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Generation of a pure phase-modulated pulse by
the cascading effect: a theoretical approach
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New techniques to produce spatiotemporal phase modulation without the use of electro-optic devices are pro-
posed and discussed. By using the nonlinear second-order effect in crystal it is possible to change the ampli-
tude modulation of a pump wave into the phase of a signal wave. To that end, we propose the use of a well-
known cascading configuration for which the phase mismatch is high. Analytical results of spatial and
temporal incoherent phase modulation are developed with the correlation function formalisms. Furthermore,
highly accurate expansions of signal phase and intensity are derived. The effects of group-velocity difference,
group-velocity dispersion, and diffraction on the change of amplitude into phase modulation are studied. Fi-
nally, an experimental demonstration of a KDP crystal with a sinusoidal pump modulation that creates sinu-
soidal phase modulation is proposed. © 2000 Optical Society of America [S0740-3224(00)01805-1]
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1. INTRODUCTION
The development of high-power laser chains has been
studied extensively, especially for inertial confinement fu-
sion. For the French Laser MegaJoule project1 and for
the U.S. National Ignition Facility project,2 a major issue
is uniformity of illumination of the target.3 A direct-
drive scheme requires a contrast level of less than 5% per
beam, which can be obtained only with two-dimensional
optical smoothing techniques4 such as smoothing by an
optical fiber5 and two-dimensional smoothing by spectral
dispersion.6 The former technique can easily achieve
this level, but with large amplitude modulation all along
the laser chain. It produces nonlinear effects caused by
propagation, amplification, or frequency conversion that
reduce laser performance.7 In particular, frequency-
conversion efficiency drops dramatically, and the focal
spot is poorly controlled at the third harmonic. Two-
dimensional smoothing by spectral dispersion, however,
involves fewer difficulties for the laser. In particular, the
frequency-conversion efficiency is not reduced by ampli-
tude modulation. Furthermore, the broadband spectrum
is produced by a sinusoidal phase modulator with a lim-
ited bandwidth and above all with coherent phase modu-
lation. As a result, all spatial frequencies are not
smoothed by this periodic coherent phase modulation.4

Here we propose and analyze new smoothing tech-
niques that involve the cascading effect. An important
0740-3224/2000/061008-10$15.00 ©
objective in this paper is to propose the transformation of
incoherent amplitude modulation of a pump beam into
the phase of a monochromatic plane-wave signal. We
use nonlinear cascaded processes that create crossed
phase modulation without efficient energy transfer.8–10

With this technique we should be able to produce tempo-
ral or spatial incoherent phase modulation.

In Section 2 we describe the mechanisms that we in-
tend to use, such as a random temporal phase modulator
and a temporally varying random phase plate. In Sec-
tion 3 we present theoretical results by developing ana-
lytical calculations of the nonlinear phase. In particular,
we explain behavior reported by other authors. In Sec-
tion 4 we present statistical results for the correlation
function that take into account temporal limitations such
as group-velocity dispersion (GVD) and group-velocity
walk-off (GVW). Finally, in Section 5 we present a sinu-
soidal phase-modulator setup.

2. PHASE MODULATION BY CASCADING
A. Principles
We wish to generate pure random phase modulation with
an incoherent amplitude-modulated wave. This wave is
the pump wave, the phase-modulated wave is the signal
wave. Throughout this paper the input signal wave is
assumed to be a monochromatic plane wave. By using a
2000 Optical Society of America
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nonlinear crystal we make the two waves interact to pro-
duce a harmonic wave. Furthermore, in specific condi-
tions the pump wave induces only nonlinear phase modu-
lation in the signal wave.8,9 As the crystal is far from
being in a phase-matching condition, there is no fre-
quency conversion, and the signal wave is not amplitude
modulated. Figure 1 shows schematically the transfor-
mation of amplitude modulation into pure phase modula-
tion. We call this two-wave interaction a type II configu-
ration, because the two waves have perpendicular
polarization. If the pump depletion is negligible, we have
an approximate result for the nonlinear phase because of
the interaction of the signal wave11:

fNL~x, y, t ! 5 2
2Ip~x, y, t !L

DkPc
, (1)

where L is the crystal length, Ip is the pump intensity, Dk
is the phase mismatch, and

Pc 5
e0cnsnpnhlslp

8p2deff
2 , (2)

where ns,p,h are, respectively, the signal wave, the pump
wave, and the harmonic wave; ls is the signal wavelength
and lp is the pump wavelength; and deff is the nonlinear
coefficient. The phase is proportional to the pump inten-
sity, so we can consider the two-wave interaction to be a
nonlinear Kerr effect12 for a signal wave characterized by
the nonlinear coefficient n2 5 2/k0DkPc . At the output
of the crystal, the signal wave has a modulated phase that
is proportional to the pump amplitude modulation,
whereas its amplitude is not changed. With this method
we can generate an incoherent phase modulator in the
temporal domain, an incoherent phase plate in the spatial
domain, or a time-varying phase plate in the spatiotem-
poral domain. In fact, this method is the same as that of
cross modulation but it is an extension into the spatial do-
main with a nonlinear technique that permits many con-
figurations to exist and is certainly more efficient. To
study the statistical properties of the signal wave, we in-
troduce in Subsection 2.B the correlation functions of the
pump and the signal waves.

