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High-frequency asymptotics for Maxwell’s equations
in anisotropic media Part II: Nonlinear propagation
and frequency conversion
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91128 Palaiseau Cedex, France
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This paper is devoted to the derivation of the equations that govern the propagation
and frequency conversion of pulses in noncentrosymmetric crystals. The method is
based upon high-frequency expansions techniques for hyperbolic quasi-linear and
semilinear equations. In the so-called geometric regime we recover the standard
results on the frequency conversion of pulses in nonlinear crystals. In the diffrac-
tive regime we show that the anisotropy of the diffraction operator involves re-
markable phenomena. In particular the phase matching angle of a divergent pulse
depends on the distance between the waist and the crystal plate. Finally we detect
a configuration where the beam propagation in a biaxial crystal involves the gen-
eration of spatial solitons thanks to an anomalous one-dimensional diffraction.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1354640#

I. INTRODUCTION

In 1961 Frankenet al.1 observed radiation at a double frequency when a ruby laser beam
directed into a quartz crystal. Unfortunately, because of phase mismatch of the fundamen
converted waves, the efficiency of conversion proved to be very low~about 10210%). The so-
called phase matching condition which should be fulfilled for the second harmonic gene
v1v°2v reads as 2k(v)5k(2v), or equivalentlyn(2v)5n(v), wheren is the refractive
index. In the optical transparency region of isotropic crystals, and in anisotropic crystals for w
of identical polarizations, this condition is never fulfilled because of normal dispersion (n(v)
,n(2v)). The use of anomalous dispersion is prohibited because the energy absorption
very high. In 1962 Giordmaine2 and Maker3 simultaneously and independently proposed an in
nious method of matching the phase velocities of the fundamental and converted wave
technique is based on the difference between the refractive indices of the waves with di
polarizations in an anisotropic crystal. It is now current to reach efficiency of conversion of se
ten percents.4

Anisotropy is a necessary condition for a medium to have a nonzero second
nonlinearity.5 Thex2-tensor is zero for any centrosymmetric crystal. The study of sum-frequ
generation thus takes place in anisotropic media. The aim of this paper is to describe the ef
the anisotropy of the medium and to take a rigorous account of it in the study of the non
regime and especially the frequency conversion phenomenon. The case of plane waves h
carefully studied in Ref. 6. We aim at deriving evolution equations for the slowly varying e
lopes of broadband and divergent pulses by using a technique based on high-frequency exp
of the fields.7

The derived equations find practical applications in the framework of frequency convers
high-power laser beams. Indeed the phase matching condition for efficient frequency doubli
tripling of laser beams is very drastic,4 and it is therefore, necessary to detect the principal axi
the crystal with great precision. The standard process consists in observing the main

a!Telephone: 01.69.33.46.30; Fax: 01.69.33.30.11. Electronic mail: garnier@cmapx.polytechnique.fr
16360022-2488/2001/42(4)/1636/19/$18.00 © 2001 American Institute of Physics
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direction of the frequency converted pulse of a divergent pulse. This work was originally trigg
by the experimental observation that the direction of the frequency converted pulse of a
mental Gaussian pulse depends on the distance between the waist of the fundamental pulse
crystal, even with a perfectly normal incidence. The departures for different distances exce
high-precision level required for reaching the expected conversion performance. The resu
rived in this paper predict the phenomenon and allow to compute the direction of the
matching angle as a function of the direction of the frequency converted pulse and the di
between the waist of the fundamental pulse and the crystal.

The results of this paper are also necessary for a careful treatment of the propagati
frequency conversion of partially coherent pulses. Indeed incoherent light with short cohe
time is of interest for smoothing techniques for uniform irradiation in plasma physics.8 If propa-
gation of incoherent light in isotropic linear media is now rather well understood, the evoluti
the statistical properties of incoherent pulses in anisotropic and/or nonlinear media has
insufficiently examined.9 A high level of irradiation uniformity is required for both direct an
indirect drive for Inertial Confinement Fusion.8 This criterion can be reached by implementin
active smoothing methods, such as Induced Spatial Incoherence with echelons,10 Smoothing by
Spectral Dispersion~SSD!,11 Smoothing by multimode Optical Fiber~SOF!.12 All these methods
involve the illumination on the target with an intensity which is a time varying speckle patter
that the time integrated intensity averages towards a flat profile. As an unavoidable drawba
optical smoothing techniques also involve phase modulations in the amplifiers and freq
converters~SSD!, or even intensity modulations~SOF!.

The framework for high-frequency expansions of the solutions of Maxwell’s equations
lows from the appearance of the small parameterd which has the order of magnitude of the carri
wavelength of light divided by the next smallest characteristic length present in the problem.
assume that the carrier wavelength is 1, then we have seen in Ref. 13 that for propagation
of orderd21, which corresponds to the scales of the so-called geometric optics, evolution
tions read as transport equations with constant velocity. Further, in the moving pulse-time
~moving according to the velocity exhibited by the geometric transport equations!, for propagation
length of orderd22, which corresponds to the scales of diffractive optics, the evolution of the
is governed by a Schro¨dinger equation.

The first nonlinear effect we discuss in this paper is the sum frequency generation. A n
earx2-type function applied to expressions of the formS fEf

d(dt,dx)expi(kfz2vft) will produce
harmonics, that is to say expression with phase (kf 11kf 2)z2(v f 1

1v f 2
)t. If the couples (v f ,kf)

satisfy the dispersion relation, then the natural harmonic phases generally do not, due
dispersive property of the material. The set of harmonics which satisfy the dispersion rela
generally very small~sometimes empty!, because they need to fulfill a very drastic phase match
condition.

We must also take care that the strength of interaction and, therefore, the scale for inte
depends on the amplitude of the wave. If the amplitude of the wave isda, then ap-wave
interaction process will be noticeable for propagation length of orderd2(p21)a. Since we are
mainly concerned in this paper with second-order nonlinearity, it means that the nonlinear
will appear for propagation length of the order ofd2a. Accordingly a51 will correspond to
nonlinear geometric optics anda52 to nonlinear diffractive optics.

The paper is organized as follows. First we describe the general configuration at hand
II. Section III is devoted to the derivations of the dispersion relation, the phase matching a
suitable expanded form of the solution of the Maxwell equations. We address in Secs. IV
the frequency conversion in birefringent crystals. In Sec. VI we derive the propagation equa
the slowly varying envelope of the field when the phase-matching conditions for frequency
eration are not fulfilled. In Sec. VII we study a particular configuration which should allow
generation and propagation of spatial solitons.
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II. FORMULATION AND SCALING

We consider an incident beam incoming from the left onto a nonmagnetic nonlinear c
that occupies the domainR1

3
ª$(x,y,z)PR3,z.0%. The propagation axis is perpendicular to t

boundary surfaceSª$(x,y,z)PR3,z50% and is collinear to thez axis. The evolution of the
electric fieldE is governed by the Maxwell equation

rot rot E52m0] t
2D, ~1!

where the electric induction divides into the sumD5Dl1Pnl of a linear and a nonlinear part

Dl5«0E1«0x~1!* E, ~2!

Pnl5«0x~2!* ~E,E!1«0x~3!* ~E,E,E!1¯ , ~3!

x~ j !* ~E,...,E!5E
2`

t

dt1¯E
2`

t

dtjx
~ j !~ t2t1 ,...,t2t j !:E~ t1!¯E~ t j !. ~4!

