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This paper is devoted to the derivation of the equations that govern the propagation
and frequency conversion of pulses in noncentrosymmetric crystals. The method is
based upon high-frequency expansions techniques for hyperbolic quasi-linear and
semilinear equations. In the so-called geometric regime we recover the standard
results on the frequency conversion of pulses in nonlinear crystals. In the diffrac-
tive regime we show that the anisotropy of the diffraction operator involves re-
markable phenomena. In particular the phase matching angle of a divergent pulse
depends on the distance between the waist and the crystal plate. Finally we detect
a configuration where the beam propagation in a biaxial crystal involves the gen-
eration of spatial solitons thanks to an anomalous one-dimensional diffraction.
© 2001 American Institute of Physic§DOI: 10.1063/1.1354640

[. INTRODUCTION

In 1961 Frankeret al! observed radiation at a double frequency when a ruby laser beam was
directed into a quartz crystal. Unfortunately, because of phase mismatch of the fundamental and
converted waves, the efficiency of conversion proved to be very(&wut 10 1%6). The so-
called phase matching condition which should be fulfilled for the second harmonic generation
w+w—2w0 reads as R(w)=k(2w), or equivalentlyn(2w)=n(w), wheren is the refractive
index. In the optical transparency region of isotropic crystals, and in anisotropic crystals for waves
of identical polarizations, this condition is never fulfilled because of normal dispersitm) (
<n(2w)). The use of anomalous dispersion is prohibited because the energy absorption is then
very high. In 1962 Giordmairfeand Maket simultaneously and independently proposed an inge-
nious method of matching the phase velocities of the fundamental and converted waves. The
technique is based on the difference between the refractive indices of the waves with different
polarizations in an anisotropic crystal. It is now current to reach efficiency of conversion of several
ten percents.

Anisotropy is a necessary condition for a medium to have a nonzero second order
nonlinearity® The y?-tensor is zero for any centrosymmetric crystal. The study of sum-frequency
generation thus takes place in anisotropic media. The aim of this paper is to describe the effects of
the anisotropy of the medium and to take a rigorous account of it in the study of the nonlinear
regime and especially the frequency conversion phenomenon. The case of plane waves has been
carefully studied in Ref. 6. We aim at deriving evolution equations for the slowly varying enve-
lopes of broadband and divergent pulses by using a technique based on high-frequency expansions
of the fields’

The derived equations find practical applications in the framework of frequency conversion of
high-power laser beams. Indeed the phase matching condition for efficient frequency doubling and
tripling of laser beams is very drasfignd it is therefore, necessary to detect the principal axis of
the crystal with great precision. The standard process consists in observing the main output
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direction of the frequency converted pulse of a divergent pulse. This work was originally triggered

by the experimental observation that the direction of the frequency converted pulse of a funda-
mental Gaussian pulse depends on the distance between the waist of the fundamental pulse and the
crystal, even with a perfectly normal incidence. The departures for different distances exceed the
high-precision level required for reaching the expected conversion performance. The results de-
rived in this paper predict the phenomenon and allow to compute the direction of the phase
matching angle as a function of the direction of the frequency converted pulse and the distance
between the waist of the fundamental pulse and the crystal.

The results of this paper are also necessary for a careful treatment of the propagation and
frequency conversion of partially coherent pulses. Indeed incoherent light with short coherence
time is of interest for smoothing techniques for uniform irradiation in plasma ph¥sigstopa-
gation of incoherent light in isotropic linear media is now rather well understood, the evolution of
the statistical properties of incoherent pulses in anisotropic and/or nonlinear media has been
insufficiently examined. A high level of irradiation uniformity is required for both direct and
indirect drive for Inertial Confinement Fusi8rThis criterion can be reached by implementing
active smoothing methods, such as Induced Spatial Incoherence with eceBmepthing by
Spectral DispersioSSD),** Smoothing by multimode Optical Fib¢B8OP.? All these methods
involve the illumination on the target with an intensity which is a time varying speckle pattern, so
that the time integrated intensity averages towards a flat profile. As an unavoidable drawback the
optical smoothing techniques also involve phase modulations in the amplifiers and frequency
convertergSSD), or even intensity modulation$SOB.

The framework for high-frequency expansions of the solutions of Maxwell’s equations fol-
lows from the appearance of the small paramétehich has the order of magnitude of the carrier
wavelength of light divided by the next smallest characteristic length present in the problem. If we
assume that the carrier wavelength is 1, then we have seen in Ref. 13 that for propagation length
of order 5~ 1, which corresponds to the scales of the so-called geometric optics, evolution equa-
tions read as transport equations with constant velocity. Further, in the moving pulse-time frame
(moving according to the velocity exhibited by the geometric transport equatfongropagation
length of orders™2, which corresponds to the scales of diffractive optics, the evolution of the field
is governed by a Schdinger equation.

The first nonlinear effect we discuss in this paper is the sum frequency generation. A nonlin-
ear y>-type function applied to expressions of the fomEf(&t,bX)expi(kfz—wft) will produce
harmonics, that is to say expression with phase+ k'2)z—(wr, + wr)t. If the couples {; k')
satisfy the dispersion relation, then the natural harmonic phases generally do not, due to the
dispersive property of the material. The set of harmonics which satisfy the dispersion relation is
generally very smallsometimes empjybecause they need to fulfill a very drastic phase matching
condition.

We must also take care that the strength of interaction and, therefore, the scale for interaction
depends on the amplitude of the wave. If the amplitude of the wavé&®isthen ap-wave
interaction process will be noticeable for propagation length of ofiéP~ ¢, Since we are
mainly concerned in this paper with second-order nonlinearity, it means that the nonlinear effect
will appear for propagation length of the order &f“. Accordingly =1 will correspond to
nonlinear geometric optics and=2 to nonlinear diffractive optics.

The paper is organized as follows. First we describe the general configuration at hand in Sec.
Il. Section Il is devoted to the derivations of the dispersion relation, the phase matching and the
suitable expanded form of the solution of the Maxwell equations. We address in Secs. IV and V
the frequency conversion in birefringent crystals. In Sec. VI we derive the propagation equation of
the slowly varying envelope of the field when the phase-matching conditions for frequency gen-
eration are not fulfilled. In Sec. VII we study a particular configuration which should allow the
generation and propagation of spatial solitons.
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. FORMULATION AND SCALING

We consider an incident beam incoming from the left onto a nhonmagnetic nonlinear crystal
that occupies the domaiR® :={(x,y,z) e R%,z>0}. The propagation axis is perpendicular to the
boundary surfac& :={(x,y,z) € R*,z=0} and is collinear to the axis. The evolution of the
electric field€ is governed by the Maxwell equation

rot rot £=— ued?D, (1)

where the electric induction divides into the sups D, + P, of a linear and a nonlinear part

D|:805+80X(1)*8, (2)
Pu=eox'?* (£ +eox P+ (£EE) + -, )

. t t 4
X<J>*(5,...,5)=f_ dt1-~~f_ dtjyD(t—ty,... t=t)):E(ty)- - &t)). (4)

g and uq are, respectively, the dielectric constant and magnetic permeability of vacuum. The
electromagnetic wave is assumed to be far enough from all absorption lines of the medium so that
we can neglect absorption and the tensgt$ are real.

