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Amplification of broadband incoherent light in
homogeneously broadened media

in the presence of Kerr nonlinearity
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We have developed a statistical nonlinear model to explain an anomalous intensity saturation observed in the
amplification of intense broadband incoherent pulses on neodynium-doped glass power chains. The physics
behind this model is basically self-phase modulation creating new wavelengths scattered in the tail of the gain
profile. The theory shows qualitative agreement with the experimental results. © 1997 Optical Society of
America [S0740-3224(97)02310-2]
1. INTRODUCTION
There are strong analogies between the nonlinear propa-
gation of ultrashort coherent pulses and temporally inco-
herent light, implying that similar effects should be ob-
served in both cases. Incoherent light with ultrashort
coherence times is of interest for linear and nonlinear co-
herent spectroscopy1,2 and for many other applications
such as tomography in random media3 and smoothing
techniques for uniform irradiation in plasma physics.4

Furthermore, pulses obtained by optical shaping methods
for coded telecommunication purposes5 are indeed deter-
ministic but nevertheless may have similarities to inco-
herent fields. The present study was triggered by the
initial observation of an anomalous intensity saturation
effect in the amplification of intense incoherent pulses in
a large Nd:glass power chain.6 It is well known that on
one hand gain narrowing effects limit the duration of ul-
trashort pulses in amplification devices and on the other
hand nonlinear processes that appearing in the propaga-
tion, such as self-phase modulation (SPM), produce spec-
tral broadening. Such delicate balances among disper-
sion, narrowing, and broadening effects help in the
solitonlike generation of ultrashort pulses in cavities.
This is so, for instance, in the case of a Nd-doped glass ac-
tively mode-locked glass oscillator, for which 100-fs
pulses, an order of magnitude shorter than expected,7

have been produced. However, the interplay between ef-
fects such as gain narrowing and SPM are difficult to ob-
serve because of other cumulative effects in a cavity.
0740-3224/97/102563-07$10.00 ©
Such mechanisms are easier to study in the amplification
of incoherent pulses. In the research reported in Ref. 6
the pulses at hand were time–space modulated, so it was
difficult to distinguish among the phenomena that might
be responsible for the observed saturation. We present
data that correspond to a recent separate series of experi-
ments in which pulses have time-incoherent modulations
but no spatial fluctuations, so spatial effects such as self-
focusing do not accumulate with the effects of temporal
incoherence. Therefore we are able to analyze precisely
the time mechanisms that give rise to intensity satura-
tion. In what follows, we develop a closed-form theory of
the combined effects of self-phase modulation and gain
narrowing for incoherent pulses and discuss their appli-
cability to the experimental results obtained on the Phe-
bus high power laser chain with broadband pulses.

2. NONLINEAR STATISTICAL MODEL
We consider plane waves and assume that the initial field
propagating along the z axis is E0(t)exp 2 i(v0t 2 k0z),
where v0 and k0 are the carrier frequency and the corre-
sponding wave vector, respectively. The envelope E0(t)
5 a0(t)exp if0(t) is assumed to follow stationary Gauss-
ian statistics with a Gaussian correlation function of cor-
relation time Tc :

^E0~t !E0* ~t 1 T !& 5 I0 exp~2T2/2Tc
2!, (1)
1997 Optical Society of America
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where ^ & stands for statistical averaging with respect to
the distribution of E0 . In particular, (1) the amplitude
a0(t) and the phase f0(t) are statistically independent,
(2) the distribution of intensity I(t) 5 ua0(t)u2 admits of a
density p(I) 5 1/I0 exp(2I/I0), where I0 the initial aver-
aged intensity, and (3) f0(t) obeys a uniform distribution
over [0, 2p]. The pulse duration tp is assumed to be
many orders of magnitude larger than the coherence
time, so the stationary condition is a reasonable assump-
tion. As a consequence, the field E0 is time ergodic,
which implies that the time average coincides with the
statistical average.

This incoherent pulse propagates along an amplifying
medium that we assume to correspond to a homoge-
neously broadened two-level system embedded in a host
medium. This host is characterized by a Kerr constant
n2 , whereas the two-level system is characterized by a
dephasing time T2 and an excited-state lifetime that we
neglect because it is much larger than all the character-
istic time scales involved in the problem.