«0 and m0 are, respectively, the dielectric constant and magnetic permeability of vacuum
electromagnetic wave is assumed to be far enough from all absorption lines of the medium
we can neglect absorption and the tensorsx ( j ) are real.

The boundary condition at the surfaceS is imposed by the continuity of the tangenti
components of the magnetic and electric fields. The sourceS corresponding to the electric field o
the incoming pulse at the interfaceS is assumed to be a modulation of a high-frequency sig
whose carrier wavelength isl0 , or the superposition of a finite number of such modes. From
characteristic spatial~resp. temporal! variations of the source we can also define a length scaleR0

~resp. a time scaleT0 , associated with the lengthL0ªcT0). Our study will take place in the
framework where the dimensionless parameterdªmin$l0 /R0,l0 /L0% is small. As pointed out in
the introduction, the order of magnitudeS̄ of the source also plays a crucial role in that
determines the strength of the nonlinear interaction. Let us denote byx̄1 ~resp.x̄2) the typical
value taken by the Fourier transforms of the components of thex (1)-tensor~resp.x (2)-tensor!
evaluated at frequency 2pc/l0 . The characteristic nonlinear amplitude is defined byĒnl

ªx̄1 /x̄2 . Our study takes place in the framework of weakly nonlinear waves, which read
S̄/Ēnl!1. This ratio may be related to the small parameterd through a new parametera.0 such
that S̄/Ēnl5da. Settingx̃5x/l0 , ỹ5y/l0 , z̃5z/l0 , t̃ 5ct/l0 , D̃5D/(«0Ēnl), andẼ5E/Ēnl the
dimensionless Maxwell equation reads as

rõt rõ t Ẽ52m̃0]
t̃

2D̃,

wherem̃05«0m0c251. The sourceS̃ has a high-frequency expansion of the form

S̃~ x̃,ỹ, t̃ !5
1

2
da (

v fPVs
S vx

f ~d t̃ ,d x̃,d ỹ!

vy
f ~d t̃ ,d x̃,d ỹ)

0
D e2 iv f t̃1cc, ~5!

wherecc is a shorthand for ‘‘complex conjugate.’’VS is the collection of the high-carrier fre
quenciesv f . vf is the slowly varying envelope of the mode with carrier frequencyv f . Note that
a dimensionless propagation distancez̃ of the order ofd21 corresponds to a physical distance
the order ofR0 , while a dimensionless distancez̃ of the order ofd22 corresponds to a physica
distance of the order ofR0

2/l0 which is the well-known Rayleigh distance.
From now on we drop the tildes. We assumea priori that the electric field can be expande

in a power series of the small parameterd and in a series with respect to a set of rapid pha
kfz2v f t
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E5 1
2d

a (
~v f ,kf !PH

~Ef~dt,dx,dy,dz!ei ~kfz2v f t !1cc!, ~6a!

Ef~T,X,Y,Z!5(
j 50

`

d jEj
f~T,X,Y,Z!, ~6b!

whereEf is the slowly varying envelope of the mode whose rapid phase is (v f ,kf). The functions
Ej

f are smooth in all their arguments.H denotes the set of the rapid phases (v f ,kf) which are
contained in the fieldE. In case of linear medium13 the modes propagate without interaction a
the set of high frequencies$v f ,'kf such that (v f ,kf)PH% is equal toVS . In case of nonlinear
medium, the generation of new phases~the so-called harmonics! is expected so that the series~6!
may contain much more terms than in the source~5!.

III. PROPAGATION IN A BIREFRINGENT CRYSTAL

We introduce the geometric framework. We first define a reference frame~x,y,z! associated
with the pulse whose carrier wave vectork0 is collinear to thez axis. We then introduce a
reference frame~1, 2, 3! associated with the optic axis of the crystal, wheree3 is the main optic
axis. We denote byu the angle between the wave vector and the main optic axis.f is the angle
between the projection of the carrier wave vector onto the plane (e1 ,e2) and the axis collinear to
e1 . The transition matrix between the reference frames~x,y,z! and ~1, 2, 3! is denoted byU.

A. Principle of the high-frequency expansion

We present the principle of the high-frequency expansion method. It can be applied
source can be expanded as~5!. We proceed toa priori expansions of the field inside the crystal
the kind ~6! with a.0 ~weak nonlinearity!. In linear media~or equivalently for evanescen
sourcesa@1) all nonlinear phenomena can be neglected, and the set of the frequenciesv which
are contained inH is imposed by the source and is equal toVS . Otherwise the generation o
harmonics should be taken into account so that the setH could be much larger than in the linea
case.

The establishing of the propagation equations for the slowly varying envelopes obey
following scheme. The form~6! is substituted into Eq.~1!. Collecting the terms with similar order
in d and the same rapid phases (v f ,kf), we get a family of equations. These equations can
decomposed into coupled systems of equations parametrized by the rapid phases. In linea
these systems are independent so that the envelopes of the different modes pro
independently,13 but in nonlinear media there are coupling between the propagation equatio
the envelopes. If the form~6! is suitable, then the derived systems should have unique solut
Actually we shall show the two following statements. First, the rapid phases must satisfy d
sion relations which read as compatibility conditions for the existence of the high-frequ
expansion~6a!. Second, the leading order termsE0

f are determined by compatibility conditions fo
the existence of the series expansion~6b!.

The form ~6! is an ansatz, that is to say ana priori form of the solution which is valid in a
given domain, here forz&d21. It is compatible with the boundary conditions and the source.
self-similar with respect to the operators that are encountered in the Maxwell equation. Th
was established in Ref. 13 for the linear operators, and we shall see in the following th
expansion~6! is also self-similar with respect to the nonlinear operators.

B. Expansions of the linear terms

The linear susceptibility is defined as the Fourier transform of the tensorx (1) defined by~2!.
It is a diagonal matrixx̂123

(1) in the frame~1, 2, 3!, while in the reference frame~x,y,z! the tensor
x̂xyz

(1) is U21x̂123
(1)U. In the followingx is a shorthand for the matrixx̂xyz

(1) 1I d . If E is of the form
E5 1

2d
a (E(dt,dx,dy,dz)ei (kz2vt)1cc), then the contribution of the linear induction to the Ma
loaded 02 Apr 2001 to 129.104.4.68. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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well equation~1! and therot rot E term can be expanded as powers ofd. Denoting byT5dt,
X5dx, Y5dy, andZ5dz the slowly varying variables, we have on the one hand

2m0] t
2Dl5

1
2d

a~D0~E!1dD1~E!1d2D2~E!1O~d3!!ei ~kz2vt !1cc, ~7!

where theDj (E) are linear functions ofE given by

D0~E!5
v2

c2 xE, D1~E!5
i

c2 ~v2x!8]TE, D2~E!52
1

2c2 ~v2x!9]T
2E, ~8!

and the primes stand for partial derivatives with respect tov. On the other hand therot rot E term
writes

rot rot E5 1
2d

a~R0~E!1dR1~E!1d2R2~E!!ei ~kz2vt !1cc, ~9!

where the mappingsRj (E) are sums of partial derivatives ofE with respect to space coordinate
of order j that are given in Ref. 13.