The boundary condition at the surfageis imposed by the continuity of the tangential
components of the magnetic and electric fields. The sofSmmerresponding to the electric field of
the incoming pulse at the interfadis assumed to be a modulation of a high-frequency signal
whose carrier wavelength sy, or the superposition of a finite number of such modes. From the
characteristic spatidtesp. temporalvariations of the source we can also define a length $Rgle
(resp. a time scald,, associated with the lengthy:=cT,). Our study will take place in the
framework where the dimensionless parametermin{\q/Ry,\¢/Lo} is small. As pointed out in
the introduction, the order of magnitude of the source also plays a crucial role in that it
determines the strength of the nonlinear interaction. Let us denopg liyesp. y,) the typical
value taken by the Fourier transforms of the components ofyffi&tensor (resp. y(?-tensoy
evaluated at frequency #t/\y. The characteristic nonlinear amplitude is defined By
:=x1/x2. Our study takes place in the framework of weakly nonlinear waves, which reads as

S/En|< 1. This ratio may be related to the small paramétéirough a new parameter>0 such
thatS/E,, = 5%. SettingX=x/\o, Y=Y/\g, Z=2/\g, t=Ct/Ny, D=DI(goE,), andé=E/E,, the
dimensionless Maxwell equation reads as

Gt 16t E=—Tigd D,

wherefio=goumoc?=1. The sourceS has a high-frequency expansion of the form

1 v(SL% )\
SRy D=50" 2, | vj(5t,ox,69) |e” I+ (5)
WfElls 0

wherecc is a shorthand for “complex conjugate() s is the collection of the high-carrier fre-
quenciesw; . V' is the slowly varying envelope of the mode with carrier frequengy Note that
a dimensionless propagation distaficef the order ofs™ corresponds to a physical distance of
the order ofR,, while a dimensionless distan@eof the order ofé~ 2 corresponds to a physical
distance of the order d?(z)/)\o which is the well-known Rayleigh distance.

From now on we drop the tildes. We assumeriori that the electric field can be expanded
inf a power series of the small parameteand in a series with respect to a set of rapid phases
k'z— wft
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=15 D (Ef(st,6x,8y,62)e K7 oty co), (63)
(wf kN eH
EN(T,X,Y,2)= 2 §E[(TX,Y,2), (6b)
i=o

whereE' is the slowly varying envelope of the mode whose rapid phasesk(). The functions

EJ-f are smooth in all their arguments.. denotes the set of the rapid phases (') which are
contained in the field. In case of linear mediuti the modes propagate without interaction and
the set of high frequencigs;, 3k’ such that @ ,k") e H} is equal toQ . In case of nonlinear
medium, the generation of new phagt®e so-called harmonigss expected so that the serig®
may contain much more terms than in the souf®e

Ill. PROPAGATION IN A BIREFRINGENT CRYSTAL

We introduce the geometric framework. We first define a reference ffamg associated
with the pulse whose carrier wave vectiog is collinear to thez axis. We then introduce a
reference framél, 2, 3 associated with the optic axis of the crystal, wheyés the main optic
axis. We denote by the angle between the wave vector and the main optic @xis.the angle
between the projection of the carrier wave vector onto the plepe{) and the axis collinear to
e,. The transition matrix between the reference fraipeg,2 and(1, 2, 3 is denoted byJ.

A. Principle of the high-frequency expansion

We present the principle of the high-frequency expansion method. It can be applied if the
source can be expanded&$. We proceed t@ priori expansions of the field inside the crystal of
the kind (6) with >0 (weak nonlinearity. In linear media(or equivalently for evanescent
sourcese>1) all nonlinear phenomena can be neglected, and the set of the frequenefesh
are contained irH is imposed by the source and is equalQlg. Otherwise the generation of
harmonics should be taken into account so that thédseduld be much larger than in the linear
case.

The establishing of the propagation equations for the slowly varying envelopes obeys the
following scheme. The forn®) is substituted into Eq1). Collecting the terms with similar orders
in 8 and the same rapid phases(k'), we get a family of equations. These equations can be
decomposed into coupled systems of equations parametrized by the rapid phases. In linear media
these systems are independent so that the envelopes of the different modes propagate
independently? but in nonlinear media there are coupling between the propagation equations of
the envelopes. If the forn(6) is suitable, then the derived systems should have unique solutions.
Actually we shall show the two following statements. First, the rapid phases must satisfy disper-
sion relations which read as compatibility conditions for the existence of the high-frequency
expansior(6a). Second, the leading order terrﬁé are determined by compatibility conditions for
the existence of the series expansiéh).

The form(6) is an ansatz, that is to say anpriori form of the solution which is valid in a
given domain, here faz< 1. It is compatible with the boundary conditions and the source. It is
self-similar with respect to the operators that are encountered in the Maxwell equation. This fact
was established in Ref. 13 for the linear operators, and we shall see in the following that the
expansion(6) is also self-similar with respect to the nonlinear operators.

B. Expansions of the linear terms

The linear susceptibility is defined as the Fourier transform of the teyidddefined by(2).
It is a diagonal matrixy{} in the frame(1, 2, 3, while in the reference frame,y,2 the tensor
X3 is U5 5. In the following x is a shorthand for the matrig(y),+14. If £ is of the form
E=16% (E(6t, 6,8y, 5z)e' K=Y+ cc), then the contribution of the linear induction to the Max-
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well equation(1) and therotrot £ term can be expanded as powerséDenoting byT= 6t,
X=6x, Y=y, andZ= 6z the slowly varying variables, we have on the one hand

— 1od2D = 36%Dy(E) + 6D4(E) + 62D, (E) + O(6%))e' Kz «V + ¢, (7)

where theD;(E) are linear functions oE given by

w? i 1
Do(E)= w7 XE, Du(E)=3(0%0)'#E, DofE)=—55(w’n)'#E, @

and the primes stand for partial derivatives with respeei.t®n the other hand th®t rot £ term
writes

rot rot £=218%Ry(E)+ SR, (E)+ 6°R,(E))e' Kz« 1 cc, 9

where the mappingR;(E) are sums of partial derivatives & with respect to space coordinates
of orderj that are given in Ref. 13.