B. Statistical Characteristics of the Incoherent Phase
Modulator, the Incoherent Phase Plate, and the
Time-Varying Phase Plate
In fact, the results for the three phase-plate schemes are
the same in terms of statistical calculations. So all the
results obtained for the temporal domain are valid for the
spatial domain. In what follows, we use the temporal
variable, but this is an arbitrary choice. In this way we

Fig. 1. Schematic of the setup for the conversion of amplitude
modulation into phase modulation.
assume that the pump wave is a partially coherent pulse
characterized by its correlation function fp(t)
5 Ip

21^Ep(0)Ep* (t)&, where Ip is the average intensity
^EpEp* &. By the Wiener–Khintchine theorem13 we can
deduce the spectral intensity Ĩp(n) of the pump from the
Fourier transform of fp(t):

Ĩp~n! 5 E
2`

1`

fp~t !exp~22ipnt !dt. (3)

For example, we may assume a Gaussian-type correlation
function for the pump field:

fp~t ! 5
1

Ip
^Ep~0 !Ep* ~t !& 5 exp~2t2/2tc

2!, (4)

Ĩp~n! 5 Ĩp exp~2n2/2nc
2!, (5)

where tc is the coherence time and nc is the spectral band-
width equal to (2ptc)

21. Using Eq. (1) for the nonlinear
phase and assuming that the signal amplitude is equal to
1, we find that the correlation function of the signal wave
is14

fs~t ! 5
1

1 1 B~L !2@1 2 f p
2~t !#

, (6)

where B(L) is the positive averaged phase:

B~L ! 5
2IpL

DkPc
. (7)

With a simple Fourier transform, we also have the spec-
tral intensity of the signal wave, which has two parts, a
Dirac function and a continuous function, whose respec-
tive weights are a 5 @1 1 B(L)2#21 and (1 2 a):

Ĩ s~n! 5 E
2`

1`

fs~t !exp~22ipnt !dt

5 ad ~n! 1 ~1 2 a!Is
c̃~n!, (8)

with

Is
c̃~n! 5 E

2`

1` f p
2~t !

1 1 B~L !2@1 2 f p
2~t !#

exp~22ipnt !dt. (9)

We have plotted in Fig. 2 the correlation functions and
the spectral intensity of the signal wave for B 5 1 and
B 5 2. We have also plotted the input functions as ref-
erences. We can see that the signal spectrum width is
larger than that of the pump, even for B 5 1. By this
technique, we can generate an incoherent phase modula-
tor and control its characteristics by choosing an efficient
correlation function shape and a suitably averaged phase
B(L).

As we said above, these results are available in the spa-
tial domain. We have only to replace temporal variable
(t) by spatial transverse variables (x, y) and the coherence
time by the correlation radius. If we focus the wave
through a lens, we obtain a focal spot that is a speckle
pattern15 as a result of phase interferences. The enve-
lope of the spot is exactly the spectral intensity of the sig-
nal wave, and its correlation radius (different from that of
the signal wave) is defined only by the focal length and
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the geometry of the whole beam. A limit of the system
appears here in the control of the focal spot’s shape.

For the time-varying phase plate we have a signal
wave with temporal and spatial modulation. We can con-
sider that the generated phase plate is moving during the
laser coherence time; the correlation function should be
generalized with (t) replaced by (x, y, t).

After this description of the three kinds of phase modu-
lator with the cascading effect, we now develop calcula-
tions for nonlinear phase and amplitude modulation for
the signal wave.

3. THEORETICAL RESULTS IN THE
CASCADING CONFIGURATION
In Section 2 we used a phase expression [Eq. (1)] that we
obtained by neglecting pump depletion and cubic nonlin-
earity. In this section we take into account the complete
system of frequency-conversion equations and develop
analytical results for a small parameter g21 defined with
crystal and laser parameters that characterizes the phase
mismatch (the smaller g21, the larger the phase mis-

Fig. 2. (a) Correlation function and (b) spectral intensity for the
signal and the pump waves. Solid curves, pump functions;
dashed curves, signal wave for B 5 1; dotted curves, signal wave
for B 5 2. The pump correlation function is a Gaussian func-
tion with a coherence time tc of 1 ps. We removed the Dirac
function from the spectra.
match). We continue to neglect the effects of cubic non-
linearity because we assume here that it has an insignifi-
cant influence on nonlinear phase modulation.

