (0, 0) emits a short pulse at time 0 of the form

~fε(t) =

(
0
1

)
f(

t

ε
).

In absence of scatterer, the pressure field at the surface is

p0(t,x) =
1

(2π)3ε2

∫
1−R(ω, κ,−L, 0)

2
e−i ω

ε
(t−κ·x)f̂(ω)ω2dωdκ.(6.1)

Applying the same methodology as in Section 4, we get the following proposition.
Proposition 6.1. Let t0 ∈ R and O1 be an observation point at the surface. The

signal detected at O1 converges in probability as

p(t0 + εσ)
ε→0−→ 0,(6.2)

v(t0 + εσ)
ε→0−→ 0,(6.3)

u(t0 + εσ)
ε→0−→




− 1

4πρ0c0|OO1|2
f(σ) if c0t0 = |OO1|,

0 otherwise.
(6.4)

Similarly, the pressure field at the position (xs, zs) inside the medium (zs < 0) is

p0(t,xs, zs) =
1

(2π)3ε2

∫ [
Rg(ω, κ, zs)

2
e−i ω

ε
(t−κ·xs−ζ0(κ)zs)

−Tg(ω, κ, zs)

2
e−i ω

ε
(t−κ·xs+ζ0(κ)zs)

]
f̂(ω)ω2dωdκ.(6.5)

We now consider a scatterer embedded at S = (xs, zs) (see Figure 6.1). We model
this scatterer as a local change in the density of the medium

ρ(x, z) = ρ0 + ρ11B(x, z),

where B is a small domain around S. The system that governs the propagation of
the acoustic waves is

ρ0
∂~u

∂t
+∇p = fε(t)δ(x)δ(z) − ρ11B(x, z)

∂~u

∂t
,(6.6)

1

K(z)

∂p

∂t
+∇·~u = 0.(6.7)
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We apply the Born approximation for the modeling of the scattering by the scatterer
S [23]: the total field at the surface is the superposition of the primary field (~u0, p0)
solution of

ρ0
∂~u0

∂t
+∇p0 = fε(t)δ(x)δ(z),(6.8)

1

K(z)

∂p0

∂t
+∇·~u0 = 0(6.9)

determined here above (p0 is given by (6.5)) and of a secondary field (~u1, p1) which
originates from the emission of a secondary source located in S. The emission of the
secondary source is proportional to the primary field at the position of the scatterer:

ρ0
∂~u1

∂t
+∇p1 = −ρ11B(x, z)

∂~u0

∂t
,(6.10)

1

K(z)

∂p1

∂t
+∇·~u1 = 0.(6.11)

Taking a Fourier transform with respect to the time and the transverse spatial vari-
ables, the secondary system reads

−ρ0
iω

ε
v̂1 + i

ω

ε
κp̂1 = ρ1

iω

ε

∫
v0(t,x, z)1B(x, z)ei ω

ε
(t−κ·x)dtdx,(6.12)

−ρ0
iω

ε
û1 +

∂p̂1

∂z
= ρ1

iω

ε

∫
u0(t,x, z)1B(x, z)ei ω

ε
(t−κ·x)dtdx,(6.13)

− 1

K(z)

iω

ε
p̂1 + i

ω

ε
κ·v̂1 +

∂û1

∂z
= 0.(6.14)

Assuming a point scatterer with scattering cross section ε3σs,

ρ11B(x, z) = ε3ρ0σsδ(x− xs)δ(z − zs),

the total field writes

~u = ~u0 + σs~u1, p = p0 + σsp1,

where (~u1, p1) is solution of

−ρ0
iω

ε
v̂1 + i

ω

ε
κp̂1 = S1,x(ω)e−i ω

ε
κ·xsδ(z − zs),(6.15)

−ρ0
iω

ε
û1 +

∂p̂1

∂z
= S1,z(ω)e−i ω

ε
κ·xsδ(z − zs),(6.16)

− 1

K(z)

iω

ε
p̂1 + i

ω

ε
κ·v̂1 +

∂û1

∂z
= 0,(6.17)

with the secondary source terms given by

S1,x(ω) =
i

(2π)2

∫
κ
′

2

[
Rg(ω, κ′, zs)e

i ω
ε
(κ′·xs+ζ0(κ

′)zs)