C. Dispersion relations for the rapid phases

We aim at showing here that the rapid phases, k') of the setH should fulfill the so-called
dispersion equation. By substituting the ang@é)zinto Eq.(1) and collecting the coefficients with
power 5* and phasesd; k'), we get by applying the identitigd) and(9) that the leading order
term E!) should satisfy

Ro(Ef)=Dy(EY), (10)

similarly as in the linear case. This is of course expected, since the weakness of the amplitude of
the pulse(of order §* with «>0) prevents nonlinear terms from coming into the leading part of
the expansion with respect

As established in Ref. 13 there exist two positive solutiepandn, and two polarizations,
ands, so thats, ands, are unit vectors andnfwc1,s,) and (,wc™1,s,) are solutions of Eq.
(10). We define the dispersion relationship, the group velocity and the dispersion coefficient of the
waves as follows:

oNp(w) Ky 7L 3%k
Ko(@) 1= ”; , vmw:(&—a’:‘) , am(w):=kmﬁ, m=a,b, (11)

and we denote by, the angle between the polarization vectgrand thez axis
COS(Bm(@)) =Sy @) +Shy(@).

In order to fulfill condition(10), the set ,kf,Eg) must satisfy one of the three following
alternatives:

(i) Eitherk"=k,(w¢) and the components ﬁ{) parallel tos,(ws) may be nonvanishing;
(i) eitherk’=ky(ws) and the components (ﬁ{) parallel tos,(ws) may be nonvanishing;
(i) ork'e{ky(w;),ky(ws)}, and then necessarifh=0.

Note that the third option simply means that modes which are not phase-matched cannot have an
envelope of ordep”.

We can now give a suitable description of the Bebf the rapid phases. The sHtin the
general nonlinear framework should at least contain the rapid phases that were exhibited in the
linear framework for a given sourcg that is to say

Hs=HasUHp s,
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whereH, s and Hy, 5 are the subsets of the rapid phases which satisfy eithea tiispersion
relation or theb relation

Hns={(w,k) such thatwe Qs and k=kp(w)}.

In a nonlinear medium the generation of new frequencies is expected. The choice of the ansatz
should take into account this phenomenon and that is why thel eétall possible rapid phases
reads as the extended formulation

n n

H={(w,k) such thatdj,,....ineZ(w;,K)eHs,0=2 jiw;, and k=, jiki.
i=1 i=1

The rapid phasesy(,k) e H for which w & ) 5 correspond to the so-called harmonic modes. Since
the pairs (k') are algebraic sums of adapted rapid phases which originateHrgnand since

the media we usually consider have a normal dispersion, there is only two types of phase matching
(assuming thah,<ny):

(i) Type |: Both fundamental modes are of typeand the harmonic mode is of tyfewith
oh= 0t 0g andKy(wq) +Ka(wp) =Ky(wp);

(i)  Type ll: One of the fundamental modes is of typand the other one of type while the
harmonic mode is also of typewith w,= w,+ wq andk,(wp) +Kp(wq) =Ky(wp).

Only the rapid phases ¢ which satisfy one of the two phase matching conditions may possess
a nonvanishing zeroth-order componElét That is why the physically relevant modes are those
for which the rapid phases belong kb,

H,.={(w,k)eH such thatk=k,(w) or k=ky(w)}.

The leading order terms for the other harmonic phasgsk’) € H\H . are at most of orde?,

that is to sayE' ~ 5“Efa+ O(5*"1). Nevertheless it is necessary to take into account the harmonic
modes that are not phase-matched so as to close the propagation equations. To complete this
section we would like to add that the phase matching condition is only required to be fulfilled at
order 1. A phase matching condition satisfied up to a term of afdej( w,,) —kP—k3~0O(6) or

kp(wp) —kP—k9~0O(6), is a sufficient condition for an harmonic phase to possess an envelope
with a nonvanishing leading order terh‘aﬂ. We shall encounter such situations in the forthcoming
sections.

D. Boundary condition

If we assume that the sourcecan be expanded &5), and accordingly that the fielflinside
the crystal is of the forni6), then collecting the coefficients with power* and high carrier
frequencyw; establishes the continuity conditions which impose that the components parallel to
the boundary surface of the input fiekland of the field€ should be equal, while there are no
condition for the normal components. Sinee-0 these conditions are the same as in the linear
configuration, so the typm mode (n=a,b) with carrier frequencyw; should be az=0"

Sﬁwx SmxSmy 0
SmSmy  Smy 0| Vi(8t,6%,8y).

SI'T'IXSmZ Smysmz 0

1

f 0 —
Eom( dt,6X,0y,2=07) 1+Nnm(®) SputShy

E. Poynting vector and diffraction operator in the linear framework

In this section we remember the reader with the main results of Ref. 13 in the case when the
nonlinear polarization is neglected. The following results hold true when the two eigenindices
(n,,ny) are different from each other. Note that the occurrence of thercasea,, corresponds to
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very particular configurations which were thoroughly studied in Ref. 13. In the framework of
frequency conversion, these configurations are not interesting since we aim at using the existence
of two different dispersion relations for the modes to fulfill the phase matching conditions. The
input wave break into the sum of modulations of high-frequency signals, which also divide into
two modes which all propagate independently. For each high frequemayd moden=a,b, the
Poynting vector of the mode is collinear to

T
S S
um(w)z 2mxsm22 ’ g]ysg]z,_l . (12)
SmxT Smy SmxSmy

In the reference framedt, ox, 8y, 6z) the slowly varying envelop&;, of the mode satisfies the
transport equatiodzE+ 7,(w)E;=0 where

Tm(w):_umx(w)&x_umy(w)o"Y+Um(w)71‘9T- (13
In the moving reference framed(t—z/v,,), d(X+ Uny2), (Y + umyz),ﬁzz) the slowly varying
envelopeEy, of the mode satisfies a Scliioger-type equation with respect to the long scale
variable = 6’z

2ik () dEq+ Lin(w)Eq+ Ky(w)ER=0, (14

where the diffraction operataf,(w) is anisotropic(see Ref. 13 for the complete expressions of
thecy, )

L @)= iy @) 8%+ 28 (@) dxdy + Conyy( @) 5, (15)
and the dispersion operat#ii,,(w) contains crossed space—time derivatives
K@) = = 0 @) 35+ 2Ky @) (9,Um) (@) d7x+ 2Kn( @) (3 Umy) (@) d7dy . (16)

F. Second-order nonlinear polarization

The nonlinear susceptibility is the Fourier transform of the tend®r defined by(3)

X(Z)(wl,wz)::f dtlf dtz)(<2)(t1,tz)ei‘”lt1+i‘”2t2.
0 0

Time integration starts from O to satisfy the causality property. We introduce the pro@g;[q;c
acting on fields of the formd=3%,, ka)EHA;ei(ku*’”ft)Jrcc by

0, k(A)=A5 if (wc,k%)eH, and 0 otherwise.