A. Derivation of the Main Results
Frequency conversion entails three coupled equations, for
signal wave Es , pump wave Ep , and harmonic wave Eh .
We normalized the equations such that intensity Ij is sim-
ply the square modulus of Ej . Electric field Ej is then
given by

Ej 5 F 1

2n~v j!ce0
G1/2

Ej expi~kj z 2 v j t ! 1 c.c. (10)

In this section we assume that the waves follow the
frequency-conversion equations for monochromatic plane
waves. In particular, we remove temporal or diffraction
effects. Then the normalized fields can be described by
the following system of equations16:

]Es

]z
5 iAvs

vp

1

APc

Ep* Eh exp~iDkz !,

]Ep

]z
5 iAvp

vs

1

APc

Es* Eh exp~iDkz !,

]Eh

]z
5 i

vh

Avpvs

1

APc

EpEs exp~2iDkz !, (11)

where v j are the frequencies of the waves, Dk is the
phase mismatch, and Pc is given by Eq. (2). We can solve
these equations and obtain analytical results for the
phase and the amplitudes of the three waves. We focus
here on the case without an initial harmonic wave, and
the results are given in Appendix A. We expanded the
intensity and the phase up to the third order of g21,
where g 5 PcDk2/It and It is the sum of the three inten-
sities. It is interesting to consider expansion to first or-
der of the phase and the intensity, assuming that the in-
put phases are null. We put Ej 5 AIj exp ifj and find
that

Is,p~z ! 5 Is0, p0 2
8Is0Ip0

PcDk2 sin2@f~z !#, (12)

fs,p~z ! 5 2
2Ip0,s0

PcDk2 $Dkz 2 sin@2f~z !#%, (13)

where f(z) is given by Eq. (A8) below and can be ex-
panded at first order as f(z) 5 (Dkz/2)(1 1 4g21).
These calculations are valid for a type II configuration
with two waves, a signal wave and a pump wave. There-
fore we have similar expressions if we have a single wave
at the input. In this case, we assume that the input
wave has an intensity Ii . Then we merely have to re-
write Eqs. (12) and (13), taking into account that Is 5 Ip
5 Ii/2, and It 5 Ii . We find the following expansions
for this type I configuration (one input wave):
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Ii~z ! 5 Ii 2
4Ii

2

PcDk2 sin2@ f~z !#, (14)

f i~z ! 5 2
Ii

PcDk2 $Dkz 2 sin@2f~z !#%. (15)

B. Comparison of Expansions and Analytical Results
With these formulas we can retrieve numerical results
when the parameter g21 is small. For instance, we stud-
ied a type I configuration in which the pump and the sig-
nal waves have equal intensities. In the case corre-
sponding to Fig. 3, we have g 5 36 and a maximum
nonlinear phase of 0.7 rad. The solid curves are the ref-
erence curves that we obtained with a numerical code
that solved the system of Eqs. (11), whereas the dotted
curves correspond to the first-order calculation and the
dashed curves correspond to the second-order calculation.
The behavior of the phase is well known, with a sinu-
soidal part in addition to a linear slope.8,11 But the first-
order expansion of the phase predicts this behavior with
good accuracy. Furthermore, it would be relevant to use

Fig. 3. (a) Nonlinear phase and (b) intensity depletion as func-
tions of the ratio z/L in a type I configuration. Solid curves, nu-
merical results; dotted curves, obtained with a first-order expan-
sion; dashed curves, obtained with a second-order expansion.
L 5 1 cm, I 5 25 GW/cm2, Pc 5 1 GW, Dk 5 30 cm21.
the second-order expansion (see Appendix A) for devices
that require the nonlinear phase to be produced with high
precision.

We also studied a type II configuration. In Fig. 4 the
signal wave has an intensity that is much lower than that
of the pump wave, and the nonlinear phase and the signal
depletion are plotted as functions of the pump intensity.
For the maximum plotted pump intensity, the parameter
g is equal to 40. The second-order results are similar to
the numerical results, whereas there is a small difference
when we use only the first-order expansion. So we have
good agreement between expansions and numerical re-
sults. The nonlinear phase is then almost proportional
to the pump intensity that is required for the three con-
figurations that we proposed in Section 2. The resultant
amplitude modulations here are less than 6% for the sig-
nal wave. So we have a good prediction of the nonlinear
phase and the signal depletion that will be produced. We
have shown that in certain conditions the nonlinear
phase is linearly dependent on the pump intensity, which
was our assumption in Section 2. g21 is consequently a
relevant parameter with which to verify this assumption.