In what follows, we stay in the slowly varying envelope
approximation for the field and the polarization, which is
equivalent to T2 ! Tc . Assuming that the pulse is
tuned to maximum amplification and neglecting the spa-
tial transverse profile evolution, the coupled equations
verified in the moving pulse time frame by the field E and
the normalized polarization P are8

i
]E

]z
1 s

]2E

]t2 1
k0n2

2n0
uEu2E 5

1

2
P, (2)

T2
]P
]t

1 P 5 igE, (3)

where n0 is the unperturbed value of the index of refrac-
tion and n2 . 0 is the Kerr constant that characterizes
the nonlinear correction of the index. The group-velocity
dispersion (GVD) coefficient s is related to the dispersion
factor ]2v/]k2uk0

through the formula

s 5
v9~k0!

2v8~k0!3 , (4)

where v8(k0) is the group velocity. Following the disper-
sive properties of the medium, the coefficient s can be ei-
ther positive in the case of a so-called anomalous-
dispersion medium or negative in the opposite case of a
normally dispersive medium. In this paper we consider
mainly the latter case, because the value of s for a Nd-
doped glass laser at 1.05 mm is s . 23.5 3 1024

ps2 cm21. There is a further equation that expresses the
evolution of g,8 the inverted population expressed in gain
per length unit, but in this simplified analysis we focus on
the case for which depletion of the stored energy can be
neglected, so g is kept constant.

3. INTERPLAY BETWEEN SELF-PHASE
MODULATION AND GAIN
Let us denote by Dv the bandwidth of the incident pulse,
which is conversely proportional to the correlation time:
Dv 5 Tc

21. We assume in this section that, in the am-
plification length g21, the time-delay dispersion of the dif-
ferent frequency components sDvg21 is much smaller
than the coherence time, which also reads as

s

gTc
2 ! 1. (5)

Time dispersion is then negligible, so each t cross section
of the pulse evolves independently. As a consequence,
we can neglect the time-dispersive effects and take s
5 0. The influence of the group-velocity dispersion is
discussed in Section 5.

We first consider simultaneous SPM and gain but as-
sume that the gain spectrum is flat (T2 5 0), in which
case P 5 igE. The pulse is then amplified with the in-
tensity small-signal gain g 5 gz and acquires a nonlinear
phase term, fNL(t) 5 k0n2a0

2(t)(eg 2 1)/(2n0g) that
gives rise to spectral broadening. We can actually find a
closed-form expression for the correlation function
C(T, z) 5 ^E(t, z)E* (t 1 T, z)&:

C~T, B !uT250 5
egI0 exp~2T2/2Tc

2!

$1 1 B2@1 2 exp~2T2/Tc
2!#%2

, (6)

where B 5 k0n2I0(eg 2 1)/(2n0g) is identified as the so-
called B integral. In the limit g → 0 we then recover the
expression of Manassah,10 who considered the propaga-
tion of an incoherent field in a dispersionless Kerr me-
dium without gain. In Figure 1 we plot the theoretical
correlation function C given by Eq. (6) as a function of the
B integral and the reduced time T, which puts into evi-
dence a reduction of the correlation time of the pulse
when the value of the B integral becomes of the order of 1.
As a consequence we must take into account the finite
dephasing time of the polarization even if the spectrum of
the incident pulse is narrower than the gain spectrum.

The interesting configuration is indeed the one in
which the actions of SPM and gain narrowing accumu-
late, as described by Eqs. (2) and (3) with s 5 0. In what
follows, we develop an asymptotic analysis in which we
assume that the spectrum of the initial incoherent light is
much narrower than the gain spectrum, which also reads
as d 5 T2 /Tc ! 1. Using a perturbation method (see

Fig. 1. Theoretical correlation function in the limit T2 5 0 as a
function of the reduced time T expressed in units of Tc for differ-
ent values of the B integral. For each B value we have normal-
ized the maximum of the function to 1. The dashed, solid,
dotted–dashed, and double-dotted–dashed curves plot cases
B 5 0, 1, 2, 3, respectively.
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Appendix A), we compute the asymptotic expansion of the
electric field and find the average field intensity I at po-
sition z:

I ~ g, B ! . egI0@1 2 d2g 2 2d2B2f2~ g ! 1 O~d 3!#. (7)

The term f2( g) 5 (1 2 4e2g 1 2ge22g 1 3e22g)(1
2 e2g)22 is equal to 1 in case of large gain. The second
term in brackets in relation (7) is the usual gain-
narrowing effect, and the third term is a new corrective
term specific to the mutual action of SPM and a finite
dephasing time. Both are always negative, so they lead
to a decrease in the expected gain. The striking observa-
tion is that the third coupled term depends on the ampli-
fied intensity and not on the energy and that it may be-
come even larger than the gain line-shape effect if B gets
large enough (B . Ag/2). However, we should also point
out that the expansion in relation (7) is valid only if these
two corrective terms are quite a bit smaller than 1.