The (wy, k") component of the nonlinear polarization in the crystallographic frame then reads as

€
0, k(Pn)= EO > X(z)(wp,wq):(Ep,Eq).

PG, 0p+ 0g=op kP4 Kd=kh

For frequencies, andw, and for typesn; andm; in {a, b} we denote bysml mz(“’p ,wgq) the
vector

Sﬂl,mz(wp ,@g) ‘=3((2)(wp awq):(sml(wp)a&nz(wq))- (17)

We list in the following the processes which can give rise to the generation of new frequencies:
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(i) Type | conversion.
Let us denoteo,= w,+ wq, kKP=K,(wp), kI=Ky(awg), andk"=kP+k9. Then&P+ &9 is of
the form3EPs,(w),) g (KPz—wpt) 4. %Eqsa(wq)ei(qu* “ql) + cc. In the(xy2-reference frame the
nonlinear polarization read@n.,xyzzuﬂpn.,lzy and the (,,k") component is

®wh,kh(73nl,xyz): eosa,a(wp ,wq)Equ. (18

(i) Type Il conversion.
Let us denotev,= w,+ wq, kKP=K,(wp), kI=ky(wg), andk"=kP+Kk9. Then&P+ &9 is of
the form 3EPs,(w,)e' "2~ “nl) + JE95,(w,) €@, In the (xy2-reference frame the
nonlinear polarization readBnLXyZ:U‘le,mU and the k") component is

®wh,kh(7)nl,xyz) = EOSa,b(wp ,wq)Equ. (19
In the case of the class2a which contains in particular potassium dihydrogen phosphate

(KDP) crystal, they(®-tensor has only six nonvanishing components which are equal to the
coefficient : ¥{2h=x{%=x5%= 2= k3= 12 =2d. The vectorss, , ands, . then read as

sinésin(2¢) cog2q¢)sin(B—20)
S0=2d 0 . Spe=2d| —siN(2¢)sin(B—0)
—cosfsin(2¢) cog2¢)cog B—20)

IV. TYPE | PHASE-MATCHING

We assume that the incoming pulse consists of two modes with carrier frequences o,
which are linearly polarized along thgg(w,)-axis ands,(wg)-axis, respectively

S=35%(vP(5x, 8y, 8t)Sy(wp) € pt+ v (X, Y, Bt)s,(wgq)e ' d) +cc. (20
The type | phase matching conditions are assumed to be satisfied for the stm,= wy,
Ka(wp) +Ka(wq) =Kp(wp). (21)

We also assume that the paw(,k,(wy)) is the only adapted harmonic phase, that is to say the
phase matching condition is not fulfilled for a subtraction or a sum betwggnw,, and wy,
different from wp=wp+w,. As a consequencHacz{(wp,kp),(wq,kq),(wh,kh)} where kP
=Ky(wp), kI=Kk,(wq), and k"=ky(wp). The adapted ansatz is accordingly

E=EP+EI+E+ R, (22a

1 c .
=8 ]ZO SE!(3t,6x,8y,62) | K=ot cc, (22b)

whereR indicates a series of harmonic modes whose leading order coeffi€ifaise vanishing.
The parameter will then play a crucial part since the order of magnitude of the input pulse
imposes the distance scale at which the nonlinear effects become noticeable.

A. Geometric optics a=1

We denoteT = 6t, X=06%, Y=108Yy, Z=éz.

Proposition 1: If the source can be expanded as (20), then the fundamental modes are of type
a for the carrier frequencies, and o, while the harmonic mode at frequeney, is of type b. By
denoting B=s,(wp).Ef, E§=s,(wg).E3, and E)=s,(wp).ED the projections of the modes onto
their respective unit polarization vectors, the slowly varying envelodﬁsdﬁsfy the following
coupled equations:
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iwyd!) -

aZE8+7;(wp)(Eg):na(wp)cosz(ﬂa(wp))Eg ED, (239
iw.db

92Eq+ Tal wq) (E) = na(wq)lca;(;z(ﬁa(wq)) E§"Eo, (239
i wpd®

IR Ton) B = oo Aty FEE (@89

starting from  B(T,X,Y,Z=0)=(2[1+ Na(wp) NvP(T,X,Y), ENT,X,Y,Zz=0)=(2[1
+na(wg) (T, X,Y) and Eg(T,X,Y,Z=O)=0,Where the transport operatdf,(w) is given by
(13) and

Sa(@p)-Sap(@q, 0p)

hH—
d 2c

Proof: The strategy is formally the same as in linear configurations. We substitute the ansatz
(229 and(22b) with =1 into Eq.(1) and we collect the coefficients with the same powep of
and the same carrier frequency. At ordewe find the dispersion relation and phase matching
conditions discussed in Sec. Il C. At ordéf, we project the equation onto the three axes.
For the frequencyn,, (resp.— wp), denotingkP=Kk,(w)

Ro(E}) + Ru(Ef) = Do(ER) + D1 (ER) + 10w, ko(Pri(Eo.0)), (29

where we retain only the terms of ord&m P,,;, which are the ones that give a contribution of the
nonlinear polarization of orde#?. Further in the nonlinear ter®,(£,,&,) we only retain the
coefficients with rapid phase (kPz— wpt). Only the frequencies), and — wy can generate,
(resp. —wy, and wq for —w,). We, therefore, compute the sum of a typevave at frequency
— wq With a typeb wave at frequencwy, . By applying(19) we get in the reference frante,y,2:

., wo(Pri(0.€0)) = €68 (g wn) EF¥ES.

The projection of Eq(24) onto s,(wp) then provides the compatibility condition which reads as
Eq. (239.
For the frequencyw,, the situation is similar. We get E¢23b) with an expression ol

which isd®’ = (s,(w).Sap( @y, wp))/(2¢), and using the symmetry propertiesigf** it is easy
to prove thatd®'=d®.
For the frequencyny,, denotingk"=ky(wp):

Ro(E}) +Ry(Ep) =Do(EY) + D1(Ep) + 1o@i® o, i Pri(€o.E0)), (25)

where we retain only the terms of ord&m P,,;, which are the ones that give a contribution of the
nonlinear polarization of ordef?. Further in the nonlinear teri®,(&,,&,) We only retain the
coefficients with rapid phase- (k"z— w,t). Only the frequencies, and o, can generatevy,
(resp.— w, and — wq for — wp). We therefore compute the sum of a typwave at frequency,
with a typea wave at frequency,. By applying(18), we get in the reference franig,y,2

®“’h ,kh(PnI,xyz) = eosa,a(wp awq) EgEg .