Fig. 4. (a) Nonlinear phase and (b) intensity depletion of the
signal wave as functions of the pump intensity in a type II con-
figuration. Solid curves, numerical results; dotted curves, ob-
tained with a first-order expansion; dashed curves, obtained with
a second-order expansion. L 5 1 cm, Is0 5 0.1 GW/cm2, Pc
5 1 GW, Dk 5 40 cm21.
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4. ESTIMATIONS OF DIFFERENT
LIMITATIONS
In Section 2 we described the correlation function of the
signal wave. We assumed that the frequency-conversion
equations for monochromatic waves were valid in our con-
figurations. In fact, such is not true if the coherence time
is of the order of several picoseconds. We now study the
effects of temporal limitations. In Subsection 4.A we
take into account the GVW and in Subsection 4.B we deal
with the GVD. Indeed, in Subsection 4.C we show simi-
lar results in spatial domain.

A. Group-Velocity Walk-Off
The system of coupled equations for the three interacting
waves is not the same as Eqs. (11) if we take into account
GVW. It must be changed into the following system,
which is written in the pump moving-time pulse frame17:

]Es

]z
5 2Ds

v
]Es

]t
1 iAvs

vp

1

APc

Ep* Eh exp~iDkz !,

]Ep

]z
5 iAvp

vs

1

APc

Es* Eh exp~iDkz !,

]Eh

]z
5 2Dh

v
]Eh

]t
1 i

vh

Avpvs

1

APc

EpEs exp~2iDkz !, (16)

where Ds
v 5 (vs

g)21 2 (vp
g)21 and Dh

v 5 (vh
g )21 2 (vp

g)21,
with (vg)21 5 ]k/]v. When the phase mismatch and
the pump intensity are strong enough, we can apply the
homogenization theorem (see Appendix B), which estab-
lishes that the pump wave is unperturbed and that the
signal wave follows the effective equation

]Es~z, t !

]z
5 2Ds

v
]Es~z, t !

]t
2 i

2Ip~z, t !

DkPc
Es~z, t !, (17)

whose solution is Es(z, t) 5 exp if (z, t), with

f~z, t ! 5 2
2

DkPc
E

0

z

Ip~t 2 Ds
vz8!dz8. (18)

Note that the harmonic group-velocity difference does not
appear in the effective equation for the signal wave. The
signal amplitude is unperturbed; there is only a phase av-
erage. It is not possible to derive a closed-form expres-
sion for the signal correlation function from Eq. (18).
Nevertheless, we can expand the expression with respect
to Ds

vztc
21!1 and find that

fs~t ! 5 fs0~t !H 1 1
Ds

v2z2

6tc
2 B~z !2f s0

2 @ g1~t/tc!

1 B~z !2g2~t/tc !#J 1 OF S Ds
vz

tc
D 3G , (19)

where fs0 is the signal correlation function without GVW
[Eq. (6)] and f̃p is the normalized correlation function of
the pump field:
f̃p~u ! 5 fp~utc!,

g1~u ! 5 2f̃ p9~0 ! 1 f̃ p8
2~u ! 1 f̃pf̃ p9~u !,

g2~u ! 5 f̃ p9~0 !@ f̃ p
2~u ! 2 1# 1 f̃ p8

2~u ! 1 f̃pf̃ p9~u !

1 3 f̃ p
2 f̃ p8

2~u ! 2 f̃ p
3 f̃ p9~u !.

The expression for the spectral intensity is the same as
Eq. (8); the parameter a is now

Ĩ s~n! 5 E
2`

1`

fs~t !exp~22ipnt !dt

5 ad ~n! 1 ~1 2 a!Is
c̃~n!,

a 5
1

1 1 B~L !2 F1 2
Ds

n2L2

6tc
2

B~L !2

1 1 B~L !2 f̃ p9~0 !G . (20)

Because f̃ p9(0) is always negative @ f̃p(0) is a maximum
point], the continuous contribution to the signal spectral
intensity is reduced compared with that of the Dirac func-
tion. So the effects of the GVW are a spectral narrowing
and a broadening of the correlation function. For ex-
ample, we studied this effect with case B 5 2 as shown in
Fig. 2 by adding a nonzero group-velocity difference. We
have plotted in Fig. 5 the case when B2Ds

n2z2/6tc
2 5 0.2.

We can notice the broadening of the correlation function,
whereas the spectral intensity is narrower. In fact, the
main perturbation in the spectrum is on the wings, which
decrease quickly. Indeed, the phase average that is due
to the group-velocity difference in Eq. (18) is more impor-
tant for high frequencies than for low frequencies.