The physics behind this intensity saturation is made
more transparent when we estimate the evolution of the
incoherent pulse spectrum. The method consists then of
getting an asymptotic expansion of the correlation func-
tion C(T, z) and Fourier transforming it. Actually this
is a delicate computation that is sketched in Appendix A
and yields

C~T, g, B ! .
egI0 exp~2T2/2Tc

2!

$1 1 B2@1 2 exp~2T2/Tc
2!#%2

3 @1 1 d2h1~ g, T/Tc!

1 2d2B2h2~ g, T/Tc! 1 O~d 3!#. (8)

For a high gain we get h1( g, t) 5 g(t 221) and h2( g, t)
5 g2@1 2 t 2 2 exp(2t 2)#. The first ratio in relation (8)
corresponds to the sole effect of SPM, and the first correc-
tive term in the brackets originates from gain narrowing.
The last corrective term, which can become quite impor-
tant, is more interesting because it describes the coupled
but competing mechanisms of the spectral narrowing that
is due to the gain profile and the spectral broadening that
results from SPM. The global result is that the correla-
tion function may get narrower after propagation in the
amplifier medium, corresponding to spectral broadening.
This result provides a simple explanation of the intensity
loss saturation that appears in relation (7): new wave-
lengths created by the SPM mechanisms are scattered in
the wings of the gain profile and therefore are less ampli-
fied than expected or are not amplified at all. This result
also implies that intensity saturation is automatically as-
sociated with spectral broadening, the important param-
eter being the B-integral value defined above.

4. COMPARISON WITH EXPERIMENTAL
DATA
Here we develop numerical cases relevant for the experi-
mental amplification of broadband pulses in Nd-doped
glass amplifiers. In short, the experiments consist of cre-
ating a time-incoherent pulse with a spatially uniform
profile by using a longitudinal multimode glass laser
whose 14-ns output has the characteristics of a Gaussian
stationary statistical process. The incoherent broadband
pulse, typically of 1.2 nm FWHM bandwidth, correspond-
ing to Tc 5 1.1 ps, is sent into a pulse slicer to yield an
output square shape of 1.3 ns. This pulse is then sent
into a large Nd-doped phosphate glass able to deliver as
much as 1.5 kJ of energy at 1.053 mm. Before going into
the large disk amplifier the pulses go through high-gain
preamplifiers at the output of which neither broadening
nor saturation can be observed. We therefore consider
only the section from the midchain to the final output.
We can claim from previously known results11 that two
photon absorption is negligible in these experimental con-
ditions.

Figure 2 shows the experimental energy output as a
function of midchain energy input in the cases of a mono-
chromatic pulse and of an incoherent pulse of bandwidth
1.2 nm. Some energy saturation, which is due to the en-
ergy depletion that the model does not take into account,
can be seen in the case of the standard pulse. However,
the striking observation is the stronger saturation in the
case of the incoherent pulse. In a separate series of mea-
surements we identified that this gain lowering is related
to the pulse peak intensity, suggesting that it originates

Fig. 2. Experimental energy output as a function of midchain
energy input for a monochromatic pulse and for an incoherent
pulse of bandwidth (FWHM) 1.2 nm.

Fig. 3. Experimental chain output spectra. The preamplifier
output spectrum (dashed curve) has a FWHM of 1.2 nm. The
chain output spectrum (solid curve) has a FWHM of 2.4 nm and
corresponds to an output energy of 1.1 kJ.
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from nonlinear propagation effects as described in the
model developed above. This conclusion is supported by
the fact that the amplified pulse shows some important
spectral broadening, typically by a factor of 2, relative to
the injected spectrum. Figure 3 compares the preamp-
lifier output spectrum with the chain output spectrum for
one of the experiments, and Fig. 4 shows the experimen-
tal spectral broadenings observed for a series of experi-
ments with different input and output energies.