The projection of Eq(25) onto s,(wy,) then provides the compatibility condition which reads as
Eq. (230 with dV" = (sy(wp).Ss.a(wp , 4))/(2€), and using the symmetry propertiesigf’ it is
easy to prove thad®"=d®". O
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B. Approximate phase matching

In the above section we have considered a perfect phase matching condition. This condition is
indeed very stringent and should be fulfilled at the leading order. Nevertheless it is barely possible
in realistic experimental configurations to reach such a level of perfection. It is therefore relevant
to address the case of a slight perturbation of the ideal @as,,, where 6, is the angle which
satisfieg21). We consider in this section that the phase matching condition is fulfilled up to a term
of order 5 and we setV= 6,,,+ 67. The corresponding propagation equations read

EB+ Ta(w,)ER= wpd®” E%E]
97E5+ To(wp) 0_na(a)p)C052(,Ba(wp)) 0’
iwgd®”
q q_ q p*x =h
97Eq+ Ta(wq) Eg na(wq)co§(ﬂa(wq))Eo o,
i wpd
h h_ n OEGi 0
920+ T 0n) BS= o 02 Bu(wn) COES i s

where 7= 7 dKo(wn)/96][ -, . BY settingEL=Efe "7, this system reduces:

iwpd(')
na(wp)cosz(ﬁa(wp))
wgd!
Na( wq)cosz(ﬂa(wq))

EI*Ebe 7,

I7EG+ Ta( wp) EG=

IEQ+ To(wg) EJ= E§*Ege' ™4,
i wpd)
(wh)COS(Bo(wp))

It appears that it is necessary to add a phasgZ to the harmonic field so as to make the
frequency conversion equations into a standard form. It shows that the rapid phase of the harmonic
is imposed by the product of the phases of the fundamental modes(kxpk?)z—(wp+ wt),

which is different from the “natural” typeb phase exp(k,(wp)z—wpt), with oy = w,+ 0.

PEde—imZ

I7EQ+ To(wn) ER= o

C. Diffractive optics a=2

In this configuration the nonlinear effects are weaker, of the ordéfof 6%, so that they can
show themselves only after a longer propagation distarafethe order ofs~ 2. The technique is
the same as for the derivations of the propagation equations in the linear framework. The final
result is expressed in terms of the original variablgsz,t

Proposition 2: Let us assume that the input fiéldconsists of two modes with carrier fre-
quenciesw, and oy Which are linearly polarized along thg,(w,)-axis ands,(w)-axis, respec-
tively. Then the fundamental modes are of type a and the harmonic mode is of type=lo,
+wq). We denote k=Kky(w,), kI=Ka(wg), k"=ky(opn), m=k"—kP—k9, and E"=E"e "
We introduce the projections of the envelopes of the modes onto their respective unit polarization
vectors EP=s,(w,).EP, E9=s,(w,).EY, and B'=s,(wp).E". The system which governs the
propagation and conversion is:

i i iw,d" .

p [ [ P— P a* Ehal mz
3,EP+ Ty(wp)E KD Ly(wp)E 2kaCa(wp)E na(wp)co§(ﬂa(wp)) E9*E"e' ",
I T ) B9 —— £ (00 B —— Ks( ) ET= ogd™ EP* ENei n

z a\™q 2ka~a " 2ka"ata Na(@q)COS(Ba(wq)) ’
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i wpd®
Np(@n)COS(Bp(@h))

where the transport operatdf,, and the diffraction-dispersion operatos,, and K, are given by
(13), (15), and (16), respectively (where small letters should be substituted for capital letters)

EPEY9e 72

- - i - i -
9,E"+ Ty(wp) E"— ﬁﬁﬁb(wh) E"- ﬁﬁ’cb(wh) E"=

V. TYPE Il PHASE-MATCHING
We assume that the source can be expanded as

v( 8, 8y, St)e e
§=5 8| vy(ox.y,00e”!" | +cc, (26)
0

and that the type Il phase matching condition is almost satisfied by thewgunw,= wy, :
Kp(wp) — ka(wp) - kb(“’q) =0(9).

We also assume that the paiv({,k,(wy)) is the only adapted harmonic phase, that is to say the
phase matching condition is not fulfilled for a subtraction or a sum betwggnw,, and wy
different from wp,=w,+w,, so that the suitable ansatz 223 and (22b with H,.
={(wp,kP),(0q,k%, (o kM } wherekP= Ka(wp), KI=Kkp(wg), andk"=ky(wy,). The main result

is obtained by using the very same techniques as in the previous sections so that we only state it
in the original variablex,y,z,t We denote the phase mismatch hy:=k"—kP— KA.

Proposition 3. Let us assume that the input fi€ldonsists of two modes with carrier fre-
quenciesw, and wq Which are linearly polarized along the y axis and x axis, respectively. Then
the modes of the field are ordinary for the fundamentab, and extraordinary for the funda-
mental o, and harmonic w,=w,+w,. By introducing E"=E"e™'7* and denoting B
=s,(wp).EP, E9=5)(wyEY). and B'=s,(wp).E" the projections of the envelopes of the modes
onto their respective unit polarization vectors, the system which governs the propagation and
conversion is

- . . II
i i iwed! -
0E 4 Ty 0g) B9 = 55 Lo(0q) ET= 5 Ki(wq) E9= nb(wq)c§§(ﬁb(wq)) EP*ENel e,
=h =n_ | =n_ | =h_ wpd ~ing
3,E"+Ty(wp)E _ﬂﬁﬁb(wh)E —ﬂﬁ’Cb(a’h)E ~he(wn)co2 Bo(wn) EPE%e ',

where

d(ll):Sa(wp)'Sb,b(wq ,0p)
2c )

VI. PROPAGATION FAR FROM PHASE-MATCHING

In the two previous sections we have examined the two cases corresponding to phase-
matching for sum-frequency generation. In this section we consider the general situation where the
phase-matching condition is not fulfilled so as to derive the propagation equation of the funda-
mental wave, and also some information for the different harmonic waves. Such a work has been
performed by Leblontf who considered the propagation of a pulse along the principal axis of a
uniaxial crystal. In this section we consider the general case of biaxial crystals in the configuration
when the two eigenindices are different from each other. We assume a source of the form
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S=360( 5,0y, 0t)(Sax( @), Say(@),0) e+ cc, (27)
and we shall see that the suitable ansatz for the scales corresponding to diffractive optics is:

E=Elogloy 2o (289

oo

1 ! .
ngi 5120 5] E:w( 5(t - Z/U a) 1 6(X+ uaxz) ’ 5(y+ Uayz), 522)ell (ka(a))Z— wt)+ CC' (28b)

whereR is a sum of harmonic waves whose leading order term is of aftler smaller, and ,,
u, are shorthands far,(w), uy(w), respectively.