C. Dispersion relations for the rapid phases

We aim at showing here that the rapid phases (v f ,kf) of the setH should fulfill the so-called
dispersion equation. By substituting the ansatz~6! into Eq.~1! and collecting the coefficients with
powerda and phases (v f ,kf), we get by applying the identities~7! and~9! that the leading order
term E0

f should satisfy

R0~E0
f !5D0~E0

f !, ~10!

similarly as in the linear case. This is of course expected, since the weakness of the ampli
the pulse~of orderda with a.0) prevents nonlinear terms from coming into the leading par
the expansion with respect tod.

As established in Ref. 13 there exist two positive solutionsna andnb and two polarizationssa

andsb so thatsa andsb are unit vectors and (navc21,sa) and (nbvc21,sb) are solutions of Eq.
~10!. We define the dispersion relationship, the group velocity and the dispersion coefficient
waves as follows:

km~v!ª
vnm~v!

c
, vm~v!ªS ]km

]v D 21

, sm~v!ªkm

]2km

]v2 , m5a,b, ~11!

and we denote bybm the angle between the polarization vectorsm and thez axis

cos2~bm~v!!5smx
2 ~v!1smy

2 ~v!.

In order to fulfill condition~10!, the set (v f ,kf ,E0
f ) must satisfy one of the three followin

alternatives:

~i! Either kf5ka(v f) and the components ofE0
f parallel tosa(v f) may be nonvanishing;

~ii ! eitherkf5kb(v f) and the components ofE0
f parallel tosb(v f) may be nonvanishing;

~iii ! or kf¹$ka(v f),kb(v f)%, and then necessarilyE0
f [0.

Note that the third option simply means that modes which are not phase-matched cannot h
envelope of orderda.

We can now give a suitable description of the setH of the rapid phases. The setH in the
general nonlinear framework should at least contain the rapid phases that were exhibited
linear framework for a given sourceS that is to say

HS5Ha,S øHb,S ,
loaded 02 Apr 2001 to 129.104.4.68. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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where Ha,S and Hb,S are the subsets of the rapid phases which satisfy either thea dispersion
relation or theb relation

Hm,S5$~v,k! such thatvPVS and k5km~v!%.

In a nonlinear medium the generation of new frequencies is expected. The choice of the
should take into account this phenomenon and that is why the setH of all possible rapid phase
reads as the extended formulation

H5H ~v,k! such that ' j 1 ,...,j nPZ,~v i ,ki !PHS ,v5(
j 51

n

j iv i , and k5(
j 51

n

j ikiJ .

The rapid phases (v,k)PH for which v¹VS correspond to the so-called harmonic modes. Si
the pairs (v f ,kf) are algebraic sums of adapted rapid phases which originate fromHS , and since
the media we usually consider have a normal dispersion, there is only two types of phase m
~assuming thatna,nb):

~i! Type I: Both fundamental modes are of typea and the harmonic mode is of typeb with
vh5vp1vq andka(vq)1ka(vp)5kb(vh);

~ii ! Type II: One of the fundamental modes is of typea and the other one of typeb, while the
harmonic mode is also of typeb with vh5vp1vq andka(vp)1kb(vq)5kb(vh).

Only the rapid phases ofH which satisfy one of the two phase matching conditions may pos
a nonvanishing zeroth-order componentE0

f . That is why the physically relevant modes are tho
for which the rapid phases belong toHac

Hac5$~v,k!PH such thatk5ka~v! or k5kb~v!%.

The leading order terms for the other harmonic phases (v f ,kf)PH\Hac are at most of orderd2a,
that is to sayEf;daEa

f 1O(da11). Nevertheless it is necessary to take into account the harm
modes that are not phase-matched so as to close the propagation equations. To comp
section we would like to add that the phase matching condition is only required to be fulfill
order 1. A phase matching condition satisfied up to a term of orderd:kb(vh)2kp2kq;O(d) or
kb(vh)2kp2kq;O(d), is a sufficient condition for an harmonic phase to possess an enve
with a nonvanishing leading order termE0

h . We shall encounter such situations in the forthcom
sections.

D. Boundary condition

If we assume that the sourceS can be expanded as~5!, and accordingly that the fieldE inside
the crystal is of the form~6!, then collecting the coefficients with powerda and high carrier
frequencyv f establishes the continuity conditions which impose that the components para
the boundary surface of the input fieldS and of the fieldE should be equal, while there are n
condition for the normal components. Sincea.0 these conditions are the same as in the lin
configuration, so the typem mode (m5a,b) with carrier frequencyv f should be atz501

E0,m
f ~dt,dx,dy,z501!5

2

11nm~v!

1

smx
2 1smy

2 S smx
2 smxsmy 0

smxsmy smy
2 0

smxsmz smysmz 0
D vf~dt,dx,dy!.

E. Poynting vector and diffraction operator in the linear framework

In this section we remember the reader with the main results of Ref. 13 in the case wh
nonlinear polarization is neglected. The following results hold true when the two eigenin
(na ,nb) are different from each other. Note that the occurrence of the casena5nb corresponds to
loaded 02 Apr 2001 to 129.104.4.68. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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very particular configurations which were thoroughly studied in Ref. 13. In the framewor
frequency conversion, these configurations are not interesting since we aim at using the ex
of two different dispersion relations for the modes to fulfill the phase matching conditions.
input wave break into the sum of modulations of high-frequency signals, which also divide
two modes which all propagate independently. For each high frequencyv and modem5a,b, the
Poynting vector of the mode is collinear to

um~v!5S smxsmz

smx
2 1smy

2 ,
smysmz

smx
2 smy

2 ,21D T

. ~12!

In the reference frame (dt,dx,dy,dz) the slowly varying envelopeEm
v of the mode satisfies the

transport equation]ZEm
v1Tm(v)Em

v50 where

Tm~v!52umx~v!]X2umy~v!]Y1vm~v!21]T . ~13!

In the moving reference frame (d(t2z/vm),d(x1umxz),d(y1umyz),d2z) the slowly varying
envelopeEm

v of the mode satisfies a Schro¨dinger-type equation with respect to the long sc
variablez5d2z

2ikm~v!]zEm
v1Lm~v!Em

v1Km~v!Em
v50, ~14!

where the diffraction operatorLm(v) is anisotropic~see Ref. 13 for the complete expressions
the cm,...)

Lm~v!5cm,xx~v!]X
212cm,xy~v!]X]Y1cm,yy~v!]Y

2, ~15!

and the dispersion operatorKm(v) contains crossed space–time derivatives

Km~v!52sm~v!]T
212km~v!~]vumx!~v!]T]X12km~v!~]vumy!~v!]T]Y . ~16!

F. Second-order nonlinear polarization

The nonlinear susceptibility is the Fourier transform of the tensorx (2) defined by~3!

x̂~2!~v1 ,v2!ªE
0

`

dt1E
0

`

dt2x~2!~ t1 ,t2!eiv1t11 iv2t2.

Time integration starts from 0 to satisfy the causality property. We introduce the projectorQvc ,kc

acting on fields of the formA5 1
2( (v f ,kf )PH

Ad
f ei (kfz2v f t)1cc by

Qvc ,kc~A!5Ad
c if ~vc ,kc!PH, and 0 otherwise.

The (vh ,kh) component of the nonlinear polarization in the crystallographic frame then rea

Qvh ,kh~Pnl!5
e0

2 (
p,q,vp1vq5vh ,kp1kq5kh

x̂~2!~vp ,vq!:~Ep,Eq!.