B. Effects of Group-Velocity Dispersion
For short coherence times (a few picoseconds), another
main temporal limitation is the GVD. The system of
Eqs. (11) then can be written as

]Es

]z
5 2iss

]2Es

]t2 1 iAvs

vp

1

APc

Ep* Eh exp~iDkz !,

]Ep

]z
5 2isp

]2Ep

]t2 1 iAvp

vs

1

APc

Es* Eh exp~iDkz !,

]Eh

]z
5 2ish

]2Eh

]t2 1 i
vh

Avpvs

1

APc

EpEs exp~2iDkz !,

(21)

where s i 5 @k9(v i)/2#. Applying the homogenization
theorem, we find that Es follows a new effective equation:

]Es~z, t !

]z
5 2iss

]2Es~z, t !

]t2 2 i
2Ip~z, t !

DkPc
Es~z, t !, (22)

which shows that only the signal GVD has to be taken
into account. We cannot find a closed equation for Es ,
but we can expand solutions for a small GVD effect
(u ssz/tc

2u!1). Then the correlation function of the signal
wave is given by the following relation:
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fs~t ! 5 fs0~t !H 1 2
2ssL

3tc
2 B~L !3 f̃ p9~0 !@1

2 f̃p~t/tc!
2#fs0~t !J 1 OF S ssL

tc
2 D 2G . (23)

Weight a of the Dirac function in the spectral intensity
is then equal to

a 5
1

1 1 B~L !2 F1 2
2ssL

3tc
2

B~L !3

1 1 B~L !2 f̃ p9~0 !G . (24)

If ss . 0 (normally dispersive media), the correlation
function is larger and the spectral intensity is narrower.
However, when ss , 0 (anomalous dispersive media), the
spectrum is broadened and the correlation function is
narrowed. These effects are enhanced by the B param-
eter because of the factor B3/(1 1 B2), which is growing.
Furthermore, the GVD produces amplitude modulations
in addition to the phase modulations. Because the corre-
lation function at point t 5 0 is unchanged, the average
intensity is the same. These amplitude modulations are
characterized by contrast Cs(L) of the signal wave, de-
fined by the identity

Fig. 5. (a) Correlation function and (b) spectral intensity for the
signal wave in the same configuration as Fig. 2. Solid curves,
without the group-velocity difference effect; dotted curves,
B2Ds

v2z2/6tc
2 5 0.2.
Cs
2~L ! 5

^uEsu4& 2 ^uEsu2&2

^uEsu2&2 . (25)

We find the following expansion for this parameter:

Cs~L ! 5 B~L !
u ssuL

tc
2 @3/2f̃ p9~0 !2 1 2 f̃ ~4 !~0 !#1/2

1 OF S ssL

tc
2 D 2G . (26)

C. Spatial Limitations
All the results obtained above could be used in this sec-
tion for the spatial limitations, such as angular walk-off
and diffraction, that may be encountered. The angular
walk-off is similar to the GVW; the diffraction, to the
GVD. In this subsection we simply have to define the
spatial correlation function fp(x, y):

fp~x ! 5
1

Ip
^Ep~0,0!Ep* ~x, y !& 5 exp@2~x2 1 y2!/2rc

2#,

(27)

where rc is so-called the correlation radius.

1. Effects of Angular Walk-Off
Taking angular walk-off into account, we can rewrite the
system of Eqs. (11) as

]Es

]z
5 2Ds

x
]Es

]x
1 iAvs

vp

1

APc

Ep* Eh exp~iDkz !,

]Ep

]z
5 iAvp

vs
2

1

APc

Es* Eh exp~iDkz !,

]Eh

]z
5 2Dh

x
]Eh

]x
1 i

vh

Avpvs

1

APc

EpEs exp~2iDkz !,

(28)

where Ds
x 5 tan(ap) 2 tan(as), Dh

x 5 tan(ap) 2 tan(ah),
and a i is the angular departure for the corresponding
wave between the directions of the Poynting vector and
the wave vector. Equations (28) are the same as Eqs.
(16) if we replace x by t and D i

x by D i
v . Then the results

derived in Subsection 4.A can be applied in the spatial do-
main to the spatial correlation function and the spatial
spectral intensity.