To compare these data with our nonlinear statistical
model, we assimilate the transition of Nd31-doped phos-
phate glass into a two-level homogeneously broadened
system with a dephasing time T2 ; 100 fs. The small
parameter is then d 5 T2 /Tc ; 0.09. The measured
gain corresponds to an amplification length unit of g21

; 20 cm, the small-signal gain being of the order of g
; 3.5. Figure 5 represents the theoretical output as a
function of the B integral for the given small-signal gain
g 5 3.5 when relation (7) is applied. It shows the same
trend as the experimental data, consisting of saturation
increasing with B, which itself is proportional to the in-
put power. We get ;10% reduction of output for B
5 2. At this stage it is instructive to use the correlation

Fig. 4. Experimental spectral broadening as a function of en-
ergy output with an incoherent pulse of bandwidth (FWHM) 1.2
nm.

Fig. 5. Theoretical amplification efficiency, defined as the ratio
r of the average output intensity given by relation (7) over the
expected output intensity I0eg. The efficiency is expressed as a
percentage function of the B integral. The small signal-gain is
taken to be g 5 3.5 and the ratio is d 5 0.09.
function of the output pulse given by relation (8) and, fol-
lowing the Wiener–Khintchine theorem,12 to Fourier
transform it to compute the output pulse spectrum. Fig-
ure 6 presents such a calculated output spectrum versus
the input one for B 5 1.4. These spectra depend only
weakly on the value of the gain in the range 0 , g , 5
but show a broadening that is due to self-phase modula-
tion, which depends only on the B integral. This broad-
ening seems roughly to follow the law A1 1 2B2, which is
an approximation that is valid for Gaussian pulses (Fig.
7). Figure 8 plots the calculated values of the B integrals
of the experimental pulses whose output energies and
spectral broadenings are shown in Fig. 4. For instance,
spectral broadening by a factor of 2.2 theoretically corre-
sponds to B ; 1.4. We can also estimate the value of the
B integral from energy measurements and the time pro-
file of the pulse. This evaluation is difficult, however, be-
cause the temporal pulse shape is saturated and distorted
by the complex amplifier system, which consists of many
amplifiers with different diameters. We then use an ef-
ficient software called Mirò,13 which can simulate propa-
gation and amplification of laser beams in complex laser
devices. Using the experimental time profile envelope as

Fig. 6. Theoretical chain output spectrum versus the preamp-
lifier spectrum (dashed curve) for B 5 1.4 (solid curve). The
small-signal gain is taken to be g 5 3.5, and the ratio is d
5 0.09.

Fig. 7. Variation of the spectral broadening Dloutput /Dlinput with
the B integral. We compare the approximation that is valid for
a coherent Gaussian pulse (dashed curve) with the theoretical
chain output spectral broadening for incoherent light for d 5 0
(dotted–dashed curve), for g 5 3.5 and d 5 0.09 (solid curve),
and for g 5 6 and d 5 0.09 (double-dotted–dashed curve).
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an entry for this software, we get the value Bmax . 1.7 for
the maximum of the B integral of the envelope. As the
experimental time envelope has rather close to a flat pro-
file, the actual value of the mean B integral is slightly
less than 1.7, which is in reasonable agreement with the
value 1.4 deduced from the spectral broadening. This B
value corresponds to a calculated output energy loss of
the order of 6%, which is close to the corresponding ob-
served 10% loss of energy. Such a slight quantitative
disagreement is not surprising in view of the uncertainty
of the experiments and the simplifications of the model.
First, we simulate the many amplifiers of the actual sys-
tem by a single amplifier. Second, we do not consider en-
ergy saturation caused by the depletion of the inverted
population. Therefore we believe that the nonlinear
model of time incoherence developed here must capture
the essential part of the phenomena responsible for the
anomalous intensity saturation observed in a glass laser.