−Tg(ω, κ′, zs)e
i ω

ε
(κ′·xs−ζ0(κ′)zs)

]
f̂(ω)ω3dκ

′,(6.18)

S1,z(ω) =
i

(2π)2

∫
ρ0

2I0(κ′)

[
Rg(ω, κ′, zs)e

i ω
ε
(κ′·xs+ζ0(κ′)zs)

+Tg(ω, κ′, zs)e
i ω

ε
(κ′·xs−ζ0(κ′)zs)

]
f̂(ω)ω3dκ

′.(6.19)
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Note that this source term corresponds to the emission of a point source similar to
the embedded source problem (2.1-2.3). Applying a stationary phase argument we

can get a simpler form of the source term ~S1:

~S1 = − ε

(2π)2
ω2π|zs|
c2
0|OS|3

~OS
(
Tg(ω, µ′c, zs)e

i ω
ε

|OS|
c0 −Rg(ω, µ′c, zs)e

−i ω
ε

|OS|
c0

)
f̂(ω),

with µ′c = |xs|/(c0|OS|). We actually keep the integral representation of ~S1 as we
shall apply the stationary phase argument only once the final integral expression of
the observed signal is obtained. Let us consider the secondary pressure field p1 at the
observation point O1 = (x1, 0). We get that p1 consists of four terms. The first one is

p1,I(t0 + εσ,x1) =
1

(2π)5ε

i

4

∫
Tg(ω, κ, zs)Tg(ω, κ′, zs)

(
−I0(κ)κ·κ′

ρ0
+

ρ0

I0(κ′)

)

×e−iωσei ω
ε

φI (κ,κ′)f̂(ω)ω5dκdκ
′dω,(6.20)

where the rapid phase is

φI(κ, κ′) = −t0 + κ·x1 − ζ0(κ)zs − κ·xs + κ
′·xs − ζ0(κ

′)zs.

The three other terms p1,II , p1,III , and p1,IV have similar expressions but with crossed
products RgTg, TgRg , and RgRg , respectively, and rapid phases with different signs
in front of ζ0(κ)zs and ζ0(κ

′)zs.
We take polar coordinates and parameterize xs = |xs|eθs

, x1 = xs + |x1 − xs|eθ̄.
We apply a stationary phase argument and find that there exists a stationary map
given by

µ′c =
1

c0

|xs|√
|xs|2 + z2

s

, µc =
1

c0

|x1 − xs|√
|x1 − xs|2 + z2

s

, θ′c = θs, θc = θ̄,

only if t0 = tc with

tc =
1

c0

(√
|xs|2 + z2

s +
√
|x1 − xs|2 + z2

s

)
=

1

c0
(|OS|+ |O1S|) .(6.21)

We then find that, to leading order in ε,

p1,I(t0 + εσ,x1) =
1

(2π)3
i

4

|zs|
c3
0

~OS· ~SO1

|OS|3|SO1|2

×
∫

Tg(ω, µc, zs)Tg(ω, µ′c, zs)e
−iωσ f̂(ω)ω3dω.(6.22)

We also find that the three other terms p1,II , p1,III , and p1,IV do not have such a
stationary map, so that they bring a contribution to the value of p1 which is at least
of order

√
ε lower than p1,I .

We finally apply the same asymptotic analysis as in Section 5, so as to obtain the
statistical limit of the product Tg(ω, µc, zs)Tg(ω, µ′c, zs). Besides we have established
in Proposition 6.1 that the primary field p0 is vanishing at the surface. Combining
these results we establish the following proposition.

Proposition 6.2. Let tc be equal to (6.21). If t0 6= tc, then the pressure field
p(t0 + ε·) at the observation point O1 = (x1, 0) converges to 0. If t0 = tc, then the
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pressure field converges in distribution to a random function

p(tc + εσ)
ε→0−→ 1

(2π)3
i

4

σs|zs|
c3
0

~OS· ~SO1

|OS|3|SO1|2
(6.23)

×
∫

f̂(ω) exp

[
iω

(
1

c0

√
γ0√
2

|OS|+ |SO1|
|zs|

Bzs
− σ

)
− ω2

(
γ0

4c2
0

|OS|2 + |SO1|2
|zs|

)]
ω3dω,

where B is a standard Brownian motion that is independent of the observation point.
This means that the field at the observation point has a deterministic shape given by
the inverse Fourier transform of

1

(2π)3
i

4

σs|zs|
c3
0

~OS· ~SO1

|OS|3|SO1|2
f̂(ω) exp

[
−ω2

(
γ0

4c2
0

|OS|2 + |SO1|2
|zs|

)]
ω3.