For frequenciesvp andvq and for typesm1 andm2 in $a, b% we denote bysm1,m2
(vp ,vq) the

vector

sm1 ,m2
~vp ,vq!ªx̂~2!~vp ,vq!:~sm1

~vp!,sm2
~vq!!. ~17!

We list in the following the processes which can give rise to the generation of new frequen
loaded 02 Apr 2001 to 129.104.4.68. Redistribution subject to AIP copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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~i! Type I conversion.
Let us denotevh5vp1vq , kp5ka(vp), kq5ka(vq), andkh5kp1kq. ThenEp1Eq is of
the form 1

2E
psa(vp)ei (kpz2vpt)1 1

2E
qsa(vq)ei (kqz2vqt)1cc. In the~xyz!-reference frame the

nonlinear polarization readsPnl,xyz5U21Pnl,123U and the (vh ,kh) component is

Qvh ,kh~Pnl,xyz!5e0sa,a~vp ,vq!EpEq. ~18!

~i! Type II conversion.
Let us denotevh5vp1vq , kp5ka(vp), kq5kb(vq), andkh5kp1kq. ThenEp1Eq is of
the form 1

2E
psa(vp)ei (kpz2vpt)1 1

2E
qsb(vq)ei (kqz2vqt). In the ~xyz!-reference frame the

nonlinear polarization readsPnl,xyz5U21Pnl,123U and the (vh ,kh) component is

Qvh ,kh~Pnl,xyz!5e0sa,b~vp ,vq!EpEq. ~19!

In the case of the class 42̄m which contains in particular potassium dihydrogen phosph
~KDP! crystal, thex (2)-tensor has only six nonvanishing components which are equal to
coefficient 2d: x̂123

(2)5x̂132
(2)5x̂213

(2)5x̂231
(2)5x̂312

(2)5x̂321
(2)52d. The vectorsso,o andso,e then read as

so,o52dS sinu sin~2f!

0
2cosu sin~2f!

D , so,e52dS cos~2f!sin~b22u!

2sin~2f!sin~b2u!

cos~2f!cos~b22u!
D .

IV. TYPE I PHASE-MATCHING

We assume that the incoming pulse consists of two modes with carrier frequenciesvp andvq

which are linearly polarized along thesa(vp)-axis andsa(vq)-axis, respectively

S5 1
2d

a~vp~dx,dy,dt !sa~vp!e2 ivpt1vq~dx,dy,dt !sa~vq!e2 ivqt!1cc. ~20!

The type I phase matching conditions are assumed to be satisfied for the sumvp1vq5vh

ka~vp!1ka~vq!5kb~vh!. ~21!

We also assume that the pair (vh ,kb(vh)) is the only adapted harmonic phase, that is to say
phase matching condition is not fulfilled for a subtraction or a sum betweenvp , vq , and vh

different from vh5vp1vq . As a consequenceHac5$(vp ,kp),(vq ,kq),(vh ,kh)% where kp

5ka(vp), kq5ka(vq), andkh5kb(vh). The adapted ansatz is accordingly

E5Ep1Eq1Eh1R, ~22a!

Ef5
1

2
daS (

j 50

`

d jEj
f~dt,dx,dy,dz!D ei ~kfz2v f t !1cc, ~22b!

whereR indicates a series of harmonic modes whose leading order coefficientsE0
f are vanishing.

The parametera will then play a crucial part since the order of magnitude of the input pu
imposes the distance scale at which the nonlinear effects become noticeable.

A. Geometric optics aÄ1

We denoteT5dt, X5dx, Y5dy, Z5dz.
Proposition 1: If the source can be expanded as (20), then the fundamental modes are

a for the carrier frequenciesvp andvq while the harmonic mode at frequencyvh is of type b. By
denoting E0

p5sa(vp).E0
p , E0

q5sa(vq).E0
q , and E0

h5sb(vh).E0
h the projections of the modes ont

their respective unit polarization vectors, the slowly varying envelopes E0
f satisfy the following

coupled equations:
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]ZE0
p1Ta~vp!~E0

p!5
ivpd~ I !

na~vp!cos2~ba~vp!!
E0

q* E0
h , ~23a!

]ZE0
q1Ta~vq!~E0

q!5
ivqd~ I !

na~vq!cos2~ba~vq!!
E0

p* E0
h , ~23b!

]ZE0
h1Tb~vh!~E0

h!5
ivhd~ I !

nb~vh!cos2~bb~vh!!
E0

pE0
q , ~23c!

starting from E0
p(T,X,Y,Z50)5(2/@11na(vp)#)vp(T,X,Y), E0

q(T,X,Y,Z50)5(2/@1
1na(vq)#)vq(T,X,Y) and E0

h(T,X,Y,Z50)50, where the transport operatorTm(v) is given by
~13! and

d~ I !5
sa~vp!.sa,b~vq ,vh!

2c
.

Proof: The strategy is formally the same as in linear configurations. We substitute the a
~22a! and ~22b! with a51 into Eq.~1! and we collect the coefficients with the same power od
and the same carrier frequency. At orderd we find the dispersion relation and phase match
conditions discussed in Sec. III C. At orderd2, we project the equation onto the three axes.
For the frequencyvp ~resp.2vp), denotingkp5ka(vp)

R0~E1
p!1R1~E0

p!5D0~E1
p!1D1~E0

p!1m0vp
2Qvp ,kp~Pnl~E0 ,E0!!, ~24!

where we retain only the terms of orderd in Pnl , which are the ones that give a contribution of t
nonlinear polarization of orderd2. Further in the nonlinear termPnl(E0 ,E0) we only retain the
coefficients with rapid phase1(kpz2vpt). Only the frequenciesvh and2vq can generatevp

~resp.2vh and vq for 2vp). We, therefore, compute the sum of a typea wave at frequency
2vq with a typeb wave at frequencyvh . By applying~19! we get in the reference frame~x,y,z!:

Qvp ,kp~Pnl~E0 ,E0!!5e0sa,b~vq ,vh!E0
q* E0

h .

The projection of Eq.~24! onto sa(vp) then provides the compatibility condition which reads
Eq. ~23a!.

For the frequencyvq , the situation is similar. We get Eq.~23b! with an expression ofd(I )

which isd(I )85(sa(vq).sa,b(vp ,vh))/(2c), and using the symmetry properties ofx̂ (2)14 it is easy
to prove thatd(I )85d(I ).

For the frequencyvh , denotingkh5kb(vh):

R0~E1
h!1R1~E0

h!5D0~E1
h!1D1~E0

h!1m0vh
2Qvh ,kh~Pnl~E0 ,E0!!, ~25!

where we retain only the terms of orderd in Pnl , which are the ones that give a contribution of t
nonlinear polarization of orderd2. Further in the nonlinear termPnl(E0 ,E0) we only retain the
coefficients with rapid phase1(khz2vht). Only the frequenciesvp and vq can generatevh

~resp.2vp and2vq for 2vh). We therefore compute the sum of a typea wave at frequencyvp

with a typea wave at frequencyvq . By applying~18!, we get in the reference frame~x,y,z!

Qvh ,kh~Pnl,xyz!5e0sa,a~vp ,vq!E0
pE0

q .