5. INFLUENCE OF GROUP-VELOCITY
DISPERSION
We first discuss the effects of GVD in the case of a flat
gain spectrum (T2 5 0). The envelope of the field satis-
fies nonlinear Schrödinger equation (2) with small-signal
gain g, which reads as

i
]E

]z
1 s

]2E

]t2 1
k0n2

2n0
uEu2E 5

ig

2
E. (9)

The average intensity, i.e., the L2 norm of the field, is
then amplified with the exponential gain eg. To put into
evidence the effects of GVD we consider the contrast of
the pulse, defined as the normalized variance of the inten-
sity:

c2 5
^uEu4& 2 ^uEu2&2

^uEu2&2 , (10)

which characterizes the relative fluctuations in intensity.
The estimation of the L4 norm of the field ^uEu4& requires

Fig. 8. Experimental B integral as a function of energy output
with an incoherent pulse of bandwidth (FWHM) 1.2 nm. The
values of the B integrals are calculated from the experimental
values of the spectral broadenings given in Fig. 4 by the theoret-
ical formula that connects the spectral broadening Dloutput /
Dl input with the B integral and that is plotted in Fig. 7.
the study of the L2 norm of the time derivative of the
field, which is simply related to the second time derivative
of the autocorrelation function through the formula

K U]E

]t
U2L 5 2Re

]2C

]T2U
T50

. (11)

If we consider the GVD as a slight perturbation of Eq. (9),
which holds true if

0 ,
s

gTc
2 ! 1, (12)

then we can obtain by a perturbation method an expan-
sion of the norm of the time derivative of the field with
respect to the small parameter s/(gTc

2), whose first cor-
rective term is found to be (for large g)

K U]E

]t
U2L .

I0eg

Tc
2 F1 1 4B2S 1 1

44Bs

gTc
2 D G . (13)

At this stage it is convenient to introduce a Hamiltonian,
defined by

H :5 s K U]E
]t U

2L 2
k0n2

4n0
^uEu4&, (14)

which is not preserved because of gain but obeys the dif-
ferential equation

]H
]z

5 2
gk0n2

4n0
^uEu4& 1 gH. (15)

Combining Eq. (15) with relation (13), we get that the L4

norm of the field is not amplified according to the ex-
pected rate e2g. Indeed, its expression can be written in
the form of an expansion with respect to the parameter
s/(gTc

2), whose first and second corrective terms can be
derived from expressions (13)–(15):

^uEu4& . ^uE0u4&e2gS 1 1
16Bs

gTc
2 1

528B2s2

g2Tc
4 D . (16)

In the case of normal dispersion (s , 0), the interaction
between the GVD and the SPM involves a spread of the
pulse, whose spikes broaden and local maxima decrease.
The expansion up to second order of the contrast of the
pulse,

c2 . 1 1
32Bs

gTc
2 1

1056B2s2

g2Tc
4 , (17)

exhibits a reduction of the relative fluctuations in inten-
sity when s , 0 and an enhancement when s . 0.

Let us now analyze the effects of GVD in the
asymptotic framework 0 , T2 ! Tc . Taking into ac-
count the expression of the L2 norm of the time derivative
of the field given by relation (13), we can find the
asymptotic expansion of the average field intensity I at
position z for large gain, which generalizes relation (7):

I~ g, B ! . egI0F1 2 d2g 2 2d2B2S 1 1
88Bs

3gTc
2 D

1 O~d 3!G . (18)
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The derivation of the precise expansion valid for any g
can be found in Appendix A. So it appears that anoma-
lous dispersion induces an enhancement of the intensity
saturation exhibited in Section 3, whereas normal disper-
sion succeeds in reducing the contrast as well as the in-
tensity saturation. In the experimental conditions dis-
cussed in Section 4, the value of the corrective term
s/(gTc

2) that is due to GVD is of the order of 28
3 1023; it was therefore fair enough to neglect that term
in the analysis. However, the effect of GVD could be rel-
evant for a much larger bandwidth or for a highly dissi-
pative medium (we may think of fiber amplifiers doped
with rare-earth ions). In such conditions it could be im-
portant to take into account the corrective terms in Eqs.
17 and 18. Moreover, if the absolute value of the param-
eter s/(gTc

2) becomes of the order of 1 or larger, then the
above analysis based on a perturbation method is not
valid because the time-dispersion effects cannot be con-
sidered a small perturbation anymore. The picture is ac-
tually much more complicated than the one presented
here. The interplay between the SPM and the GVD in
the anomalous regime will give rise to self-compression of
the spikes toward the formation of solitons.14 With nor-
mal dispersion the spikes tend to broaden and interact.
Even dark solitons (i.e., solitonlike excitations with large
but finite lifetimes) could appear between spikes; refer to
Gredeskul and Kivshar15 for a review of this topic.