This deterministic shape is thus the convolution of the original pulse shape of the
source with a deterministic kernel. The field has also a random center that is given
by

T1 =
1

c0
(|OS|+ |O1S|)

(
1 + ε

√
γ0√
2

1

|zs|
Bzs

)
(6.24)

Note that the pressure field consists only on the scattered field σsp1, as we have
proved in Proposition 6.1 that the primary field generated by the source is a pure
longitudinal velocity field at the surface. Concerning the longitudinal velocity field,
we have the following result.

Proposition 6.3. If c0t0 6∈ {|OO1|, |OS| + |OO1|}, then the field u(t0 + ε·) at
the observation point O1 = (x1, 0) converges to 0. If c0t0 = |OO1|, then the field
u(t0 + ε·,x1, 0) converges in probability to the deterministic function

u(t0 + εσ)
ε→0−→ − 1

4π2ρ0c0|OO1|2
f(σ)

If c0t0 = |OS| + |SO1|, then the field u(t0 + ε·,x1, 0) converges in distribution to a
random function

u(t0 + εσ)
ε→0−→ 1

(2π)3
i

4

σsz
2
s

ρ0c4
0

~OS· ~SO1

|OS|3|SO1|3
(6.25)

×
∫

f̂(ω) exp

[
iω

(
1

c0

√
γ0√
2

|OS|+ |SO1|
|zs|

Bzs
− σ

)
− ω2

(
γ0

4c2
0

|OS|2 + |SO1|2
|zs|

)]
ω3dω

where B is a standard Brownian motion that is independent of the observation point.
The first time (t0 = |OO1|/c0) corresponds to the arrival time of the direct primary
field. The second time (t0 = (|OS| + |SO1|)/c0) corresponds to the expected arrival
time of the secondary scattered field.

Assume that we have four observation points Oj , j = 1, · · · , 4. From the recorded
signals we are able to detect the four arrival times Tj of the secondary front pulses
for each observation point Oj , j = 1, · · · , 4,

Tj =
1

c0
(|OjS|+ |OS|) (1 + Zs) ,(6.26)

with Zs = ε
√

γ0/2Bzs
/|zs|. The analysis has shown that Zs does not depend on the

observation points. We can propose a way to compute the scatterer location that is
error-free. Indeed, the scatterer location S and the random delay Zs satisfy the four
independent relations (6.26) and can thus be inverted from the arrival times Tj .
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6.2. Illumination by a source emitting a stationary random signal. A
source located at the surface at (0, 0) emits a stationary random signal of the form

~fε(t) = ε
1
2

(
0
1

)
f(

t

ε
),

where f is a stationary random process with power spectral density Ĝ

f(t) =
1√
2π

∫ √
Ĝ(ω)eiωtdWω .

Wω a C-valued Gaussian process

Wω =
W 1

ω + W 1
−ω

2
+ i

W 2
ω −W 2

−ω

2

where W 1 and W 2 are two independent one-dimensional Brownian motions. In ab-
sence of scatterer, the pressure field at the surface is

p0(t,x) =
1

(2π)
5
2 ε

3
2

∫
1−R(ω, κ,−L, 0)

2
e−i ω

ε
(t−κ·x)

√
Ĝ(ω)ω2dκdWω .(6.27)

The field at a position (xs, zs) inside the medium (zs < 0) is

p0(t,xs, zs) =
1

(2π)
5
2 ε

3
2

∫ [
Rg(ω, κ, zs)

2
e−i ω

ε
(t−κ·xs−ζ0(κ)zs)

−Tg(ω, κ, zs)

2
e−i ω

ε
(t−κ·xs+ζ0(κ)zs)

]√
Ĝ(ω)ω2dκdWω .(6.28)

We now consider a scatterer embedded at S = (xs, zs). Applying the Born
approximation, the total field at the surface is the superposition of the primary field
p0 given by (6.27) and of the secondary field which originates from the emission of
the secondary source located in S. We consider in this section the CCF of the signals
recorded at two observation points O1 and O2 located at the surface:

C(t0 + εσ) =

∫
p(t,x1, 0)p(t + t0 + εσ,x2, 0)G(t)dt(6.29)

for some cut-off function G. Using the same methodology as in Section 5 we prove
the following proposition.