The projection of Eq.~25! onto sb(vh) then provides the compatibility condition which reads
Eq. ~23c! with d(I )95(sb(vh).sa,a(vp ,vq))/(2c), and using the symmetry properties ofx̂ (2) it is
easy to prove thatd(I )95d(I ). h
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B. Approximate phase matching

In the above section we have considered a perfect phase matching condition. This cond
indeed very stringent and should be fulfilled at the leading order. Nevertheless it is barely po
in realistic experimental configurations to reach such a level of perfection. It is therefore re
to address the case of a slight perturbation of the ideal caseu5upm whereupm is the angle which
satisfies~21!. We consider in this section that the phase matching condition is fulfilled up to a
of orderd and we setu5upm1dh. The corresponding propagation equations read

]ZE0
p1Ta~vp!E0

p5
ivpd~ I !

na~vp!cos2~ba~vp!!
Eq* Ẽ0

h ,

]ZE0
q1Ta~vq!E0

q5
ivqd~ I !

na~vq!cos2~ba~vq!!
E0

p* E0
h ,

]ZE0
h1Tb~vh!E0

h5
ivhd~ I !

nb~vh!cos2~bb~vh!!
E0

pE0
q1 ihkE0

h ,

wherehk5h@]kb(vh)/]u#uu5upm
. By settingẼ0

h5E0
he2 ihkZ, this system reduces:

]ZE0
p1Ta~vp!E0

p5
ivpd~ I !

na~vp!cos2~ba~vp!!
E0

q* Ẽ0
heihkZ,

]ZE0
q1Ta~vq!E0

q5
ivqd~ I !

na~vq!cos2~ba~vq!!
E0

p* Ẽ0
heihkZ,

]ZẼ0
h1Tb~vh!Ẽ0

h5
ivhd~ I !

nb~vh!cos2~bb~vh!!
E0

pE0
qe2 ihkZ.

It appears that it is necessary to add a phase2hkZ to the harmonic field so as to make th
frequency conversion equations into a standard form. It shows that the rapid phase of the ha
is imposed by the product of the phases of the fundamental modes: expi((kp1kq)z2(vp1vq)t),
which is different from the ‘‘natural’’ typeb phase expi(kb(vh)z2vht), with vh5vp1vq .

C. Diffractive optics aÄ2

In this configuration the nonlinear effects are weaker, of the order ofd2a5d4, so that they can
show themselves only after a longer propagation distancez of the order ofd22. The technique is
the same as for the derivations of the propagation equations in the linear framework. Th
result is expressed in terms of the original variablesx,y,z,t:

Proposition 2: Let us assume that the input fieldS consists of two modes with carrier fre
quenciesvp and vq which are linearly polarized along thesa(vp)-axis andsa(vq)-axis, respec-
tively. Then the fundamental modes are of type a and the harmonic mode is of type b(vh5vp

1vq). We denote kp5ka(vp), kq5ka(vq), kh5kb(vh), hk5kh2kp2kq, and Ẽh5Ehe2 ihkz.
We introduce the projections of the envelopes of the modes onto their respective unit polar

vectors: Ep5sa(vp).Ep, Eq5sa(vq).Eq, and Ẽh5sb(vh).Ẽh. The system which governs th
propagation and conversion is:

]zE
p1Ta~vp!Ep2

i

2kp La~vp!Ep2
i

2kp Ka~vp!Ep5
ivpd~ I !

na~vp!cos2~ba~vp!!
Eq* Ẽheihkz,

]zE
q1Ta~vq!Eq2

i

2kq La~vq!Eq2
i

2kq Ka~vq!Eq5
ivqd~ I !

na~vq!cos2~ba~vq!!
Ep* Ẽheihkz,
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]zẼ
h1Tb~vh!Ẽh2

i

2kh Lb~vh!Ẽh2
i

2kh Kb~vh!Ẽh5
ivhd~ I !

nb~vh!cos2~bb~vh!!
EpEqe2 ihkz,

where the transport operatorTm and the diffraction-dispersion operatorsLm andKm are given by
(13), (15), and (16), respectively (where small letters should be substituted for capital lette.

V. TYPE II PHASE-MATCHING

We assume that the source can be expanded as

S5
1

2
d2S vx~dx,dy,dt !e2 ivqt

vy~dx,dy,dt !e2 ivpt

0
D 1cc, ~26!

and that the type II phase matching condition is almost satisfied by the sumvp1vq5vh :

kb~vh!2ka~vp!2kb~vq!5O~d!.

We also assume that the pair (vh ,kb(vh)) is the only adapted harmonic phase, that is to say
phase matching condition is not fulfilled for a subtraction or a sum betweenvp , vq , and vh

different from vh5vp1vq , so that the suitable ansatz is~22a! and ~22b! with Hac

5$(vp ,kp),(vq ,kq),(vh ,kh)% wherekp5ka(vp), kq5kb(vq), andkh5kb(vh). The main result
is obtained by using the very same techniques as in the previous sections so that we only
in the original variablesx,y,z,t. We denote the phase mismatch byhkªkh2kp2kq.

Proposition 3. Let us assume that the input fieldS consists of two modes with carrier fre
quenciesvp and vq which are linearly polarized along the y axis and x axis, respectively. T
the modes of the fieldE are ordinary for the fundamentalvp and extraordinary for the funda-

mental vq and harmonic vh5vp1vq . By introducing Ẽh5Ehe2 ihkz and denoting Ep

5sa(vp).Ep, Eq5sb(vqEq). and Ẽh5sb(vh).Ẽh the projections of the envelopes of the mod
onto their respective unit polarization vectors, the system which governs the propagatio
conversion is:

]zE
p1Ta~vp!Ep2

i

2kp La~vp!Ep2
i

2kp Ka~vp!Ep5
ivpd~ II !

na~vp!cos2~ba~vp!!
Eq* Ẽheihkz,

]zE
q1Tb~vq!Eq2

i

2kq Lb~vq!Eq2
i

2kq Kb~vq!Eq5
ivqd~ II !

nb~vq!cos2~bb~vq!!
Ep* Ẽheihkz,

]zẼ
h1Tb~vh!Ẽh2

i

2kh Lb~vh!Ẽh2
i

2kh Kb~vh!Ẽh5
ivhd~ II !

nb~vh!cos2~bb~vh!!
EpEqe2 ihkz,

where

d~ II !5
sa~vp!.sb,b~vq ,vh!

2c
.

VI. PROPAGATION FAR FROM PHASE-MATCHING

In the two previous sections we have examined the two cases corresponding to
matching for sum-frequency generation. In this section we consider the general situation wh
phase-matching condition is not fulfilled so as to derive the propagation equation of the f
mental wave, and also some information for the different harmonic waves. Such a work ha
performed by Leblond15 who considered the propagation of a pulse along the principal axis
uniaxial crystal. In this section we consider the general case of biaxial crystals in the configu
when the two eigenindices are different from each other. We assume a source of the form
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S5 1
2dv~dx,dy,dt !~sax~v!,say~v!,0!Te2 ivt1cc, ~27!

and we shall see that the suitable ansatz for the scales corresponding to diffractive optics

E5E0v1E1v1E2v1R, ~28a!

Elv5
1

2
d(

j 50

`

d jEj
lv~d~ t2z/va!,d~x1uaxz!,d~y1uayz!,d2z!eil ~ka~v!z2vt !1cc, ~28b!

whereR is a sum of harmonic waves whose leading order term is of orderd3 or smaller, andva ,
ua are shorthands forva(v), ua(v), respectively.