2. Effects of Diffraction
When the beam divergence is so large that the corre-
sponding Rayleigh distance is smaller than the crystal
thickness, we have to take into account diffraction inside
the nonlinear crystal. Then Eqs. (11) are written as

]Es

]z
5 2iss

difS ]2Es

]x2 1
]2Es

]y2 D
1 iAvs

vp

1

APc

Ep* Eh exp~iDkz !, (29a)
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]Ep

]z
5 2isp

difS ]2Ep

]x2 1
]2Ep

]y2 D
1 iAvp

vs

1

APc

Es* Eh exp~iDkz !, (29b)

]Eh

]z
5 2ish

difS ]2Eh

]x2 1
]2Eh

]y2 D
1 i

vh

Avpvs

1

APc

EpEs exp~2iDkz !, (29c)

where s i
dif 5 1/(2ki cos2 ai). The system of Eqs. (29a),

(29b), and (29c) is then similar to that of Eqs. (21), and
the results obtained in Subsection 4.B can be applied to
the spatial domain. We have only to use the spatial cor-
relation function and to substitute s i for the correspond-
ing parameter s i

dif , (]t2) for (]x2 1 ]y2), (]t4) for (]x4

1 2]x2y2 1 ]y4), and tc for rc .

5. SINUSOIDAL PHASE-MODULATOR
SETUP
In Sections 2 and 4 we assumed that the pump wave was
partially coherent. Here we develop some results for a
pump wave with a sinusoidal intensity behavior. The
pump field is given by

Ep~t ! 5 A2Ip cos~2pnmt !, (30)

so the time-averaged intensity is Ip , where nm is the fre-
quency modulation. This modulated wave can be pro-
duced by a laser with two frequencies, n1 and n2 , with
nm 5 n2 2 n1 . By using Eq. (1) we can then generate a
sinusoidal phase modulation on the signal wave, where
the modulation depth is equal to the factor B0(L) given
by Eq. (7). The frequency modulation of the phase is
2nm :

Es~t ! 5 exp i@B0~L !cos~4pnmt !#. (31)

We can estimate the effect of GVW by using Eq. (18). In
fact, the integration is now analytical because the pump
intensity has a simple sinusoidal behavior. We find that
the signal phase is always sinusoidal, with the same fre-
quency but with a different modulation depth B(L):

B~L ! 5 B0~L !sinc~2pnmDs
vL !, (32)

where sinc(r) 5 sin(r)/r. This relation is an analytical
result without expansion. If the GVW is too high, the
depth modulation is then strongly reduced. So we have
to limit the crystal depth to the value 0.1(nmDs

v)21 to ob-
tain more than 90% of the maximum value of B0(L). Fi-
nally, we find the expression for the amplitude modula-
tions that are due to the GVD of the signal wave:

Cs~L ! 5 4p2B~L !u ssuLnm
2 1 O@~4p2ssLnm

2 !2#. (33)

Here Cs(L) is defined as in Eq. (25), where ^ & stands for
averaging over a time period. In Fig. 6 we have plotted
an example of a sinusoidal phase-modulator setup with a
2-cm type II KDP crystal. The pump intensity is sinu-
soidal, with a frequency modulation of 10 GHz and an av-
erage intensity of 2.5 GW/cm2. We assume here that the
phase mismatch in the crystal is Dk 5 19.3 cm21 and that
Pc 5 1 GW. Using Eqs. (12) and (13), we find that the
maximum nonlinear phase fNL is 1.03 rad and the total
amplitude modulation a 5 2(Imax 2 Imin)/(Imax 1 Imin) is
0.11. The numerical results in Fig. 6 give fNL
5 0.95 rad and a 5 0.094, which are extremely close to
the analytical results. We omit the spatial dimension in
this configuration. We have taken into account the ef-
fects of GVW and GVD, but here they appear to be negli-
gible. No optical damage is expected in the nanosecond
regime for the KDP crystal. We also estimated the cubic
nonlinear phase shift, which is less than 0.1 rad for the
maximal intensity.

6. CONCLUSIONS
In this paper we have described a new method for realiz-
ing a phase modulator in the spatial or the temporal do-
main by using a cascaded nonlinear second-order effect.
We can produce a temporally incoherent phase modulator
with a short coherence time or a time-varying phase
plate. Furthermore, we have expanded the frequency

Fig. 6. (a) Nonlinear phase and (b) normalized signal intensity
as a function of time (in picoseconds). The pump intensity is
sinusoidal, with vm 5 10 GHz and Ip 5 2.5 GW/cm2. The crys-
tal is assumed to be a 2-cm KDP crystal in a type II configura-
tion. L 5 2 cm, Pc 5 1 GW, Dk 5 19.3 cm21, ss 5 20.03
ps2/m.
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conversion equations to find new expressions for the sig-
nal’s phase and intensity. A comparison of numerical
and analytical results has shown that they are in good
agreement. We have also taken into account several
limitations in the temporal and spatial domains. Indeed,
we have proposed a demonstration of this technique by
using a bimodal laser mixed with the signal wave into a
2-cm KDP crystal. We expect a total amplitude modula-
tion of 1 rad in this configuration, with less than 10% am-
plitude modulation. This technique should be interest-
ing for two-dimensional smoothing by spectral dispersion,
for which a bulk modulator with high-frequency modula-
tion is needed. Furthermore, we can produce a time-
varying phase plate by using an incoherent pump pro-
duced by a multimode optical fiber. So the signal wave
should have no amplitude modulation, a condition that is
important for amplification in glass amplifiers and in the
frequency-conversion stage for future mega joule lasers.