Proposition 6.4. Let tc be equal to

tc =
1

c0
(|SO2| − |SO1|) .(6.30)

If t0 6= tc, then the CCF converges to 0. If t0 = tc, then the CCF converges in
distribution to a random function

C(tc + εσ)
ε→0−→ 1

16(2π)5
σ2

s |zs|2
c6
0

~OS· ~SO1
~OS· ~SO2

|OS|6|SO1|2|SO2|2
Ḡ(6.31)

×
∫
Ĝ(ω) exp

[
iω

(
1

c0

√
γ0√
2

|SO1| − |SO2|
|zs|

Bzs
+ σ

)]
K(ω)dω,
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where Ḡ =
∫

G(t)dt, B is a standard Brownian motion that is independent of the
observation point,

K(ω) = exp

[
−ω2

(
γ0

4c2
0

|SO2|2 + |SO1|2
|zs|

)]
×Wg,1

(
ω,

1

c0

|xs|
|OS| , zs

)
ω6,

and Wg,1 is given by (5.10).
This means that the CCF has a deterministic shape given by the inverse Fourier

transform of

1

16(2π)5
σ2

s |zs|2
c6
0

~OS· ~SO1
~OS· ~SO2

|OS|6|SO1|2|SO2|2
Ĝ(ω)K(ω)Ḡ.

This deterministic shape is thus the convolution of the original power spectral density
of the source with a deterministic kernel. Note that the kernel is more complicated
than the ones that have been exhibited in the previous sections, because it involves
the expectation of a product of the form Tg(µ

′
c, ω)Tg(µc, ω)Tg(µc, ω)Tg(µ

′′
c , ω) with

µ 6= µ′c 6= µ′c. The presence of two correlated generalized transmission coefficients
(those with the same µ) is the origin of the complicated kernel. The CCF has also a
random center that is given by

T21 =
1

c0
(|O2S| − |O1S|)

(
1 + ε

√
γ0√
2

1

|zs|
Bzs

)
.(6.32)

The procedure to identify the scatterer location is the same as the one described in
Subsection 5.6 and requires the CCF between five observation points, Oj , j = 1, · · · , 5.
By observing the maxima Tj5 of the CCF between Oj and O5, we get the scatterer
location S and the random delay by inverting the four relations

(|OjS| − |O5S|)(1 + Zs) = c0Tj5, j = 1, · · · , 4.

6.3. Illumination by a set of random sources. We assume in this section a
series of sources located at the surface and generating random signals. These signals
are assumed to be independent and the positions of the sources are denoted by Sj =
(xsj , 0), j = 1, · · · , n. The total source term is therefore

~Fε(t,x, z) = ε
1
2

n∑

j=1

(
0
1

)
fj(

t

ε
)δ(x − xsj)δ(z),

where fj are independent processes with power spectral densities Ĝj . The results
obtained in the previous subsection can be readily extended to this configuration. We
consider a scatterer located in S = (xs, zs) and two observation points O1 = (x1, 0)
and O2 = (x2, 0). We compute the CCF defined by (6.29).

Proposition 6.5. Let tc be equal to (6.30). If t0 6= tc, then the CCF C(t0 + ε·)
converges to 0. If t0 = tc, then the CCF C(tc + ε·) converges in distribution to a
random function

C(tc + εσ)
ε→0−→ C(σ − T ),(6.33)

whose shape is deterministic but the center is randomly shifted. The shape is

C(σ) =
1

16(2π)5
σ2

s |zs|2
c6
0

n∑

j=1

~SjS· ~SO1
~SjS· ~SO2

|SjS|6|SO1|2|SO2|2
Ḡ

∫
Ĝj(ω)eiωσKj(ω)dω,
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with Ḡ =
∫

G(t)dt,

Kj(ω) = exp

[
−ω2

(
γ0

4c2
0

|SO2|2 + |SO1|2
|zs|

)]
×Wg,1

(
ω,

1

c0

|xsj − xs|
|SjS|

, zs

)
ω6,

and Wg,1 is given by (5.10). The random center is

T =
1

c0

√
γ0√
2

|SO2| − |SO1|
|zs|

Bzs
,

where B is a standard Brownian motion that is independent of the observation point.
We could consider a series of sources located at the surface or inside the medium

emitting more complicated signals. This would modify the deterministic shape of
the CCF, but not the statistical properties of the center of the CCF. Accordingly
the imaging procedure proposed in the previous subsection can be applied to the
detection of an embedded object by cross-correlating the random noises recorded at
five observation points.