Proposition 4: If we assume that the input figdlcconsists of one mode with carrier frequency
o which is linearly polarized along thg,(w)-axis, then the slowly varying envelope of the fi€ld
is of type a and = Sa(w).E(l)‘” satisfies the nonlinear Schiimger equation

2|ka67§E0+ Ea(w)E0+ Ka(a))E0+ P3(E0):0, (29)

starting from B(T,X,Y,{=0)=(2[1+n,(w)])v(T.X,Y), where Ry(Eq)=(v1+v2)|Eo|’Eo
+5.XP(00)(E}" ,E5?),

71=3%(0) . ¥¥(0,0,~ 0):(5:(0),5(0),5(0)),

Vo= %Sa(w).)}(z)(Zw,—a)):((ng(w)J—X(Zw))flsa’a(w,w),sa(w)),

where J is the8 X 3 matrix whose entries are vanishing but; 3 J,,= 1. The second harmonic is
of order 62 and its leading order terrEf“’ is given by (30). The zero harmonic is of ord#rand
its leading order ternEg‘“ is given by (32). All other harmonic are of order smaller théh

Note that far from phase matching, the second harmonic does not propagate with its natural
phase velocity and group velocity, but with those of the fundamental. But it is smaller by an order
of magnitude. The same holds true for the zero-harmonic term. By “zero-harmonic” we mean an
electromagnetic wave whose wavelength is of the ordet df

Proof:

(i) Computation of the leading order term ab.2
Collecting the terms of ordef? at frequency @ provides an explicit representation for
E2¢:
EZ°=3(n3(@)d= x(20)) ¥ (0,0):(E;” ,E). (30

Note that the matrimg(w)J—X(Zw) is invertible since we assume that there is no phase-
matching for second harmonic generation.

(i)  Computation of the leading order term ab.0
Collecting the terms of ordes* at frequency © yields:

Ro(E1”)=Da(E}") —c™ 7Py,
whereP, is given by
P,= (0, — w)(E: EL").

Note thatD,(ES“) = — ¢~ ?x(0w)J2ES“ . The computation oEJ” is formally identical as

for the second-harmonic wave, that is to say the zero-harmonic wave is obtained by apply-
ing an inversion operatdhere R,—D,) ] to a functional of the leading-order term of

the fundamental wavéhere—c~292P,). But the inversion is a little more elaborate, since

it requires to apply the Green function of a linear nondispersive Maxwell equation. We give
in what follows an explicit formulation of this inversion. First denote gt the standard
‘“rot” operator operating on the macroscopic variabléX,Y,2. Consider the
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problem of finding the solutioE of the following Maxwell equation with a source:
Rot Rot E=—c 2y(0w)d2E—c~232P,

whereP(T,X,Y,Z) is the polarization induced by the source. Taking the Fourier transform
with respect to time and space

(K|2g— K@K —1v2c™2x(0w))E(v,K) = v2c™2P(1,K), (32)

wherev is the frequencyK the wave number, an8® U is the matrix whose entries are
SU;. We denote byN, andNj, the two solutions of the Fresnel equation associated with
the tensory(Ow):

dei(N?;—NJK|?K ® K — x(0w)) =0,
and byS, andS, the corresponding unit eigenvectors. The Green fundjignK) corre-
sponding to Eq(31) is defined by the equation

E(v,K)=g(v,K)P(1,K).

It was shown by Lax and Nelson that the Green function can be written in thé%orm

v? €, €y KoK

| KINZ=2ic2—i0 | [K[ANZ—v2c2—i0) K x(0w)K’

S (0w) S,
If v<O, tAhen the term—io should be replaced by-io. We then introduce the auxiliary
function G which is the projection ofj onto the characteristic equation satisfiedRyy

9(v.K)=

G, Ky Ky) =81, Ky Ky KUl @) + Ky Uay (@) — Vv 4()),

1 (. _
G(T,X,Y)= 2P f G(v,Ky Ky Y= NaxdydT

We finally define the convolution operatdr which associates to any pair of vector-valued
functionsA(T,X,Y) andA,(T,X,Y) the vector-valued function

W (A1,A)(T,X,Y) :=f G(T-s5,X—u,Y=0)[¥?(w,—w):(A1,A,)(s,u,v)]dsdud.

The leading order terlﬁg‘“(T,X,Y,g) of the zero-harmonic wave can then be expressed for
every{ as the application of th&-operator to the pairE{é‘”(.,.,.,g),E})‘*’*(.,.,.,g)):

E9°(T,X,Y,0) =W+ (E:(.,...0), EL" (.,...O)(T.X.Y). (32)

(i)  Equation for the corrective term at
Collecting the terms of ordes? at frequencyw we get an explicit form for the first
corrective termE;® of the fundamental wave. No nonlinear term is coming to at this order,
so the expression is identical to the linear framewde Ref. 18

(iv) Equation for the leading order term at
Collecting the terms of ordes® at frequencyw we get

Ra(Eg®) + Ri(E1®) + Ro(E3®) = Da(Eg®) +Dy(E1®) + Do(E3*) — ¢~ 2P3,
where the contribution of the nonlinear polarization is:
Ps= ()i (w,0,—0):(E5” E§* B3 )+ P (20,— w):(E2* EF”")

+x?(0w,w):(EY” ES?).
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Projecting ontcs,(w) we get

(@) Ro(E5”) +8:( ). Ry(E]”) = 83 ). Do(E5”) + S4( @). D1 (E1”) — ¢ ~25,(w) . Ps.

Substituting the expression Ef}“’ establishes the result.

Note that the long-scale variabiglays the role of a parameter in the expressig®) of Ef“’.
Consequently Eq(29) reads as a simple first-order evolution equation with respect to the
{-variable for the envelop&,. This provides a simple numerical scheme to comgge,.,.,
+A¢) from Eg(.,.,..).

VII. SPATIAL SOLITON PROPAGATION IN BIAXIAL CRYSTALS

We examine in this section the propagation in biaxial crystals of the modulation of a high-
frequency signal with frequenay in the particular configuratiod= 6, (w) and¢=0 or = where

1-X2(w)/ xa(w)

S T o)

Computing all relevant quantities according to the general formulas we have found in particular
that the typea eigenindex and unit polarization eigenvector anﬁw):)(z(w) and s,(w)
=(0,1,0)", respectively(for the typeb we refer to Ref. 18 The diffraction coefficients for the
amode arec, ,(w)=1, Cyxy(w)=0, andc,,,(w)=0, while the dispersion operator reads
Kalw)= —aa(w)a% The striking point is that the diffraction operator for the typevave is
degenerate, in the sense that there is no diffraction ip-tfieection. Let us assume that the carrier
frequencyw of the input pulse is such that the phase matching condition for the second-harmonic
generation is not fulfilled. For the sake of simplicity we first restrict ourselves to one of the three
following classes?