Proposition 4: If we assume that the input fieldS consists of one mode with carrier frequen
v which is linearly polarized along thesa(v)-axis, then the slowly varying envelope of the fieldE
is of type a and E05sa(v).E0

1v satisfies the nonlinear Schro¨dinger equation

2ika]zE01La~v!E01Ka~v!E01P3~E0!50, ~29!

starting from E0(T,X,Y,z50)5(2/@11na(v)#)v(T,X,Y), where P3(E0)5(g11g2)uE0u2E0

1sa .x̂ (2)(0,v)(E1
0v* ,E0

1v),

g15 3
4sa~v!.x̂~3!~v,v,2v!:~sa~v!,sa~v!,sa~v!!,

g25 1
2sa~v!.x̂~2!~2v,2v!:~~na

2~v!J2x~2v!!21sa,a~v,v!,sa~v!!,

where J is the333 matrix whose entries are vanishing but J115J2251. The second harmonic is
of orderd2 and its leading order termE1

2v is given by (30). The zero harmonic is of orderd2 and
its leading order termE1

0v is given by (32). All other harmonic are of order smaller thand3.
Note that far from phase matching, the second harmonic does not propagate with its n

phase velocity and group velocity, but with those of the fundamental. But it is smaller by an
of magnitude. The same holds true for the zero-harmonic term. By ‘‘zero-harmonic’’ we me
electromagnetic wave whose wavelength is of the order ofd21.

Proof:

~i! Computation of the leading order term at 2v.
Collecting the terms of orderd2 at frequency 2v provides an explicit representation fo
E1

2v :

E1
2v5 1

2~na
2~v!J2x~2v!!21x̂~2!~v,v!:~E0

1v ,E0
1v!. ~30!

Note that the matrixna
2(v)J2x(2v) is invertible since we assume that there is no pha

matching for second harmonic generation.
~ii ! Computation of the leading order term at 0v.

Collecting the terms of orderd4 at frequency 0v yields:

R2~E1
0v!5D2~E1

0v!2c22]T
2P2 ,

whereP2 is given by

P25x̂~2!~v,2v!~E0
1v ,E0

1v* !.

Note thatD2(E1
0v)52c22x(0v)]T

2E1
0v . The computation ofE1

0v is formally identical as
for the second-harmonic wave, that is to say the zero-harmonic wave is obtained by
ing an inversion operator@here (R22D2)21] to a functional of the leading-order term o
the fundamental wave~here2c22]T

2P2). But the inversion is a little more elaborate, sin
it requires to apply the Green function of a linear nondispersive Maxwell equation. We
in what follows an explicit formulation of this inversion. First denote byRot the standard
‘‘ rot ’’ operator operating on the macroscopic variables~X,Y,Z!. Consider the
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problem of finding the solutionE of the following Maxwell equation with a source:

Rot Rot E52c22x~0v!]T
2E2c22]T

2P,

whereP(T,X,Y,Z) is the polarization induced by the source. Taking the Fourier transf
with respect to time and space

~uK u2I d2K ^ K2n2c22x~0v!!Ê~n,K !5n2c22P̂~n,K !, ~31!

wheren is the frequency,K the wave number, andS^ U is the matrix whose entries ar
SiU j . We denote byNa andNb the two solutions of the Fresnel equation associated w
the tensorx(0v):

det~N2Id2N2uK u2K ^ K2x~0v!!50,

and bySa andSb the corresponding unit eigenvectors. The Green functionĝ(n,K ) corre-
sponding to Eq.~31! is defined by the equation

Ê~n,K !5ĝ~n,K !P̂~n,K !.

It was shown by Lax and Nelson that the Green function can be written in the form16

ĝ~n,K !5
n2

c2 S ea

uK u2/Na
22n2/c22 io

1
eb

uK u2/Nb
22n2/c22 io D 2

K ^ K

KTx~0v!K
,

em5
Sm^ Sm

Sm
T x~0v!Sm

.

If n,0, then the term2 io should be replaced by1 io. We then introduce the auxiliary
function Ĝ which is the projection ofĝ onto the characteristic equation satisfied byP2

Ĝ~n,Kx ,Ky!5ĝ~n,Kx ,Ky ,Kxuax~v!1Kyuay~v!2n/va~v!!,

G~T,X,Y!5
1

~2p!3
EĜ~n,Kx ,Ky!e

i~KxX1KyY2nT!dXdYdT.

We finally define the convolution operatorC which associates to any pair of vector-valu
functionsA1(T,X,Y) andA2(T,X,Y) the vector-valued function

C* ~A1 ,A2!~T,X,Y!ªE G~T2s,X2u,Y2v !@ x̂~2!~v,2v!:~A1 ,A2!~s,u,v !#dsdudv.

The leading order termE1
0v(T,X,Y,z) of the zero-harmonic wave can then be expressed

everyz as the application of theC-operator to the pair (E0
1v(.,.,.,z),E0

1v* (.,.,.,z)):

E1
0v~T,X,Y,z!5C* ~E0

1v~ .,.,.,z!,E0
1v* ~ .,.,.,z!!~T,X,Y!. ~32!

~iii ! Equation for the corrective term atv.
Collecting the terms of orderd2 at frequencyv we get an explicit form for the first
corrective termE1

1v of the fundamental wave. No nonlinear term is coming to at this or
so the expression is identical to the linear framework~see Ref. 13!.

~iv! Equation for the leading order term atv.
Collecting the terms of orderd3 at frequencyv we get

R2~E0
1v!1R1~E1

1v!1R0~E2
1v!5D2~E0

1v!1D1~E1
1v!1D0~E2

1v!2c22P3 ,

where the contribution of the nonlinear polarization is:

P35~ 3
4!x̂

~3!~v,v,2v!:~E0
1v ,E0

1v ,E0
1v* !1x̂~2!~2v,2v!:~E1

2v ,E0
1v* !

1x̂~2!~0v,v!:~E1
0v ,E0

1v!.
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Projecting ontosa(v) we get

sa~v!.R2~E0
1v!1sa~v!.R1~E1

1v!5sa~v!.D2~E0
1v!1sa~v!.D1~E1

1v!2c22sa~v!.P3 .

Substituting the expression ofE1
1v establishes the result.

Note that the long-scale variablez plays the role of a parameter in the expression~32! of E1
0v .

Consequently Eq.~29! reads as a simple first-order evolution equation with respect to
z-variable for the envelopeE0 . This provides a simple numerical scheme to computeE0(.,.,.,z
1Dz) from E0(.,.,.,z).

VII. SPATIAL SOLITON PROPAGATION IN BIAXIAL CRYSTALS

We examine in this section the propagation in biaxial crystals of the modulation of a
frequency signal with frequencyv in the particular configurationu5u r(v) andf50 or p where

sin2 u r~v!5
12x2~v!/x1~v!

12x3~v!/x1~v!
.