APPENDIX A: HIGH-ORDER EXPRESSIONS
FOR PHASES AND AMPLITUDES
Using the system described by Eqs. (11), we find the fol-
lowing expressions for the intensities and the phases of
the three waves18,19:

Is,p~z ! 5 H Ns0, p0 2 Nb sn2F S NcIt

Pc
D 1/2

mG J vs,p

vh
It ,

Ih~z ! 5 Nb sn2F zS NcIt

Pc
D 1/2

z, mGIt ,

fs,p 5 fs0, p0 1
1

2
Dkz 2 S Pc

ItNc
D 1/2 Dk

2

3 ) H Nb

Ns0, p0
, amF zS NcIt

Pc
D 1/2

mG , mJ ,

fh 5 fs0 1 fp0 1
p

2
Dkz, (A1)

where It 5 Is0 1 Ip0 , f j0 is the input phase, Ij0 is the in-
put intensity, Nj0 5 (vhIj0)/(v jIt), and Nb and Nc are
the two solutions of the following second-degree equation
(Nb < Nc):

N2 2 S Ns0 1 Np0 1
1

4

Pc

It
Dk2DN 1 Ns0 Np0 5 0, (A2)

where m is the ratio Nb /Nc . The functions sn and am
are, respectively, the Jacobian function and the ampli-
tude function, defined by20

sn21~x, m ! 5 E
0

x dt

@~1 2 t2!~1 2 mt2!#1/2 ,

am~u, m ! 5 arcsin@sn~u, m !#. (A3)

The symbol ) refers to an integral of the third kind, de-
fined by the expression20

) ~n, f, m ! 5 E
0

f du

~1 2 n sin2 u!@~1 2 m sin2 u!#1/2 .

(A4)
For further calculations we introduce two parameters, b
5 Np0 Ns0(b < 1) and g 5 PcDk2/It . In a cascading
configuration, we assume that g21 ! 1. Furthermore,
we assume that the signal and the pump waves have the
same frequency, such that N10 1 N20 5 2. Under these
assumptions, we can expand all parameters with respect
to g21:

Nc 5
g

4
1 2 2

4b

g
S 1 2

8

g
D 2

64b

g3 ~b 1 4 !

1
512b

g4 ~3b 1 4 !, (A5)

Nb 5
4b

g
S 1 2

8

g
D 1

64b

g3 ~b 1 4 ! 2
512b

g4 ~3b 1 4 !,

(A6)

m 5
16b

g2 S 1 2
16

g
D 1

512b

g4 ~6 1 b!, (A7)

f~z ! 5 zS Nc It

Pc
D 1/2

5
Dkz

2 F1 1
4

g
2

8

g2 ~1 1 b!

1
32

g3 ~1 1 3b! 2
160

g4 ~1 1 6b 1 b2!G . (A8)

Now we can use expansions of the Jacobian function and
the third kind of integral21:

sn~u, m ! 5 sin~u ! 2 1/4m@u 2 1/2 sin~2u !#

3 cos~u ! 1 O~m2!, (A9)

) ~n, f, m ! 5 (
l50

1`

(
j50

l

nl~21 ! jt2l~ f!S 21/2
j D S m

n D j

,

(A10)

with t2l( f) 5 (2l 2 1/2l)t2(l21)( f) 2 (1/2l)sin(2l21)(f)
3 cos( f) and t0(f) 5 f. (n

a) 5 a(a 2 1) ... (a 2 n
1 1)/1, 2, 3 ... n, and (0

a) 5 1. Finally, we obtain the fol-
lowing expressions for the phase and the amplitude of the
waves:

Is,p~z ! 5 Is0, p0 2
8Is0Ip0

It
g21~1 2 8g21!

3 sin2H Dkz

2
@1 1 4g21 2 8g22~1 1 b!#J

1 O~g23!, (A11)

Ih~z ! 5
16Is0Ip0

It
g21~1 2 8g21!