(2) triclinic class with point group_;Lsuch as Mica or ASIOs;

(2) monoclinic class with point group &y, such as AgAuTgor PbSiQ;

(3) orthorhombic class with point groummm such as CaG)J or Al,BeQ, (also called alexan-
drite).

The crystals of these classes are biaxial and have a vanigfihtensor. This simplification
allows us to get rid of the¢®-cascaded terms and to deal with a simpl&-component which
then reads as a simple Kerr effect. The result is the following:

Proposition 5. In cases 1, 2, 3, if we assume that the input &atdnsists of one mode with
carrier frequencyw which is linearly polarized along the y axis, then the slowly varying envelope
of the field€ is polarized along the y axis and)& (0,1,0) Eé“’ satisfies the nonlinear Schdimger
equation

2ika0,Eq+ IXEq— 0ad5Eo+ ¥|Eg|*Eq=0, (33

starting from B (T,X,Y,{=0)=(2[1+n,(w)])v(T.X,Y), where y= (3 5% — 0,0, ).

The removal of the time variable is involved by the assumption that there is no modulation of
the input pulse at the time scafe 1, which is typically of the order of the picosecond, but only
at scales™ 2, which is typically of the order of the nanosecond. Then the slowly varying envelope
of the field satisfies the standard one-dimensional 8thger equation

2ikad,Eq+ d3Eq+ ¥|Eo|*Eo=0. (34)

The one-dimensional nonlinear ScHimger equation possesses the complete integrability prop-
erty, which implies that stable solitons should be generated and propagate over large distances. If
a pulse is focused onto a crystal plate according to the incident angle and polarization described
here above, then in thetransverse direction the profile of the pulse will not diffract and keep its
original form while in the transversgdirection the pulse will break into a solitdior eventually
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several solitonsand radiation whose amplitude will decay as standard one-dimensional waves do
in linear media, that is to say at rate 2. The incident pulse must at least fulfill a well-known
power criterion so that a soliton can be generdted

f |Eoldx=1.279y 12,

which simply means that the incident pulse should be sufficient focused so that its fi@&yedx
be concentrated on a small segment. Nevertheless one should still remain in the domain where Eq.
(33) holds true, which is basically the paraxial approximation.

In case of biaxial crystals with nonvanishiné?)-tensor the result is qualitatively the same, in
the sense that the diffraction operator still reads as a one-dimensional second-order derivative, but
x'?-cascaded terms make the nonlinear term more complicated. We aim in the following propo-
sition at generalizing Proposition 5 to any biaxial crystal.

Proposition 6. For any biaxial crystal in the configurati@is 6, and ¢=0, if we assume that
the input fieldS consists of one mode with carrier frequenciesvhich is linearly polarized along
the y axis, then the slowly varying envelope of the figld polarized along the y axis andyE
=(0,1,0) E, satisfies the nonlinear Schiimger equation

2ika0,Eq+ d3Eq— 0ad5Eq+ P3(Eq) =0, (35)
where Py(Eq) = (y1+ ¥2)|EolEo+ 25 173, @i (|Eol*(..-,-{))Eq, with

~(3
7’1:%)((22)22(“’:“’:_"’)1

w

Vo=

I\)II—‘

E 2)(20,— 0)[(N3(@)I— x(20) K Z(0,0)];,

73, = X5200) X3 @, ~ @),

(10, )(T,X,Y)= 2 U“/U”/fqu/(T—S,X—u,Y—v)I(S,u,v)dsdud).
jpnIr=1

G is the Green function whose Fourier transformAisper,Ky)zg(v,Kx Ky, = vlva(w)) with:

v? e, € K®K

9(rK)=z2 |K|2/na(0w)2—v2/02—i0+ |K|2/n2(0w)—v%Ic2—io] KTx(0w)K’

o - Sn(0w) ® 5y(0w)
™ (5n(0w) ) x(0w)$y(0w)’

where n,(Ow) and s,,(Ow) are the eigenindices and unit eigenvectors of the Fresnel equation
corresponding to the tensgnOw) at anglesé,(w), ¢=0

(n?l4—n?|K| ?K®K - x(0w, 6,(»),0))s=0.

All terms in P4 are proportional tqEq|?E, or a product of three terms proportional g .
Note that the only coefficient of thg(®-tensor which plays a role i§((2'°;)22(w,w,—w). The
coefficients of they(?-tensor which play a role are the ones with at least two indices equal to 2.
In case of orthorhombic class with point group 222, the only non-vanishing coefficients of the
x?-tensor are the ones with three different indices. Consequently all componeRgsvaiish
but v,|Eo|2E, so that we get back the result of Proposition 5.
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VIIl. SPATIAL SPECTRUM OF THE SECOND HARMONIC PULSE

In this section we aim at giving the explanation of a recent experimental observation. The
framework is the following. In the context of Inertial Confinement Fusion, many high-power laser
beams are focused onto a spherical target composed of a mixture of deuterium—tritium so as to
compress it and to obtain density and pressure conditions which involve thermonuclear burning.
The laser energy production is based on the amplification of an infrared pulse in glass amplifiers,
which are the only ones capable to deliver an energy of the order of 1 to 2 megajoules. Never-
theless it is necessary to frequency convert the pulse in the ultrayld\ét domain so as to
optimize the plasma-laser interaction between the laser beams and the inertial confinement-fusion
(ICF) target. Thus the frequency tripling performance conditions the feasibility of the project. Two
successive KDP crystals, which can be produced in large dimensions, are used for the frequency
doubling and summing operations. In order to get a high tripling rate, it is necessary to adjust the
positions of the KDP crystals in the laser chain with very high accuracy, since a precision of the
order of 15urad is required. The method consists in focusing a fundamental beam and to detect
the main output angle of the second harmonic pdfsest” configuration), which should corre-
spond to the optimal frequency conversion angle. However it appears that the direction of the
frequency converted pulse of a fundamental Gaussian pulse depends on the distance between the
waist of the fundamental pulse and the crystal. The departures for different distances far exceed
the high precision level required for reaching the expected conversion performance for applica-
tions to ICF. It is, therefore, necessary to give a precise account of this unexpected phenomenon.

We assume that the fundamental pulse has Gaussian shape in the waigtplaiVge denote
by z, the distance from the waist plane to the crystal plate, ang. ltlge thickness of the plate. If
W is the beam radius in the waist plamg, is its maximal amplitude, andis its unit polarization
vector, then in the plane just before the plate the input field writes

. (KC+Kk2w3  (k2+k2)zg
— o — 2 X y . X y
E(z=24 ,ky,ky)=AgmWy exp( - 7 i oK e
wherek is the free wave number and we have performed a Fourier transform with respect to the
transverse coordinates,f/)— (ky,k,). By continuity of the tangential components of the electric
field, the field just inside the plate is the sum of an ordinary wave and an extraordinary wave

(Ki+kpwg <k§+k§>no<w>zo)

IAfo,w(zz zy kavky):AOWWSeV exr( a 4 I 2ko(w)
0

Agmwie, p( (KE+ko)wj _<k§+k§>ne<w>zo)
cofB(w) AT T 2 T 2k(w)

For the type | configuration we consider the cage 0, e,= 1. For the type Il configuration we
choose an equiphotonic repartitiep=1/2, e,=1W2.