Computing all relevant quantities according to the general formulas we have found in part
that the typea eigenindex and unit polarization eigenvector arena

2(v)5x2(v) and sa(v)
5(0,1,0)T, respectively~for the typeb we refer to Ref. 13!. The diffraction coefficients for the
a-mode areca,xx(v)51, ca,xy(v)50, and ca,yy(v)50, while the dispersion operator read
Ka(v)52sa(v)]T

2. The striking point is that the diffraction operator for the typea wave is
degenerate, in the sense that there is no diffraction in they-direction. Let us assume that the carri
frequencyv of the input pulse is such that the phase matching condition for the second-harm
generation is not fulfilled. For the sake of simplicity we first restrict ourselves to one of the
following classes:17

~1! triclinic class with point group 1̄, such as Mica or Al2SiO5;
~2! monoclinic class with point group 2/m, such as AgAuTe4 or PbSiO3;
~3! orthorhombic class with point groupmmm, such as CaCl2, or Al2BeO4 ~also called alexan-

drite!.

The crystals of these classes are biaxial and have a vanishingx (2)-tensor. This simplification
allows us to get rid of thex (2)-cascaded terms and to deal with a simplex (3)-component which
then reads as a simple Kerr effect. The result is the following:

Proposition 5. In cases 1, 2, 3, if we assume that the input fieldS consists of one mode wit
carrier frequencyv which is linearly polarized along the y axis, then the slowly varying envel
of the fieldE is polarized along the y axis and E05(0,1,0).E0

1v satisfies the nonlinear Schro¨dinger
equation

2ika]zE01]X
2E02sa]T

2E01guE0u2E050, ~33!

starting from E0(T,X,Y,z50)5(2/@11na(v)#)v(T,X,Y), whereg5( 3
4)x̂2222

(3) (2v,v,v).
The removal of the time variable is involved by the assumption that there is no modulati

the input pulse at the time scaled21, which is typically of the order of the picosecond, but on
at scaled22, which is typically of the order of the nanosecond. Then the slowly varying enve
of the field satisfies the standard one-dimensional Schro¨dinger equation

2ika]zE01]X
2E01guE0u2E050. ~34!

The one-dimensional nonlinear Schro¨dinger equation possesses the complete integrability p
erty, which implies that stable solitons should be generated and propagate over large dista
a pulse is focused onto a crystal plate according to the incident angle and polarization des
here above, then in thex-transverse direction the profile of the pulse will not diffract and keep
original form while in the transversey-direction the pulse will break into a soliton~or eventually
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several solitons! and radiation whose amplitude will decay as standard one-dimensional wav
in linear media, that is to say at ratez21/2. The incident pulse must at least fulfill a well-know
power criterion so that a soliton can be generated18

E
2`

`

uE0udx>1.279g21/2,

which simply means that the incident pulse should be sufficient focused so that its power* uE0u2dx
be concentrated on a small segment. Nevertheless one should still remain in the domain wh
~33! holds true, which is basically the paraxial approximation.

In case of biaxial crystals with nonvanishingx (2)-tensor the result is qualitatively the same,
the sense that the diffraction operator still reads as a one-dimensional second-order derivat
x (2)-cascaded terms make the nonlinear term more complicated. We aim in the following p
sition at generalizing Proposition 5 to any biaxial crystal.

Proposition 6. For any biaxial crystal in the configurationu5u r andf50, if we assume that
the input fieldS consists of one mode with carrier frequenciesv which is linearly polarized along
the y axis, then the slowly varying envelope of the fieldE is polarized along the y axis and E0

5(0,1,0).E0 satisfies the nonlinear Schro¨dinger equation

2ika]zE01]X
2E02sa]T

2E01P3~E0!50, ~35!

where P3(E0)5(g11g2)uE0u2E01S j ,l 51
3 g3 j l

F j l (uE0u2(.,.,.,z))E0 , with

g15 3
4x̂2222

~3! ~v,v,2v!,

g25
1

2 (
j 51

3

x̂2 j 2
~2! ~2v,2v!@~na

2~v!J2x~2v!!21x .22
~2!~v,v!# j ,

g3 j l
5x̂2 j 2

~2! ~0,v!x̂ l22
~2!~v,2v!,

F j l ~ I ~ .,.,.!!~T,X,Y!5 (
j 8,l 851

3

U j j 8Ull 8E Gj 8 l 8~T2s,X2u,Y2v !I ~s,u,v !dsdudv.

G is the Green function whose Fourier transform is Gˆ (n,Kx ,Ky)5ĝ(n,Kx ,Ky ,2n/va(v)) with:

ĝ~n,K !5
n2

c2 S ea

uK u2/na~0v!22n2/c22 io
1

eb

uK u2/nb
2~0v!2n2/c22 io D 2

K ^ K

KTx~0v!K
,

em5
sm~0v! ^ sm~0v!

~sm~0v!T!x~0v!sm~0v!
,

where nm(0v) and sm(0v) are the eigenindices and unit eigenvectors of the Fresnel equa
corresponding to the tensorx~0v! at anglesu r(v), f50

~n2I d2n2uK u22K ^ K2x~0v,u r~v!,0!!s50.

All terms in P3 are proportional touE0u2E0 or a product of three terms proportional toE0 .
Note that the only coefficient of thex (3)-tensor which plays a role isx̂2222

(3) (v,v,2v). The
coefficients of thex (2)-tensor which play a role are the ones with at least two indices equal
In case of orthorhombic class with point group 222, the only non-vanishing coefficients o
x (2)-tensor are the ones with three different indices. Consequently all components ofP3 vanish
but g1uE0u2E0 so that we get back the result of Proposition 5.
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VIII. SPATIAL SPECTRUM OF THE SECOND HARMONIC PULSE

In this section we aim at giving the explanation of a recent experimental observation
framework is the following. In the context of Inertial Confinement Fusion, many high-power
beams are focused onto a spherical target composed of a mixture of deuterium–tritium s
compress it and to obtain density and pressure conditions which involve thermonuclear bu
The laser energy production is based on the amplification of an infrared pulse in glass amp
which are the only ones capable to deliver an energy of the order of 1 to 2 megajoules. N
theless it is necessary to frequency convert the pulse in the ultraviolet~UV! domain so as to
optimize the plasma-laser interaction between the laser beams and the inertial confinemen
~ICF! target. Thus the frequency tripling performance conditions the feasibility of the project.
successive KDP crystals, which can be produced in large dimensions, are used for the fre
doubling and summing operations. In order to get a high tripling rate, it is necessary to adju
positions of the KDP crystals in the laser chain with very high accuracy, since a precision
order of 15mrad is required. The method consists in focusing a fundamental beam and to
the main output angle of the second harmonic pulse~‘‘test’’ configuration!, which should corre-
spond to the optimal frequency conversion angle. However it appears that the direction
frequency converted pulse of a fundamental Gaussian pulse depends on the distance betw
waist of the fundamental pulse and the crystal. The departures for different distances far
the high precision level required for reaching the expected conversion performance for ap
tions to ICF. It is, therefore, necessary to give a precise account of this unexpected pheno

We assume that the fundamental pulse has Gaussian shape in the waist planez50. We denote
by z0 the distance from the waist plane to the crystal plate, and byzc the thickness of the plate. I
w0 is the beam radius in the waist plane,A0 is its maximal amplitude, ande is its unit polarization
vector, then in the plane just before the plate the input field writes

Ê~z5z0
2 ,kx ,ky!5A0pw0

2 expS 2
~kx

21ky
2!w0

2

4
2 i

~kx
21ky

2!z0

2k De,

wherek is the free wave number and we have performed a Fourier transform with respect
transverse coordinates (x,y)°(kx ,ky). By continuity of the tangential components of the elect
field, the field just inside the plate is the sum of an ordinary wave and an extraordinary wa

Êo,v~z5z0
1 ,kx ,ky!5A0pw0

2ey expS 2
~kx

21ky
2!w0

2

4
2 i

~kx
21ky

2!no~v!z0

2ko~v!
D ,

Êe,v~z5z0
1 ,kx ,ky!5

A0pw0
2ex

cos~b~v!!
expS 2

~kx
21ky

2!w0
2

4
2 i

~kx
21ky

2!ne~v!z0

2ke~v!
D .