7. Conclusion. In this paper we have analyzed the statistical properties of the
signal recorded at the surface and emitted by a source embedded in a randomly
layered half-space. We have proposed a procedure to locate the source that removes
the random components introduced by the multiple scattering in the medium and
thus allows an exact localization without knowing the medium. We have extended
this work for the imaging of passive scatterers embedded in a random half-space and
illuminated by a source located at the surface or simply by random noise generated
by a set of unknown sources. We have shown that the cross-correlation function of
the noisy signals recorded at two observation points on the surface can be used to
retrieve information about ballistic motion. This information can be processed for
imaging. We have proved that the method is stable with respect to the statistical
distribution of the medium and with respect to the statistical distribution of the
noisy sources. It enables a passive way of imaging an unknown medium by using only
background noise. For instance, we may think that it could provide a way of building
“pseudo-seismograms” in geophysics where controlled active sources are difficult to
achieve.
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Appendix A. Statistical properties of the reflection and transmission
coefficients.

A.1. Moments at different slowness vectors. The values of the moments
of the transmission coefficient at different slowness vectors is required in Section 5.3.
Let us consider z0 < z1, a frequency ω, and n + n′ different slowness vector moduli
κ1 6= ... 6= κn 6= κ′1 6= ... 6= κ′n′ . The computation of the limits of the moments

lim
ε→0

E




n∏

j=1

T (ω, κj , z0, z1)

n′∏

j=1

T (ω, κ′j , z0, z1)




has been carried out in [9]. It is found that the limits are

E




n∏

j=1

Teff(ω, κ1, z0, z1)

n′∏

j=1

Teff(ω, κ′j , z0, z1)


 ,
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where

Teff(ω, κ, z0, z) = exp

(
i
√

γ(ω, κ)(Bz0 −Bz) +
γ(ω, κ)(z0 − z)

2

)
,

and B is a standard one-dimensional Brownian motion. The same computation carried
out with the reflection coefficient leads to the limit

lim
ε→0

E




n∏

j=1

R(ω, κj , z0, z1)

n′∏

j=1

R(ω, κ′j , z0, z1)


 = 0.

A.2. Moments with the same slowness vector. As shown in [1, 7] we have,
for z0 ≤ z,

E

[
Rn(ω, κ, z0, z)R

m
(ω, κ, z0, z)

]
ε→0−→

{
Wn(ω, κ, z0, z) if m = n,
0 otherwise,

where the quantity Wn is obtained through the following system of equations:

∂Wn

∂z
= γ(ω, κ)n2 (Wn+1 + Wn−1 − 2Wn) ,

Wn(ω, κ, z0, z = z0) = 10(n).

Denoting U ε
j = R(ωj , µj , z0, z)R(ωj , µj , z0, z), it is shown in [7] that for two distinct

frequencies ω1 6= ω2 or for distinct µ1 6= µ2 we have

|E [Uε
1Uε

2 ]− E [Uε
1 ] E [Uε

2 ]| ε→0−→ 0.(A.1)

This decorrelation property is used in Section 5.3 to deduce the self-averaging property
of the refocused pulse. Cross-moments of transmission and reflection coefficients are
also required in Section 5.3. Using once again the results contained in [1], we get that

E
[
RnT (ω, κ, z0, z)RmT (ω, κ, z0, z)

] ε→0−→
{

W̃n(ω, κ, z0, z) if m = n,
0 otherwise,

where the quantity W̃n is obtained through the following system of equations:

∂W̃n

∂z
= γ(ω, κ)

(
(n + 1)2W̃n+1 + n2W̃n−1 − (n2 + (n + 1)2)W̃n

)
,

W̃n(ω, κ, z0, z = z0) = 10(n).
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