IAEe,w(Z: Zg Ky 1ky) =

A. Type | conversion

Applying Proposition 2 the system which governs the second harmonic generation in the type
| configuration is:

i i, i2wd?
9Eow— PEq 2 g 0=

* i77kZ
2kq(w) 2ko(@) Y% ny(w) Eo.oEe20€ 7,

P E P E |Cx(2w) a2 |Cy(2w) az . I2wd<|) E2 *i?]kZ
z-e2w 770x e, 2w 2ke(2w) x—e,2w 2ke(2w) y e,2w_ne(2w)co§ﬂ(2w) O,we ’

where 7, =k¢(2w) — 2k, (w), n=tanB(2w), and
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Xo(2w) xe(2w) Xo(20)

Cx(20)= (COZ(0) xo(20) + SIP(0) xo( 200)) 2 Cy(20)= c02(0) xo(20) + SIN(0) xo(200)

We assume that the frequency conversion rate is low. Taking the Fourier transform with respect to
the spatial transverse coordinatesy)— (K, ,k,):

. iki . ik
&ZEO,w+ mEo,w—’_ 2ko(w) Eo,o)_O! (363
ik2c(2w) . ikjcy(2w)

9, e 20+ iKxE e 2+ 2k(20) Eezot Pk(Zw) Ee2o=1d} ,E0 o* Eq &' (P02,

(36b)

where* stands for the convolution operation. It is easy to find the explicit forrﬁ'(p,j from Eq.
(363 by a simple exponentiation, and convoluting this expression with itself

AomW§ kE+K;

W5 ng(w)zo+z
exp- — -

Eo.o*Eou(ZoF 2,k k) = 2 o (@)
(0]

W(?) No(w)zp+2
JE— +| S —
2 Ko(w)

In order to computéE, ,,| we set:

Ee,Zw: Ee,2a) eXpi z

2 2
kont kiCyx(2w) N kicy(2w) |
2ke(2w)  2ke(2w)

whose modulus is equal to the modulusﬁ}fzw and which satisfies

kici(2w) kicy(2w)
+ +
T 2k(2w) | 2Ko(20)

9,Ee20=1d1 5,E0 o* Eo . €XpiZ| K + 2Ko (@) — ko(2w)

The right-hand side is known, so by a simple exponentiation we get that, up to a multiplicative
constant

A _ 2 )
|E .20 2(20F 2¢ Ky  ky) = €7 YR K Koo By (— (K, Ky ) (21 +12¢)) — Ei( = ¥(Ky Ky Z1) |2,

(37
whereE; is the integral exponential functioig;(x) := [ 7[ exp(—xt)/t]dt and
K, ()W
7= o 2) O‘HZono(w),

Y(ke Ky) =K+ K5 C(20) L ) 2( ¢y(20)

P(2w) Akg(@)] N Bk(Zw)  kg(w)) T 2Ke(@) kel 20).

A study of the function(37) proves that the locations of the minima of the spectral intensity
(which are experimentally detectable with high precigida not depend on the waist distarge

B. Type Il conversion

We still assume that the frequency conversion rate is low. Taking the Fourier transform for the
spatial transverse coordinates and applying Proposition 3, the system which governs the second
harmonic generation in the type Il configuration is:
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ik? ik?
P L~ (389
Z—0,w Zko(w) 0,w 2k0(w) Oo,w 1
. _ . ik?c(w) . ikZc(w) .
9,Ee o tikymEe ,t ﬁ(—?w) Eeot 2)((—)(/“)) Ee =0, (38b)
e e
. , . ik2c(2w) . ik’c,(2w) .
aZEe,2w+|kX7’2Ee,2w+ 2)|(( )((2(,0) e,2w+ Z)II( )(lzw) e,2w
e e
2lod Eq o*Ee e ¢ 38
= *
Ne(20)cod B(2w) ¢ —ew® (389

where 7, =Kkq(2w) —Ko(w) —ko(w), n1=tanB(w), and n,=tanB(2w). The calculations are iden-
tical to the ones performed in the type | configuration. One first compute the closed-form expres-
sions of the fieldéo,w and Ee,w from Egs.(383 and(38b). These expressions are then substituted

into the right-hand side of Eq:38¢ which can then be solved. We have found that, up to a
multiplicative constant

A0 Z2+iaB,(0,)z— a’6?

A Zc 1
|Ee,2w|(2k0x:2k0y) = ‘ J'O (E_’_ iCXZ)lIZeka

a+iC,z
1 Ay(0,)Z%+iaBy(0y)z—a’d; ,
X ar iCyz)l’zeka @riC,z Xexp(—inz)dz,

(39

wherea=1z,+izg, z,=kwj/2, k=2m/\=wlc, and
cl0) G (2w) m 7
no(@na(@)  ne2a) ) " O ng(w) 27 T2

A= 95(

Cx(2w)

Ne(2w)
1 1 Cy(w)

CXZE( No(w) ne<w>)’

By(6x)= 05( —2C, |+ 6,(27m,— 1),

Ay(ey)=0§< Slo) __ 520) )

No(w)Ng(w) Ng(2w)

Cy(2w)
Ne(2w)

By(6y) = 95( —2cy),

11 cfw
Cy‘i(no(w )

In the type Il configuration the positions of the minima of the spectral intensity depend on the
waist distancezg.

IX. CONCLUSION

In this paper we have derived the equations which govern the evolutions of the slowly varying
envelopes of pulses in a bulk medium presenting anisotropic properties and nonlinear suscepti-
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bilities. In case of phase-matching we have derived the equations that govern the frequency
conversion of the source. In case of no phase matching we have derived the nonlinear
Schralinger-type equation that governs the evolution of the pulse. We have shown that the dif-
fraction operator is anisotropic, and that the nonlinear term may be more complicated than the
standard Kerr effect due tp(®-cascaded effects. We have in particular detected a configuration
where stable solitons should be naturally generated since the equation then reads as the standard
one-dimensional Schdinger equation with Kerr nonlinearity. As a natural extension of this work

we may also think at the propagation of partially coherent light in a linear or nonlinear anisotropic
medium. Indeed the intensity profiles of the speckle spots along the propagation axis are imposed
by the diffraction. So an anisotropic diffraction should involve interesting and original character-
istics of the speckle spots.
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