For the type I configuration we consider the caseex50, ey51. For the type II configuration we
choose an equiphotonic repartitionex51/&, ey51/&.

A. Type I conversion

Applying Proposition 2 the system which governs the second harmonic generation in th
I configuration is:

]zEo,v2
i

2ko~v!
]x

2Eo,v2
i

2ko~v!
]y

2Eo,v5
i2vd~ I !

no~v!
Eo,v* Ee,2veihkz,

]zEe,2v2h]xEe,2v2
icx~2v!

2ke~2v!
]x

2Ee,2v2
icy~2v!

2ke~2v!
]y

2Ee,2v5
i2vd~ I !

ne~2v!cos2 b~2v!
Eo,v

2 e2 ihkz,

wherehk5ke(2v)22ko(v), h5tanb(2v), and
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cx~2v!5
xo~2v!xe~2v!

~cos2~u!xe~2v!1sin2~u!xo~2v!!2 , cy~2v!5
xo~2v!

cos2~u!xe~2v!1sin2~u!xo~2v!
.

We assume that the frequency conversion rate is low. Taking the Fourier transform with res
the spatial transverse coordinates (x,y)°(kx ,ky):

]zÊo,v1
ikx

2

2ko~v!
Êo,v1

iky
2

2ko~v!
Êo,v50, ~36a!

]zÊe,2v1 ikxhÊe,2v1
ikx

2cx~2v!

2ke~2v!
Êe,2v1

iky
2cy~2v!

2ke~2v!
Êe,2v5 ide,2v

I Êo,v* Êo,vei ~2ko2ke!z,

~36b!

where* stands for the convolution operation. It is easy to find the explicit form ofÊo,v from Eq.
~36a! by a simple exponentiation, and convoluting this expression with itself

Êo,v* Êo,v~z01z,kx ,ky!5
A0pw0

2

w0
2

2
1 i

no~v!z01z

ko~v!

exp2
kx

21ky
2

2 S w0
2

4
1 i

no~v!z01z

2ko~v!
D .

In order to computeuÊe,2vu we set:

Êe,2v5Êe,2v expizS kxh1
kx

2cx~2v!

2ke~2v!
1

ky
2cy~2v!

2ke~2v!
D ,

whose modulus is equal to the modulus ofÊe,2v and which satisfies

]zĒe,2v5 ide,2v
II Êo,v* Êo,v expizS kxh1

kx
2cx~2v!

2ke~2v!
1

ky
2cy~2v!

2ke~2v!
12ko(v)2ke(2v) D .

The right-hand side is known, so by a simple exponentiation we get that, up to a multiplic
constant

uÊe,2vu2~z01zc ,kx ,ky!5e2g~kx ,ky!kow0
2
uEi~2g~kx ,ky!~z11 izc!!2Ei~2g~kx ,ky!z1!u2,

~37!

whereEi is the integral exponential function:Ei(x)ª*1
`@exp(2xt)/t#dt and

z15
ko~v!w0

2

2
1 iz0n0~v!,

g~kx ,ky!5kxh1kx
2S cx~2v!

2ke~2v!
2

1

4ko~v! D1ky
2S cy~2v!

2ke~2v!
2

1

4ko~v! D12ko~v!2ke~2v!.

A study of the function~37! proves that the locations of the minima of the spectral inten
~which are experimentally detectable with high precision! do not depend on the waist distancez0 .

B. Type II conversion

We still assume that the frequency conversion rate is low. Taking the Fourier transform f
spatial transverse coordinates and applying Proposition 3, the system which governs the
harmonic generation in the type II configuration is:
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]zÊo,v1
ikx

2

2ko~v!
Êo,v1

iky
2

2ko~v!
Êo,v50, ~38a!

]zÊe,v1 ikxh1Êe,v1
ikx

2cx~v!

2ke~v!
Êe,v1

iky
2cy~v!

2ke~v!
Êe,v50, ~38b!

]zÊe,2v1 ikxh2Êe,2v1
ikx

2cx~2v!

2ke~2v!
Êe,2v1

iky
2cy~2v!

2ke~2v!
Êe,2v

5
2ivd~ II !

ne~2v!cos2 b~2v!
Êo,v* Êe,ve2 ihkz, ~38c!

wherehk5ke(2v)2ke(v)2ko(v), h15tanb(v), andh25tanb(2v). The calculations are iden
tical to the ones performed in the type I configuration. One first compute the closed-form e
sions of the fieldsÊo,v andÊe,v from Eqs.~38a! and~38b!. These expressions are then substitu
into the right-hand side of Eq.~38c! which can then be solved. We have found that, up to
multiplicative constant

uÊe,2vu~2kux,2kuy!5U E
0

zc 1

~ ā1 iCxz!1/2expk
Ax~ux!z

21 i āBx~ux!z2ā2ux
2

ā1 iCxz

3
1

~ ā1 iCyz!1/2expk
Ay~uy!z21 i āBy~uy!z2ā2uy

2

ā1 iCyz
3exp~2 ihkz!dzU,

~39!

whereā5zr1 iz0 , zr5kw0
2/2, k52p/l5v/c, and

Ax~ux!5ux
2S cx~v!

no~v!ne~v!
2

cx~2v!

ne~2v!
CxD1uxS h1

no~v!
22h2CxD2

h1
2

4
,

Bx~ux!5ux
2S cx~2v!

ne~2v!
22CxD1ux~2h22h1!,

Cx5
1

2 S 1

no~v!
1

cx~v!

ne~v! D ,

Ay~uy!5uy
2S cy~v!

no~v!ne~v!
2

cy~2v!

ne~2v!
CyD ,

By~ux!5uy
2S cy~2v!

ne~2v!
22CyD ,

Cy5
1

2 S 1

no~v!
1

cy~v!

ne~v! D .

In the type II configuration the positions of the minima of the spectral intensity depend o
waist distancez0 .

IX. CONCLUSION

In this paper we have derived the equations which govern the evolutions of the slowly va
envelopes of pulses in a bulk medium presenting anisotropic properties and nonlinear su
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bilities. In case of phase-matching we have derived the equations that govern the freq
conversion of the source. In case of no phase matching we have derived the non
Schrödinger-type equation that governs the evolution of the pulse. We have shown that th
fraction operator is anisotropic, and that the nonlinear term may be more complicated th
standard Kerr effect due tox (2)-cascaded effects. We have in particular detected a configura
where stable solitons should be naturally generated since the equation then reads as the
one-dimensional Schro¨dinger equation with Kerr nonlinearity. As a natural extension of this w
we may also think at the propagation of partially coherent light in a linear or nonlinear anisot
medium. Indeed the intensity profiles of the speckle spots along the propagation axis are im
by the diffraction. So an anisotropic diffraction should involve interesting and original chara
istics of the speckle spots.
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