3 sin2H Dkz

2
@1 1 4g21 2 8g22~1 1 b!#J

1 O~g23!, (A12)
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fs,p~z ! 5
Dkz

2
@hs,p

~1 !g21 1 hs,p
~2 !g22 1 hs,p

~3 !g23 1 hs,p
~4 !g24#

1 O~g25!, (A13)

where the hs,p
( j) functions are defined by the following re-

lations:

hs,p
~1 ! 5 24Np0,s0

t2~ f!

f
,

hs,p
~2 ! 5 28F ~b 2 4Np0,s0!

t2~ f!

f
1 2Np0,s0

2
t4~ f!

f
G ,

hs,p
~3 ! 5 232H 2@Np0,s0~4 1 b! 2 2b#

t2~ f!

f

1 Np0,s0~b 2 8Np0,s0!
t4~ f!

f
1 2Np0,s0

3
t6~ f!

f
J .

(A14)

APPENDIX B: RESULTS OF
HOMOGENIZATION
In the paper we apply several times a general homogeni-
zation theorem that we state and prove in this appendix.
The small adimensional parameter d is, in our frame-
work, equal to g21/2. We set Ẽj 5 Ej /AIt and z̃
5 Itz/(PcDk); the systems of Eqs. (11), (16), and (21)
read, for Eq. (B3) below with d 5 6, as

X« 5 @Re~Ẽs!, Im~Ẽs!, Re~Ẽp!, Im~Ẽp!,

Re~Ẽh!, Im~Ẽh!#, (B1)

F~X, z! 5 $Avs /vp@2X3X5 sin~z! 2 X4X6 sin~z!

2 X3X6 cos~z!

1 X4X5 cos~z!#Avs /vp@X3X5 cos~z!

1 X4X6 cos~z! 2 X3X6 sin~z!

1 X4X5 sin~z!#Avp /vs@2X1X5 sin~z!

2 X2X6 sin~z! 2 X1X6 cos~z!

1 X2X5 cos~z!#Avp /vs@X1X5 cos~z!

1 X2X6 cos~z! 2 X1X6 sin~z!

1 X2X5 sin~z!#vh /Avpvs@X1X3 sin~z!

2 X2X4 sin~z! 2 X1X4 cos~z!

2 X2X3 cos~z!#vh /Avpvs@X1X3 cos~z!

2 X2X4 cos~z! 1 X1X4 sin~z!

1 X2X3 sin~z!#%. (B2)

Note that the theorem holds true only with real vector-
valued functions, so we need to separate the real and the
imaginary parts of our problems before applying the theo-
rem.

Theorem. Let (x, z) P Rd 3 R1 ° F(x, z) be a peri-
odic function with respect to the variable z with period Z0

and *0
Z0 F(x, z)dz 5 0 for every x P Rd.
Let Xd(z, t), taking values in Rd, be the solution of

]Xd

]z
5

1

d
FS Xd,

z

d 2D 1 GS ]Xd

]t
,
]2Xd

]t2 D (B3)

starting from Xd(t, z 5 0) 5 X0(t). Then Xd converges
as d → 0 to X, the solution of

]X

]z
5 b~X ! 1 GS ]X

]t
,
]2X

]t2 D (B4)

starting from X(t, z 5 0) 5 X0(t), where

bj~x ! ª 2(
i51

d 1

Z0
E

0

Z0

dz E
0

z

dhFi~x, z!
]Fj

]xi
~x, h!.

Demonstration. The proof is standard and is based on
the so-called perturbed function method.22 First we con-
struct a slight perturbation of Xd:

X̄d~z, t ! 5 Xd~z, t ! 1 df1FXd~z, t !,
z

d 2G
1 d 2f2FXd~z, t !,

z

d 2G , (B5)

f1~x, z! ª 2E
0

z

F~x, h!dh, (B6)

f2~x, z! ª 2E
0

z

@F~x, h!¹#f1~x, h!dh 1 zb~x !. (B7)

Because the average value of F over a period is 0, the
function f1 is uniformly bounded. So is the function f2
because the term zb(x) has been added so the increment
of f2 over a period is 0. By deriving X̄d with respect to z
we get

]X̄d~z, t !

]z
5

1

d
FS Xd,

z

d 2D 1
1

d

]f1

]z
S Xd,

z

d 2D
1 FS Xd,

z

d 2D¹x f1S Xd,
z

d 2D 1
]f2

]z
S Xd,

z

d 2D
1 G~Xt

d , Xtt
d ! 1 O~d!,

where the first two terms on the right-hand side cancel by
definition (B6) of f1 . The third and fourth terms par-
tially cancel according to the definition (B7) of f2 , and
only b(Xd) 1 G(Xt

d , Xtt
d ) 1 O(d) remains. By integrat-

ing from 0 to z and using the fact that Xd(z) 5 X̄d(z)
1 O(d), we get

Xd~z, t ! 2 X0~t !

5 E
0

z

b@Xd~z8, t !# 1 G@Xt
d~z8, t !, Xtt

d ~z8, t !#dz8 1 O~d!.

Letting d → 0, we get the integral form of Eq. (B4), which
completes the proof of the theorem.
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