APPENDIX A
We aim at sketching the calculations of the average inten-
sity and the correlation function. A mathematical ap-
proach to this problem was developed elsewhere.9 Using
the perturbed function method, we can compute the
asymptotic expansion of the electric field E 5 aeif with
respect to the small parameter d 5 T2 /Tc :

a~t, z ! 5 ã0~t, z ! 1 d ã1~t, z ! 1 d2ã2~t, z ! 1 ...,

f~t, z ! 5 f̃0~t, z ! 1 df̃1~t, z ! 1 d2f̃2~t, z ! 1 ...,
(A1)

where t is the adimensional variable t/Tc . Within this
framework the coherence time of the incident field is of
the order of 1 with respect to d, whereas the evolution
equations of the field and the polarization can be written
in the form

i
]E

]z
1

s

Tc
2

]2E

]t2 1
k0n2

2n0
uEu2E 5

P

2
, (A2)

d
]P
]t

1 P 5 igE. (A3)

Substituting the expressions given by Eqs. (A1) into Eqs.
(A2) and (A3) and equating to zero the terms in front of
d j, we obtain a set of differential equations for the func-
tions ã j and f̃ j , and finally we can find the asymptotic ex-
pansion of the average output intensity I(z) at position z
in the case s 5 0:

I~g ! . eg^a0
2& 2 d2~B/I0!2f2~ g !eg^a0

4a08
2& 2 d2geg~^a08

2&

1 ^a0
2f08

2&! 1 O~d 3!, (A4)
where the prime stands for the derivative with respect to
t. In the case s Þ 0, the term d2s/(gTc

2)@k0n2eg/
(2n0g)]3egA(g, I0) has to be added to the sum given by
relation (A4); the coefficient A is found to be equal to

A~ g, I0! 5 f3~ g !^a08
4a0

4& 1 f4~g !^a09
2a0

6&, (A5)

where f3( g) . 56/9 and f4( g) . 28/3 in the case of large
gain. Then we decompose E0 5 a0eif0 into the sum X1
1 iX2 . Because the processes X1 and X2 are statisti-
cally independent and identically distributed, we can fac-
tor the expectations ^F(X1)G(X2)& as ^F(X)&^G(X)&,
where X obeys the same distribution as Xj . Finally, af-
ter some calculations, we can verify that relation (7) holds
in the limit when s 5 0, and also when A( g, I0)
5 I0

4Ā( g), where

Ā~ g ! 5 2
176
3

1 176 ge2g 2 352 ge22g 1 528 e22g

2 24 g2e23g 2 176 ge23g 2
1408

3
e23g, (A6)

which is equal to 2176/3 for large gain. We can perform
the same calculations for the correlation function. How-
ever, the computation is much more complicated, because
many terms of order d2 are found. The prevailing one for
large gain g is

DC~t, g ! . d2egg2Fk0n2~eg 2 1 !

2n0g G2

^a0
2a08~0 !a0

2a08~t!

3 exp$i@f0~0 ! 1 fNL~0 ! 2 f0~t!

2 fNL~t!#%&. (A7)

However, it is necessary to estimate all the terms to find
the prevailing one. Decomposing the initial field E0 into
the sum X1 1 iX2 , developing and factorizing the expec-
tations by the independence of the processes X1 and X2 ,
we find that DC is equal to

DC~t, g ! . 2d2egg2B2I0

3
exp~2t 2/2!@1 2 t 2 2 exp~2t2!#

$1 1 B2@1 2 exp~2t 2!#%2

1 negligible terms, (A8)

where the negligible terms are a sum of terms of the type

d2
I0 exp~2t 2/2!h~ g, B, t!

$1 1 B2@1 2 exp~2t 2!#% j ,

with j > 3.
About the further terms of order O(d k), k > 3, by a re-

cursive argument we can state that the asymptotic expan-
sion of the average intensity can be written as

I~ g, B ! . egI0F1 2 d2g 2 2d2B2f2~ g !

1 (
l53

k

fl~ g, B !d l 1 O~d k11!G , (A9)

where the lth corrective term fl( g, B) is at most of the
type Bl.
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